openpilot/selfdrive/modeld/thneed/debug/main.cc

734 lines
24 KiB
C++

#include <sys/types.h>
#include "include/msm_kgsl.h"
#include <stdio.h>
#include <stdlib.h>
#include <dlfcn.h>
#include <cassert>
#include <sys/mman.h>
int run_num = 0;
int ioctl_num = 0;
void hexdump(uint32_t *d, int len) {
assert((len%4) == 0);
printf(" dumping %p len 0x%x\n", d, len);
for (int i = 0; i < len/4; i++) {
if (i != 0 && (i%0x10) == 0) printf("\n");
printf("%8x ", d[i]);
}
printf("\n");
}
void hexdump8(uint8_t *d, int len) {
printf(" dumping %p len 0x%x\n", d, len);
for (int i = 0; i < len; i++) {
if (i != 0 && (i%0x10) == 0) printf("\n");
printf("%02x ", d[i]);
}
printf("\n");
}
#include <string>
#include <vector>
#include <map>
using namespace std;
#include "disasm/include/adreno_pm4types.h"
#define REG_A5XX_TPL1_CS_TEX_CONST_LO 0x0000e760
#define REG_A5XX_TPL1_CS_TEX_SAMP_LO 0x0000e75c
class CachedCommand {
public:
CachedCommand(struct kgsl_gpu_command *cmd, int lfd);
void exec(bool wait);
private:
string cmd_0, cmd_1;
int obj_len;
int fd;
struct kgsl_gpu_command cache;
struct kgsl_command_object cmds[2];
struct kgsl_command_object objs[1];
};
vector<CachedCommand *> queue_cmds;
void disassemble(uint32_t *src, int len) {
int i = 0;
while (i < len) {
int pktsize;
int pkttype = -1;
if (pkt_is_type0(src[i])) {
pkttype = 0;
pktsize = type0_pkt_size(src[i]);
} else if (pkt_is_type3(src[i])) {
pkttype = 3;
pktsize = type3_pkt_size(src[i]);
} else if (pkt_is_type4(src[i])) {
pkttype = 4;
pktsize = type4_pkt_size(src[i]);
} else if (pkt_is_type7(src[i])) {
pkttype = 7;
pktsize = type7_pkt_size(src[i]);
}
printf("%3d: type:%d size:%d ", i, pkttype, pktsize);
if (pkttype == 7) {
printf("op: %4x ", cp_type7_opcode(src[i]));
}
if (pkttype == 4) {
printf("reg: %4x ", cp_type4_base_index_one_reg_wr(src[i]));
}
for (int j = 0; j < pktsize+1; j++) {
printf("%8.8X ", src[i+j]);
}
printf("\n");
if (pkttype == 7 && cp_type7_opcode(src[i]) == CP_LOAD_STATE) {
// CP_LOAD_STATE4
int sz = (src[i+1] & 0xffc00000) >> 22;
uint64_t addr = (uint64_t)(src[i+2] & 0xfffffffc) | ((uint64_t)(src[i+3]) << 32);
hexdump((uint32_t *)addr, sz*4);
}
if (pkttype == 4 && cp_type4_base_index_one_reg_wr(src[i]) == REG_A5XX_TPL1_CS_TEX_CONST_LO) {
uint64_t addr = (uint64_t)(src[i+1] & 0xffffffff) | ((uint64_t)(src[i+2]) << 32);
hexdump((uint32_t *)addr, 0x40);
}
if (pkttype == 4 && cp_type4_base_index_one_reg_wr(src[i]) == REG_A5XX_TPL1_CS_TEX_SAMP_LO) {
uint64_t addr = (uint64_t)(src[i+1] & 0xffffffff) | ((uint64_t)(src[i+2]) << 32);
hexdump((uint32_t *)addr, 0x40);
}
if (pkttype == -1) break;
i += (1+pktsize);
}
assert(i == len);
}
int intercept = 1;
int prop_num = 0;
extern "C" {
/*void *gsl_memory_alloc_pure(long param_1, long param_2, long *param_3) {
void *(*my_gsl_memory_alloc_pure)(long param_1, long param_2, long *param_3);
my_gsl_memory_alloc_pure = reinterpret_cast<decltype(my_gsl_memory_alloc_pure)>(dlsym(RTLD_NEXT, "gsl_memory_alloc_pure"));
void *ret = my_gsl_memory_alloc_pure(param_1, param_2, param_3);
printf("gsl_memory_alloc_pure: 0x%lx 0x%lx %p = %p\n", param_1, param_2, param_3, ret);
return ret;
}*/
void *mmap64(void *addr, size_t len, int prot, int flags, int fildes, off64_t off) {
void *(*my_mmap64)(void *addr, size_t len, int prot, int flags, int fildes, off64_t off);
my_mmap64 = reinterpret_cast<decltype(my_mmap64)>(dlsym(RTLD_NEXT, "mmap64"));
void *ret = my_mmap64(addr, len, prot, flags, fildes, off);
if (fildes == 3) {
printf("mmap64(addr=%p, len=0x%zx, prot=0x%x, flags=0x%x, fildes=%d, off=0x%lx) = %p\n", addr, len, prot, flags, fildes, off, ret);
}
return ret;
}
pid_t gettid(void);
#undef ioctl
int ioctl(int filedes, unsigned long request, void *argp) {
int (*my_ioctl)(int filedes, unsigned long request, void *argp);
my_ioctl = reinterpret_cast<decltype(my_ioctl)>(dlsym(RTLD_NEXT, "ioctl"));
int skip = 0;
if (intercept) {
int tid = gettid();
if (request == IOCTL_KGSL_GPU_COMMAND) {
struct kgsl_gpu_command *cmd = (struct kgsl_gpu_command *)argp;
printf("IOCTL_KGSL_GPU_COMMAND(%d): flags: 0x%lx numcmds: %u numobjs: %u numsyncs: %u context_id: %u timestamp: %u\n",
tid,
cmd->flags,
cmd->numcmds, cmd->numobjs, cmd->numsyncs,
cmd->context_id, cmd->timestamp);
assert(cmd->numcmds == 2);
assert(cmd->numobjs == 1);
assert(cmd->numsyncs == 0);
//struct kgsl_command_object *obj = (struct kgsl_command_object *)cmd->cmdlist;
//assert(obj[0].size == sizeof(queue_init));
//memcpy(queue_init, (void*)obj[0].gpuaddr, sizeof(queue_init));
//string qcmd((char*)obj[1].gpuaddr, obj[1].size);
if (run_num == 3) {
CachedCommand *ccmd = new CachedCommand(cmd, filedes);
queue_cmds.push_back(ccmd);
//ccmd->exec();
//skip = 0;
//printf("command 0x%lx\n", obj[1].gpuaddr);
//disassemble((uint32_t *)qcmd.data(), qcmd.size()/4);
//queue_cmds.push_back(qcmd);
}
#ifdef DUMP
char tmp[0x100];
snprintf(tmp, sizeof(tmp), "/tmp/thneed/run_%d_%d", run_num, ioctl_num++);
FILE *f = fopen(tmp, "wb");
#endif
// kgsl_cmdbatch_add_cmdlist
for (int i = 0; i < cmd->numcmds; i++) {
struct kgsl_command_object *obj = (struct kgsl_command_object *)cmd->cmdlist;
printf(" cmd: %lx %5lx %5lx flags:%3x %d\n",
obj[i].offset, obj[i].gpuaddr, obj[i].size, obj[i].flags, obj[i].id);
//hexdump((uint32_t *)obj[i].gpuaddr, obj[i].size);
#ifdef DUMP
fwrite(&obj[i].size, sizeof(obj[i].size), 1, f);
fwrite((void*)obj[i].gpuaddr, obj[i].size, 1, f);
#endif
}
// kgsl_cmdbatch_add_memlist
for (int i = 0; i < cmd->numobjs; i++) {
struct kgsl_command_object *obj = (struct kgsl_command_object *)cmd->objlist;
printf(" obj: %lx %5lx %5lx flags:%3x %d\n",
obj[i].offset, obj[i].gpuaddr, obj[i].size, obj[i].flags, obj[i].id);
//hexdump((uint32_t *)obj[i].gpuaddr, obj[i].size);
#ifdef DUMP
fwrite(&obj[i].size, sizeof(obj[i].size), 1, f);
fwrite((void*)obj[i].gpuaddr, obj[i].size, 1, f);
#endif
}
#ifdef DUMP
fclose(f);
#endif
} else if (request == IOCTL_KGSL_SETPROPERTY) {
struct kgsl_device_getproperty *prop = (struct kgsl_device_getproperty *)argp;
printf("IOCTL_KGSL_SETPROPERTY(%d): 0x%x\n", tid, prop->type);
hexdump8((uint8_t*)prop->value, prop->sizebytes);
if (prop_num == 1) { printf("SKIPPING\n"); skip = 1; }
if (run_num == 3) prop_num++;
//hexdump((unsigned char*)prop->value, prop->sizebytes);
} else if (request == IOCTL_KGSL_GPUOBJ_SYNC) {
struct kgsl_gpuobj_sync *cmd = (struct kgsl_gpuobj_sync *)argp;
struct kgsl_gpuobj_sync_obj *objs = (struct kgsl_gpuobj_sync_obj *)(cmd->objs);
printf("IOCTL_KGSL_GPUOBJ_SYNC(%d) count:%d ", tid, cmd->count);
for (int i = 0; i < cmd->count; i++) {
printf(" -- offset:0x%lx len:0x%lx id:%d op:%d ", objs[i].offset, objs[i].length, objs[i].id, objs[i].op);
}
printf("\n");
} else if (request == IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID) {
struct kgsl_device_waittimestamp_ctxtid *cmd = (struct kgsl_device_waittimestamp_ctxtid *)argp;
printf("IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID(%d): context_id: %d timestamp: %d timeout: %d\n",
tid, cmd->context_id, cmd->timestamp, cmd->timeout);
} else if (request == IOCTL_KGSL_GPUOBJ_ALLOC) {
struct kgsl_gpuobj_alloc *cmd = (struct kgsl_gpuobj_alloc *)argp;
printf("IOCTL_KGSL_GPUOBJ_ALLOC: size:0x%lx flags:0x%lx va_len:0x%lx ", cmd->size, cmd->flags, cmd->va_len);
} else if (request == IOCTL_KGSL_GPUOBJ_FREE) {
//printf("IOCTL_KGSL_GPUOBJ_FREE\n");
} else if (filedes == 3) {
printf("ioctl(%d) %lx\n", tid, request);
}
}
int ret;
if (skip) {
ret = 0;
} else {
ret = my_ioctl(filedes, request, argp);
}
if (request == IOCTL_KGSL_GPUOBJ_ALLOC) {
struct kgsl_gpuobj_alloc *cmd = (struct kgsl_gpuobj_alloc *)argp;
printf("mmapsize:0x%lx id:%d metadata_len:%x metadata:0x%lx = %d\n", cmd->mmapsize, cmd->id, cmd->metadata_len, cmd->metadata, ret);
}
return ret;
}
}
#include <CL/cl.h>
#include "../runners/snpemodel.h"
#include <sys/types.h>
#include <time.h>
static inline uint64_t nanos_since_boot() {
struct timespec t;
clock_gettime(CLOCK_BOOTTIME, &t);
return t.tv_sec * 1000000000ULL + t.tv_nsec;
}
int global_timestamp = -1;
CachedCommand::CachedCommand(struct kgsl_gpu_command *cmd, int lfd) {
fd = lfd;
assert(cmd->numcmds == 2);
assert(cmd->numobjs == 1);
assert(cmd->numsyncs == 0);
global_timestamp = cmd->timestamp;
printf("%p %p %p\n", cmd, (void*)cmd->cmdlist, (void*)cmd->objlist);
memcpy(cmds, (void *)cmd->cmdlist, sizeof(struct kgsl_command_object)*2);
memcpy(objs, (void *)cmd->objlist, sizeof(struct kgsl_command_object)*1);
cmd_0.assign((char*)cmds[0].gpuaddr, cmds[0].size);
cmd_1.assign((char*)cmds[1].gpuaddr, cmds[1].size);
memcpy(&cache, cmd, sizeof(cache));
}
// i think you get these with cl_a5x_ringbuffer_alloc
uint64_t base = 0;
void CachedCommand::exec(bool wait) {
printf("old addr 0x%lx ", cmds[1].gpuaddr);
cmds[1].gpuaddr = base;
printf("using addr 0x%lx with size 0x%4lx ", cmds[1].gpuaddr, cmd_1.size());
base += (cmd_1.size()+0xff) & (~0xFF);
memcpy((void*)cmds[1].gpuaddr, cmd_1.data(), cmd_1.size());
// set up other buffers
memcpy((void*)cmds[0].gpuaddr, cmd_0.data(), cmd_0.size());
memset((void*)objs[0].gpuaddr, 0, objs[0].size);
cache.timestamp = ++global_timestamp;
cache.cmdlist = (uint64_t)cmds;
cache.objlist = (uint64_t)objs;
// run
int ret = ioctl(fd, IOCTL_KGSL_GPU_COMMAND, &cache);
if (wait) {
struct kgsl_device_waittimestamp_ctxtid wait;
wait.context_id = cache.context_id;
wait.timestamp = cache.timestamp;
wait.timeout = -1;
uint64_t tb = nanos_since_boot();
int wret = ioctl(fd, IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID, &wait);
uint64_t te = nanos_since_boot();
printf("exec %d wait %d after %lu us\n", ret, wret, (te-tb)/1000);
} else {
printf("CachedCommand::exec got %d\n", ret);
}
}
int do_print = 0;
#define TEMPORAL_SIZE 512
#define DESIRE_LEN 8
#define TRAFFIC_CONVENTION_LEN 2
FILE *f = NULL;
cl_program clCreateProgramWithSource(cl_context context, cl_uint count, const char **strings, const size_t *lengths, cl_int *errcode_ret) {
cl_program (*my_clCreateProgramWithSource)(cl_context context, cl_uint count, const char **strings, const size_t *lengths, cl_int *errcode_ret) = NULL;
my_clCreateProgramWithSource = reinterpret_cast<decltype(my_clCreateProgramWithSource)>(dlsym(RTLD_NEXT, "REAL_clCreateProgramWithSource"));
//printf("clCreateProgramWithSource: %d\n", count);
if (f == NULL) {
f = fopen("/tmp/kernels.cl", "w");
}
fprintf(f, "/* ************************ PROGRAM BREAK ****************************/\n");
for (int i = 0; i < count; i++) {
fprintf(f, "%s\n", strings[i]);
if (i != 0) fprintf(f, "/* ************************ SECTION BREAK ****************************/\n");
}
fflush(f);
return my_clCreateProgramWithSource(context, count, strings, lengths, errcode_ret);
}
map<cl_kernel, string> kernels;
map<cl_kernel, cl_mem> kernel_inputs;
map<cl_kernel, cl_mem> kernel_outputs;
cl_kernel clCreateKernel(cl_program program, const char *kernel_name, cl_int *errcode_ret) {
cl_kernel (*my_clCreateKernel)(cl_program program, const char *kernel_name, cl_int *errcode_ret) = NULL;
my_clCreateKernel = reinterpret_cast<decltype(my_clCreateKernel)>(dlsym(RTLD_NEXT, "REAL_clCreateKernel"));
cl_kernel ret = my_clCreateKernel(program, kernel_name, errcode_ret);
printf("clCreateKernel: %s -> %p\n", kernel_name, ret);
kernels.insert(make_pair(ret, kernel_name));
return ret;
}
typedef struct image {
size_t image_width;
size_t image_height;
size_t image_row_pitch;
cl_mem buffer;
} image;
map<cl_mem, size_t> buffers;
map<cl_mem, image> images;
cl_int clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) {
cl_int (*my_clSetKernelArg)(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) = NULL;
my_clSetKernelArg = reinterpret_cast<decltype(my_clSetKernelArg)>(dlsym(RTLD_NEXT, "REAL_clSetKernelArg"));
char arg_type[0x100];
char arg_name[0x100];
clGetKernelArgInfo(kernel, arg_index, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_type), arg_type, NULL);
clGetKernelArgInfo(kernel, arg_index, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
printf(" %s %s", arg_type, arg_name);
if (arg_size == 1) {
printf(" = %d", *((char*)arg_value));
} else if (arg_size == 2) {
printf(" = %d", *((short*)arg_value));
} else if (arg_size == 4) {
if (strcmp(arg_type, "float") == 0) {
printf(" = %f", *((float*)arg_value));
} else {
printf(" = %d", *((int*)arg_value));
}
} else if (arg_size == 8) {
cl_mem val = (cl_mem)(*((uintptr_t*)arg_value));
printf(" = %p", val);
if (strcmp(arg_name, "input") == 0) kernel_inputs[kernel] = val;
if (strcmp(arg_name, "output") == 0) kernel_outputs[kernel] = val;
if (strcmp(arg_name, "accumulator") == 0) assert(kernel_inputs[kernel] = val);
if (buffers.find(val) != buffers.end()) {
printf(" buffer %zu", buffers[val]);
}
if (images.find(val) != images.end()) {
printf(" image %zu x %zu rp %zu @ %p", images[val].image_width, images[val].image_height, images[val].image_row_pitch, images[val].buffer);
}
} else {
printf(" %zu", arg_size);
}
printf("\n");
cl_int ret = my_clSetKernelArg(kernel, arg_index, arg_size, arg_value);
return ret;
}
uint64_t start_time = 0;
uint64_t tns = 0;
int cnt = 0;
cl_int clEnqueueNDRangeKernel(cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event) {
// SNPE doesn't use these
assert(num_events_in_wait_list == 0);
assert(global_work_offset == NULL);
cl_int (*my_clEnqueueNDRangeKernel)(cl_command_queue, cl_kernel, cl_uint, const size_t *, const size_t *, const size_t *, cl_uint, const cl_event *, cl_event *) = NULL;
my_clEnqueueNDRangeKernel = reinterpret_cast<decltype(my_clEnqueueNDRangeKernel)>(dlsym(RTLD_NEXT, "REAL_clEnqueueNDRangeKernel"));
uint64_t tb = nanos_since_boot();
cl_int ret = my_clEnqueueNDRangeKernel(command_queue, kernel, work_dim,
global_work_offset, global_work_size, local_work_size,
num_events_in_wait_list, event_wait_list, event);
uint64_t te = nanos_since_boot();
/*ret = clWaitForEvents(1, event);
assert(ret == CL_SUCCESS);
uint64_t tq = nanos_since_boot();*/
if (do_print) {
tns += te-tb;
}
printf("%10lu %10lu running(%3d) -- %p -- %56s -- %p -> %p %s ", (tb-start_time)/1000, (tns/1000), cnt++, kernel, kernels[kernel].c_str(), kernel_inputs[kernel], kernel_outputs[kernel],
(buffers[kernel_outputs[kernel]] != 0) ? "B" : "I");
printf("global -- ");
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", global_work_size[i]);
}
printf("local -- ");
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", local_work_size[i]);
}
printf("\n");
return ret;
}
cl_mem clCreateBuffer(cl_context context, cl_mem_flags flags, size_t size, void *host_ptr, cl_int *errcode_ret) {
cl_mem (*my_clCreateBuffer)(cl_context context, cl_mem_flags flags, size_t size, void *host_ptr, cl_int *errcode_ret) = NULL;
my_clCreateBuffer = reinterpret_cast<decltype(my_clCreateBuffer)>(dlsym(RTLD_NEXT, "REAL_clCreateBuffer"));
cl_mem ret = my_clCreateBuffer(context, flags, size, host_ptr, errcode_ret);
buffers[ret] = size;
printf("%p = clCreateBuffer %zu\n", ret, size);
return ret;
}
cl_mem clCreateImage(cl_context context, cl_mem_flags flags, const cl_image_format *image_format, const cl_image_desc *image_desc, void *host_ptr, cl_int *errcode_ret) {
cl_mem (*my_clCreateImage)(cl_context context, cl_mem_flags flags, const cl_image_format *image_format, const cl_image_desc *image_desc, void *host_ptr, cl_int *errcode_ret) = NULL;
my_clCreateImage = reinterpret_cast<decltype(my_clCreateImage)>(dlsym(RTLD_NEXT, "REAL_clCreateImage"));
// SNPE only uses this
assert(CL_MEM_OBJECT_IMAGE2D == image_desc->image_type);
// RGBA, HALF FLOAT
assert(CL_RGBA == image_format->image_channel_order);
assert(CL_HALF_FLOAT == image_format->image_channel_data_type);
map<cl_mem_object_type, string> lc = {
{CL_MEM_OBJECT_BUFFER, "CL_MEM_OBJECT_BUFFER"},
{CL_MEM_OBJECT_IMAGE2D, "CL_MEM_OBJECT_IMAGE2D"}, // all this one
{CL_MEM_OBJECT_IMAGE3D, "CL_MEM_OBJECT_IMAGE3D"},
{CL_MEM_OBJECT_IMAGE2D_ARRAY, "CL_MEM_OBJECT_IMAGE2D_ARRAY"},
{CL_MEM_OBJECT_IMAGE1D, "CL_MEM_OBJECT_IMAGE1D"},
{CL_MEM_OBJECT_IMAGE1D_ARRAY, "CL_MEM_OBJECT_IMAGE1D_ARRAY"},
{CL_MEM_OBJECT_IMAGE1D_BUFFER, "CL_MEM_OBJECT_IMAGE1D_BUFFER"}};
assert(image_desc->image_depth == 0);
assert(image_desc->image_array_size == 0);
assert(image_desc->image_slice_pitch == 0);
//assert(image_desc->image_width * image_desc->image_height * 2 == image_desc->image_row_pitch);
image img;
img.image_width = image_desc->image_width;
img.image_height = image_desc->image_height;
img.image_row_pitch = image_desc->image_row_pitch;
img.buffer = image_desc->buffer;
cl_mem ret = my_clCreateImage(context, flags, image_format, image_desc, host_ptr, errcode_ret);
printf("%p = clCreateImage %s -- %p -- %d %d -- %4zu x %4zu x %4zu -- %4zu %4zu %4zu\n", ret, lc[image_desc->image_type].c_str(),
image_desc->buffer,
image_format->image_channel_order, image_format->image_channel_data_type,
image_desc->image_width, image_desc->image_height, image_desc->image_depth,
image_desc->image_array_size, image_desc->image_row_pitch, image_desc->image_slice_pitch
);
images[ret] = img;
return ret;
}
cl_int clWaitForEvents(cl_uint num_events, const cl_event *event_list) {
cl_int (*my_clWaitForEvents)(cl_uint num_events, const cl_event *event_list);
my_clWaitForEvents = reinterpret_cast<decltype(my_clWaitForEvents)>(dlsym(RTLD_NEXT, "REAL_clWaitForEvents"));
printf("clWaitForEvents\n");
return my_clWaitForEvents(num_events, event_list);
}
cl_int clReleaseEvent(cl_event event) {
cl_int (*my_clReleaseEvent)(cl_event event);
my_clReleaseEvent = reinterpret_cast<decltype(my_clReleaseEvent)>(dlsym(RTLD_NEXT, "REAL_clReleaseEvent"));
printf("clReleaseEvent: %p\n", event);
return my_clReleaseEvent(event);
}
/*size_t total = 0;
void *calloc(size_t num, size_t size) {
void *(*my_calloc)(size_t num, size_t size);
my_calloc = reinterpret_cast<decltype(my_calloc)>(dlsym(RTLD_NEXT, "REAL_calloc"));
void *ret = my_calloc(num, size);
if (do_print) {
total += num*size;
printf("calloc %p -- total:0x%zx -- num:0x%zx size:0x%zx\n", ret, total, num, size);
}
return ret;
}
void free(void *ptr) {
void (*my_free)(void *ptr);
my_free = reinterpret_cast<decltype(my_free)>(dlsym(RTLD_NEXT, "REAL_free"));
if (do_print) {
//printf("free: %p\n", ptr);
} else {
my_free(ptr);
}
}*/
void *dlsym(void *handle, const char *symbol) {
void *(*my_dlsym)(void *handle, const char *symbol) = (void *(*)(void *handle, const char *symbol))((uintptr_t)dlopen-0x2d4);
if (memcmp("REAL_", symbol, 5) == 0) {
return my_dlsym(handle, symbol+5);
} else if (strcmp("clCreateProgramWithSource", symbol) == 0) {
return (void*)clCreateProgramWithSource;
} else if (strcmp("clCreateKernel", symbol) == 0) {
return (void*)clCreateKernel;
} else if (strcmp("clEnqueueNDRangeKernel", symbol) == 0) {
return (void*)clEnqueueNDRangeKernel;
} else if (strcmp("clSetKernelArg", symbol) == 0) {
return (void*)clSetKernelArg;
} else if (strcmp("clCreateBuffer", symbol) == 0) {
return (void*)clCreateBuffer;
} else if (strcmp("clCreateImage", symbol) == 0) {
return (void*)clCreateImage;
/*} else if (strcmp("clReleaseEvent", symbol) == 0) {
return (void*)clReleaseEvent;
} else if (strcmp("clWaitForEvents", symbol) == 0) {
return (void*)clWaitForEvents;*/
} else {
//printf("dlsym %s\n", symbol);
return my_dlsym(handle, symbol);
}
}
int main(int argc, char* argv[]) {
int err;
cl_platform_id platform_id = NULL;
cl_device_id device_id = NULL;
cl_uint num_devices;
cl_uint num_platforms;
start_time = nanos_since_boot();
err = clGetPlatformIDs(1, &platform_id, &num_platforms);
assert(err == 0);
err = clGetDeviceIDs(platform_id, CL_DEVICE_TYPE_DEFAULT, 1, &device_id, &num_devices);
assert(err == 0);
cl_uint tmp;
// sweet this is 64!
err = clGetDeviceInfo(device_id, CL_DEVICE_MAX_WRITE_IMAGE_ARGS, sizeof(tmp), &tmp, NULL);
assert(err == 0);
printf("CL_DEVICE_MAX_WRITE_IMAGE_ARGS: %u\n", tmp);
err = clGetDeviceInfo(device_id, CL_DEVICE_MAX_READ_IMAGE_ARGS, sizeof(tmp), &tmp, NULL);
assert(err == 0);
printf("CL_DEVICE_MAX_READ_IMAGE_ARGS: %u\n", tmp);
float *output = (float*)calloc(0x10000, sizeof(float));
SNPEModel mdl(argv[1], output, 0, USE_GPU_RUNTIME);
float state[TEMPORAL_SIZE];
mdl.addRecurrent(state, TEMPORAL_SIZE);
float desire[DESIRE_LEN];
mdl.addDesire(desire, DESIRE_LEN);
float traffic_convention[TRAFFIC_CONVENTION_LEN];
mdl.addTrafficConvention(traffic_convention, TRAFFIC_CONVENTION_LEN);
float *input = (float*)calloc(0x1000000, sizeof(float));;
printf("************** execute 1 **************\n");
printf("%p %p %p %p -> %p\n", input, state, desire, traffic_convention, output);
run_num = 1; ioctl_num = 0;
do_print = 0;
start_time = nanos_since_boot();
mdl.execute(input, 0);
printf("************** execute 2 **************\n");
run_num = 2; ioctl_num = 0;
do_print = 0;
mdl.execute(input, 0);
printf("************** execute 3 **************\n");
run_num = 3; ioctl_num = 0;
do_print = 1;
start_time = nanos_since_boot();
mdl.execute(input, 0);
do_print = 0;
struct kgsl_gpuobj_alloc alloc;
memset(&alloc, 0, sizeof(alloc));
alloc.size = 0x40000;
alloc.flags = 0x10000a00;
int fd = 3;
int ret = ioctl(fd, IOCTL_KGSL_GPUOBJ_ALLOC, &alloc);
void *addr = mmap64(NULL, alloc.mmapsize, 0x3, 0x1, fd, alloc.id*0x1000);
assert(addr != MAP_FAILED);
intercept = 0;
while (1) {
printf("************** execute 4 **************\n");
run_num = 4;
base = (uint64_t)addr;
uint64_t tb = nanos_since_boot();
int i = 0;
for (auto it = queue_cmds.begin(); it != queue_cmds.end(); ++it) {
printf("run %2d: ", i++);
//(*it)->exec(i == queue_cmds.size());
(*it)->exec(true);
}
uint64_t te = nanos_since_boot();
printf("model exec in %lu us\n", (te-tb)/1000);
break;
}
/*FILE *f = fopen("/proc/self/maps", "rb");
char maps[0x100000];
int len = fread(maps, 1, sizeof(maps), f);
maps[len] = '\0';
fclose(f);
printf("%s\n", maps);*/
printf("buffers: %lu images: %lu\n", buffers.size(), images.size());
printf("queues: %lu\n", queue_cmds.size());
// IOCTL_KGSL_GPU_COMMAND: flags: 0x11 numcmds: 2 numobjs: 1 numsyncs: 0 context_id: 7 timestamp: 77
/*int ts = 100;
for (auto it = queue_cmds.begin(); it != queue_cmds.end(); ++it) {
auto qcmd = *it;
//disassemble((uint32_t *)qcmd.data(), qcmd.size()/4);
struct kgsl_command_object cmdlists[2];
struct kgsl_command_object objlists;
struct kgsl_gpu_command cmd;
uint8_t objs[0xc0];
memset(objs, 0, 0xc0);
memset(&cmd, 0, sizeof(cmd));
memset(&cmdlists, 0, sizeof(struct kgsl_command_object)*2);
memset(&objlists, 0, sizeof(objlists));
cmd.flags = 0x11;
cmd.cmdlist = (uint64_t)cmdlists;
cmd.numcmds = 2;
cmd.objlist = (uint64_t)objlists;
cmd.numobjs = 1;
cmd.numsyncs = 0;
cmd.context_id = 7;
cmd.timestamp = ts++;
cmdlists[0].gpuaddr = (uint64_t)queue_init;
cmdlists[0].size = 0xbc;
cmdlists[0].flags = 1;
cmdlists[1].gpuaddr = (uint64_t)qcmd.data();
cmdlists[1].size = qcmd.size();
cmdlists[1].flags = 1;
objlists.gpuaddr = (uint64_t)objs;
objlists.size = 0xc0;
objlists.flags = 0x18;
}*/
}