openpilot/selfdrive/controls/lib/latcontrol_indi.py

123 lines
4.3 KiB
Python

import math
import numpy as np
from cereal import log
from common.realtime import DT_CTRL
from common.numpy_fast import clip
from selfdrive.car.toyota.values import SteerLimitParams
from selfdrive.car import apply_toyota_steer_torque_limits
from selfdrive.controls.lib.drive_helpers import get_steer_max
class LatControlINDI():
def __init__(self, CP):
self.angle_steers_des = 0.
A = np.matrix([[1.0, DT_CTRL, 0.0],
[0.0, 1.0, DT_CTRL],
[0.0, 0.0, 1.0]])
C = np.matrix([[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0]])
# Q = np.matrix([[1e-2, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 10.0]])
# R = np.matrix([[1e-2, 0.0], [0.0, 1e3]])
# (x, l, K) = control.dare(np.transpose(A), np.transpose(C), Q, R)
# K = np.transpose(K)
K = np.matrix([[7.30262179e-01, 2.07003658e-04],
[7.29394177e+00, 1.39159419e-02],
[1.71022442e+01, 3.38495381e-02]])
self.K = K
self.A_K = A - np.dot(K, C)
self.x = np.matrix([[0.], [0.], [0.]])
self.enforce_rate_limit = CP.carName == "toyota"
self.RC = CP.lateralTuning.indi.timeConstant
self.G = CP.lateralTuning.indi.actuatorEffectiveness
self.outer_loop_gain = CP.lateralTuning.indi.outerLoopGain
self.inner_loop_gain = CP.lateralTuning.indi.innerLoopGain
self.alpha = 1. - DT_CTRL / (self.RC + DT_CTRL)
self.sat_count_rate = 1.0 * DT_CTRL
self.sat_limit = CP.steerLimitTimer
self.reset()
def reset(self):
self.delayed_output = 0.
self.output_steer = 0.
self.sat_count = 0.0
def _check_saturation(self, control, check_saturation, limit):
saturated = abs(control) == limit
if saturated and check_saturation:
self.sat_count += self.sat_count_rate
else:
self.sat_count -= self.sat_count_rate
self.sat_count = clip(self.sat_count, 0.0, 1.0)
return self.sat_count > self.sat_limit
def update(self, active, CS, CP, path_plan):
# Update Kalman filter
y = np.matrix([[math.radians(CS.steeringAngle)], [math.radians(CS.steeringRate)]])
self.x = np.dot(self.A_K, self.x) + np.dot(self.K, y)
indi_log = log.ControlsState.LateralINDIState.new_message()
indi_log.steerAngle = math.degrees(self.x[0])
indi_log.steerRate = math.degrees(self.x[1])
indi_log.steerAccel = math.degrees(self.x[2])
if CS.vEgo < 0.3 or not active:
indi_log.active = False
self.output_steer = 0.0
self.delayed_output = 0.0
else:
self.angle_steers_des = path_plan.angleSteers
self.rate_steers_des = path_plan.rateSteers
steers_des = math.radians(self.angle_steers_des)
rate_des = math.radians(self.rate_steers_des)
# Expected actuator value
self.delayed_output = self.delayed_output * self.alpha + self.output_steer * (1. - self.alpha)
# Compute acceleration error
rate_sp = self.outer_loop_gain * (steers_des - self.x[0]) + rate_des
accel_sp = self.inner_loop_gain * (rate_sp - self.x[1])
accel_error = accel_sp - self.x[2]
# Compute change in actuator
g_inv = 1. / self.G
delta_u = g_inv * accel_error
# Enforce rate limit
if self.enforce_rate_limit:
steer_max = float(SteerLimitParams.STEER_MAX)
new_output_steer_cmd = steer_max * (self.delayed_output + delta_u)
prev_output_steer_cmd = steer_max * self.output_steer
new_output_steer_cmd = apply_toyota_steer_torque_limits(new_output_steer_cmd, prev_output_steer_cmd, prev_output_steer_cmd, SteerLimitParams)
self.output_steer = new_output_steer_cmd / steer_max
else:
self.output_steer = self.delayed_output + delta_u
steers_max = get_steer_max(CP, CS.vEgo)
self.output_steer = clip(self.output_steer, -steers_max, steers_max)
indi_log.active = True
indi_log.rateSetPoint = float(rate_sp)
indi_log.accelSetPoint = float(accel_sp)
indi_log.accelError = float(accel_error)
indi_log.delayedOutput = float(self.delayed_output)
indi_log.delta = float(delta_u)
indi_log.output = float(self.output_steer)
check_saturation = (CS.vEgo> 10.) and not CS.steeringRateLimited and not CS.steeringPressed
indi_log.saturated = self._check_saturation(self.output_steer, check_saturation, steers_max)
return float(self.output_steer), float(self.angle_steers_des), indi_log