panda/python/uds.py

859 lines
35 KiB
Python

#!/usr/bin/env python3
import time
import struct
from collections import deque
from typing import Callable, NamedTuple, Tuple, List, Deque, Generator, Optional, cast
from enum import IntEnum
class SERVICE_TYPE(IntEnum):
DIAGNOSTIC_SESSION_CONTROL = 0x10
ECU_RESET = 0x11
SECURITY_ACCESS = 0x27
COMMUNICATION_CONTROL = 0x28
TESTER_PRESENT = 0x3E
ACCESS_TIMING_PARAMETER = 0x83
SECURED_DATA_TRANSMISSION = 0x84
CONTROL_DTC_SETTING = 0x85
RESPONSE_ON_EVENT = 0x86
LINK_CONTROL = 0x87
READ_DATA_BY_IDENTIFIER = 0x22
READ_MEMORY_BY_ADDRESS = 0x23
READ_SCALING_DATA_BY_IDENTIFIER = 0x24
READ_DATA_BY_PERIODIC_IDENTIFIER = 0x2A
DYNAMICALLY_DEFINE_DATA_IDENTIFIER = 0x2C
WRITE_DATA_BY_IDENTIFIER = 0x2E
WRITE_MEMORY_BY_ADDRESS = 0x3D
CLEAR_DIAGNOSTIC_INFORMATION = 0x14
READ_DTC_INFORMATION = 0x19
INPUT_OUTPUT_CONTROL_BY_IDENTIFIER = 0x2F
ROUTINE_CONTROL = 0x31
REQUEST_DOWNLOAD = 0x34
REQUEST_UPLOAD = 0x35
TRANSFER_DATA = 0x36
REQUEST_TRANSFER_EXIT = 0x37
class SESSION_TYPE(IntEnum):
DEFAULT = 1
PROGRAMMING = 2
EXTENDED_DIAGNOSTIC = 3
SAFETY_SYSTEM_DIAGNOSTIC = 4
class RESET_TYPE(IntEnum):
HARD = 1
KEY_OFF_ON = 2
SOFT = 3
ENABLE_RAPID_POWER_SHUTDOWN = 4
DISABLE_RAPID_POWER_SHUTDOWN = 5
class ACCESS_TYPE(IntEnum):
REQUEST_SEED = 1
SEND_KEY = 2
class CONTROL_TYPE(IntEnum):
ENABLE_RX_ENABLE_TX = 0
ENABLE_RX_DISABLE_TX = 1
DISABLE_RX_ENABLE_TX = 2
DISABLE_RX_DISABLE_TX = 3
class MESSAGE_TYPE(IntEnum):
NORMAL = 1
NETWORK_MANAGEMENT = 2
NORMAL_AND_NETWORK_MANAGEMENT = 3
class TIMING_PARAMETER_TYPE(IntEnum):
READ_EXTENDED_SET = 1
SET_TO_DEFAULT_VALUES = 2
READ_CURRENTLY_ACTIVE = 3
SET_TO_GIVEN_VALUES = 4
class DTC_SETTING_TYPE(IntEnum):
ON = 1
OFF = 2
class RESPONSE_EVENT_TYPE(IntEnum):
STOP_RESPONSE_ON_EVENT = 0
ON_DTC_STATUS_CHANGE = 1
ON_TIMER_INTERRUPT = 2
ON_CHANGE_OF_DATA_IDENTIFIER = 3
REPORT_ACTIVATED_EVENTS = 4
START_RESPONSE_ON_EVENT = 5
CLEAR_RESPONSE_ON_EVENT = 6
ON_COMPARISON_OF_VALUES = 7
class LINK_CONTROL_TYPE(IntEnum):
VERIFY_BAUDRATE_TRANSITION_WITH_FIXED_BAUDRATE = 1
VERIFY_BAUDRATE_TRANSITION_WITH_SPECIFIC_BAUDRATE = 2
TRANSITION_BAUDRATE = 3
class BAUD_RATE_TYPE(IntEnum):
PC9600 = 1
PC19200 = 2
PC38400 = 3
PC57600 = 4
PC115200 = 5
CAN125000 = 16
CAN250000 = 17
CAN500000 = 18
CAN1000000 = 19
class DATA_IDENTIFIER_TYPE(IntEnum):
BOOT_SOFTWARE_IDENTIFICATION = 0xF180
APPLICATION_SOFTWARE_IDENTIFICATION = 0xF181
APPLICATION_DATA_IDENTIFICATION = 0xF182
BOOT_SOFTWARE_FINGERPRINT = 0xF183
APPLICATION_SOFTWARE_FINGERPRINT = 0xF184
APPLICATION_DATA_FINGERPRINT = 0xF185
ACTIVE_DIAGNOSTIC_SESSION = 0xF186
VEHICLE_MANUFACTURER_SPARE_PART_NUMBER = 0xF187
VEHICLE_MANUFACTURER_ECU_SOFTWARE_NUMBER = 0xF188
VEHICLE_MANUFACTURER_ECU_SOFTWARE_VERSION_NUMBER = 0xF189
SYSTEM_SUPPLIER_IDENTIFIER = 0xF18A
ECU_MANUFACTURING_DATE = 0xF18B
ECU_SERIAL_NUMBER = 0xF18C
SUPPORTED_FUNCTIONAL_UNITS = 0xF18D
VEHICLE_MANUFACTURER_KIT_ASSEMBLY_PART_NUMBER = 0xF18E
VIN = 0xF190
VEHICLE_MANUFACTURER_ECU_HARDWARE_NUMBER = 0xF191
SYSTEM_SUPPLIER_ECU_HARDWARE_NUMBER = 0xF192
SYSTEM_SUPPLIER_ECU_HARDWARE_VERSION_NUMBER = 0xF193
SYSTEM_SUPPLIER_ECU_SOFTWARE_NUMBER = 0xF194
SYSTEM_SUPPLIER_ECU_SOFTWARE_VERSION_NUMBER = 0xF195
EXHAUST_REGULATION_OR_TYPE_APPROVAL_NUMBER = 0xF196
SYSTEM_NAME_OR_ENGINE_TYPE = 0xF197
REPAIR_SHOP_CODE_OR_TESTER_SERIAL_NUMBER = 0xF198
PROGRAMMING_DATE = 0xF199
CALIBRATION_REPAIR_SHOP_CODE_OR_CALIBRATION_EQUIPMENT_SERIAL_NUMBER = 0xF19A
CALIBRATION_DATE = 0xF19B
CALIBRATION_EQUIPMENT_SOFTWARE_NUMBER = 0xF19C
ECU_INSTALLATION_DATE = 0xF19D
ODX_FILE = 0xF19E
ENTITY = 0xF19F
class TRANSMISSION_MODE_TYPE(IntEnum):
SEND_AT_SLOW_RATE = 1
SEND_AT_MEDIUM_RATE = 2
SEND_AT_FAST_RATE = 3
STOP_SENDING = 4
class DYNAMIC_DEFINITION_TYPE(IntEnum):
DEFINE_BY_IDENTIFIER = 1
DEFINE_BY_MEMORY_ADDRESS = 2
CLEAR_DYNAMICALLY_DEFINED_DATA_IDENTIFIER = 3
class DynamicSourceDefinition(NamedTuple):
data_identifier: int
position: int
memory_size: int
memory_address: int
class DTC_GROUP_TYPE(IntEnum):
EMISSIONS = 0x000000
ALL = 0xFFFFFF
class DTC_REPORT_TYPE(IntEnum):
NUMBER_OF_DTC_BY_STATUS_MASK = 0x01
DTC_BY_STATUS_MASK = 0x02
DTC_SNAPSHOT_IDENTIFICATION = 0x03
DTC_SNAPSHOT_RECORD_BY_DTC_NUMBER = 0x04
DTC_SNAPSHOT_RECORD_BY_RECORD_NUMBER = 0x05
DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER = 0x06
NUMBER_OF_DTC_BY_SEVERITY_MASK_RECORD = 0x07
DTC_BY_SEVERITY_MASK_RECORD = 0x08
SEVERITY_INFORMATION_OF_DTC = 0x09
SUPPORTED_DTC = 0x0A
FIRST_TEST_FAILED_DTC = 0x0B
FIRST_CONFIRMED_DTC = 0x0C
MOST_RECENT_TEST_FAILED_DTC = 0x0D
MOST_RECENT_CONFIRMED_DTC = 0x0E
MIRROR_MEMORY_DTC_BY_STATUS_MASK = 0x0F
MIRROR_MEMORY_DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER = 0x10
NUMBER_OF_MIRROR_MEMORY_DTC_BY_STATUS_MASK = 0x11
NUMBER_OF_EMISSIONS_RELATED_OBD_DTC_BY_STATUS_MASK = 0x12
EMISSIONS_RELATED_OBD_DTC_BY_STATUS_MASK = 0x13
DTC_FAULT_DETECTION_COUNTER = 0x14
DTC_WITH_PERMANENT_STATUS = 0x15
class DTC_STATUS_MASK_TYPE(IntEnum):
TEST_FAILED = 0x01
TEST_FAILED_THIS_OPERATION_CYCLE = 0x02
PENDING_DTC = 0x04
CONFIRMED_DTC = 0x08
TEST_NOT_COMPLETED_SINCE_LAST_CLEAR = 0x10
TEST_FAILED_SINCE_LAST_CLEAR = 0x20
TEST_NOT_COMPLETED_THIS_OPERATION_CYCLE = 0x40
WARNING_INDICATOR_REQUESTED = 0x80
ALL = 0xFF
class DTC_SEVERITY_MASK_TYPE(IntEnum):
MAINTENANCE_ONLY = 0x20
CHECK_AT_NEXT_HALT = 0x40
CHECK_IMMEDIATELY = 0x80
ALL = 0xE0
class CONTROL_PARAMETER_TYPE(IntEnum):
RETURN_CONTROL_TO_ECU = 0
RESET_TO_DEFAULT = 1
FREEZE_CURRENT_STATE = 2
SHORT_TERM_ADJUSTMENT = 3
class ROUTINE_CONTROL_TYPE(IntEnum):
START = 1
STOP = 2
REQUEST_RESULTS = 3
class ROUTINE_IDENTIFIER_TYPE(IntEnum):
ERASE_MEMORY = 0xFF00
CHECK_PROGRAMMING_DEPENDENCIES = 0xFF01
ERASE_MIRROR_MEMORY_DTCS = 0xFF02
class MessageTimeoutError(Exception):
pass
class NegativeResponseError(Exception):
def __init__(self, message, service_id, error_code):
super().__init__()
self.message = message
self.service_id = service_id
self.error_code = error_code
def __str__(self):
return self.message
class InvalidServiceIdError(Exception):
pass
class InvalidSubFunctioneError(Exception):
pass
_negative_response_codes = {
0x00: 'positive response',
0x10: 'general reject',
0x11: 'service not supported',
0x12: 'sub-function not supported',
0x13: 'incorrect message length or invalid format',
0x14: 'response too long',
0x21: 'busy repeat request',
0x22: 'conditions not correct',
0x24: 'request sequence error',
0x25: 'no response from subnet component',
0x26: 'failure prevents execution of requested action',
0x31: 'request out of range',
0x33: 'security access denied',
0x35: 'invalid key',
0x36: 'exceed number of attempts',
0x37: 'required time delay not expired',
0x70: 'upload download not accepted',
0x71: 'transfer data suspended',
0x72: 'general programming failure',
0x73: 'wrong block sequence counter',
0x78: 'request correctly received - response pending',
0x7e: 'sub-function not supported in active session',
0x7f: 'service not supported in active session',
0x81: 'rpm too high',
0x82: 'rpm too low',
0x83: 'engine is running',
0x84: 'engine is not running',
0x85: 'engine run time too low',
0x86: 'temperature too high',
0x87: 'temperature too low',
0x88: 'vehicle speed too high',
0x89: 'vehicle speed too low',
0x8a: 'throttle/pedal too high',
0x8b: 'throttle/pedal too low',
0x8c: 'transmission not in neutral',
0x8d: 'transmission not in gear',
0x8f: 'brake switch(es) not closed',
0x90: 'shifter lever not in park',
0x91: 'torque converter clutch locked',
0x92: 'voltage too high',
0x93: 'voltage too low',
}
class CanClient():
def __init__(self, can_send: Callable[[int, bytes, int], None], can_recv: Callable[[], List[Tuple[int, int, bytes, int]]],
tx_addr: int, rx_addr: int, bus: int, sub_addr: int = None, debug: bool = False):
self.tx = can_send
self.rx = can_recv
self.tx_addr = tx_addr
self.rx_addr = rx_addr
self.rx_buff = deque() # type: Deque[bytes]
self.sub_addr = sub_addr
self.bus = bus
self.debug = debug
def _recv_filter(self, bus: int, addr: int) -> bool:
# handle functional addresses (switch to first addr to respond)
if self.tx_addr == 0x7DF:
is_response = addr >= 0x7E8 and addr <= 0x7EF
if is_response:
if self.debug:
print(f"switch to physical addr {hex(addr)}")
self.tx_addr = addr - 8
self.rx_addr = addr
return is_response
if self.tx_addr == 0x18DB33F1:
is_response = addr >= 0x18DAF100 and addr <= 0x18DAF1FF
if is_response:
if self.debug:
print(f"switch to physical addr {hex(addr)}")
self.tx_addr = 0x18DA00F1 + (addr << 8 & 0xFF00)
self.rx_addr = addr
return bus == self.bus and addr == self.rx_addr
def _recv_buffer(self, drain: bool = False) -> None:
while True:
msgs = self.rx()
if drain:
if self.debug:
print("CAN-RX: drain - {}".format(len(msgs)))
self.rx_buff.clear()
else:
for rx_addr, _, rx_data, rx_bus in msgs or []:
if self._recv_filter(rx_bus, rx_addr) and len(rx_data) > 0:
rx_data = bytes(rx_data) # convert bytearray to bytes
if self.debug:
print(f"CAN-RX: {hex(rx_addr)} - 0x{bytes.hex(rx_data)}")
# Cut off sub addr in first byte
if self.sub_addr is not None:
rx_data = rx_data[1:]
self.rx_buff.append(rx_data)
# break when non-full buffer is processed
if len(msgs) < 254:
return
def recv(self, drain: bool = False) -> Generator[bytes, None, None]:
# buffer rx messages in case two response messages are received at once
# (e.g. response pending and success/failure response)
self._recv_buffer(drain)
try:
while True:
yield self.rx_buff.popleft()
except IndexError:
pass # empty
def send(self, msgs: List[bytes], delay: float = 0) -> None:
for i, msg in enumerate(msgs):
if delay and i != 0:
if self.debug:
print(f"CAN-TX: delay - {delay}")
time.sleep(delay)
if self.sub_addr is not None:
msg = bytes([self.sub_addr]) + msg
if self.debug:
print(f"CAN-TX: {hex(self.tx_addr)} - 0x{bytes.hex(msg)}")
assert len(msg) <= 8
self.tx(self.tx_addr, msg, self.bus)
# prevent rx buffer from overflowing on large tx
if i % 10 == 9:
self._recv_buffer()
class IsoTpMessage():
def __init__(self, can_client: CanClient, timeout: float = 1, debug: bool = False, max_len: int = 8):
self._can_client = can_client
self.timeout = timeout
self.debug = debug
self.max_len = max_len
def send(self, dat: bytes) -> None:
# throw away any stale data
self._can_client.recv(drain=True)
self.tx_dat = dat
self.tx_len = len(dat)
self.tx_idx = 0
self.tx_done = False
self.rx_dat = b""
self.rx_len = 0
self.rx_idx = 0
self.rx_done = False
if self.debug:
print(f"ISO-TP: REQUEST - 0x{bytes.hex(self.tx_dat)}")
self._tx_first_frame()
def _tx_first_frame(self) -> None:
if self.tx_len < self.max_len:
# single frame (send all bytes)
if self.debug:
print("ISO-TP: TX - single frame")
msg = (bytes([self.tx_len]) + self.tx_dat).ljust(self.max_len, b"\x00")
self.tx_done = True
else:
# first frame (send first 6 bytes)
if self.debug:
print("ISO-TP: TX - first frame")
msg = (struct.pack("!H", 0x1000 | self.tx_len) + self.tx_dat[:self.max_len - 2]).ljust(self.max_len - 2, b"\x00")
self._can_client.send([msg])
def recv(self) -> Optional[bytes]:
start_time = time.time()
try:
while True:
for msg in self._can_client.recv():
self._isotp_rx_next(msg)
if self.tx_done and self.rx_done:
return self.rx_dat
# no timeout indicates non-blocking
if self.timeout == 0:
return None
if time.time() - start_time > self.timeout:
raise MessageTimeoutError("timeout waiting for response")
finally:
if self.debug and self.rx_dat:
print(f"ISO-TP: RESPONSE - 0x{bytes.hex(self.rx_dat)}")
def _isotp_rx_next(self, rx_data: bytes) -> None:
# single rx_frame
if rx_data[0] >> 4 == 0x0:
self.rx_len = rx_data[0] & 0xFF
self.rx_dat = rx_data[1:1 + self.rx_len]
self.rx_idx = 0
self.rx_done = True
if self.debug:
print(f"ISO-TP: RX - single frame - idx={self.rx_idx} done={self.rx_done}")
return
# first rx_frame
if rx_data[0] >> 4 == 0x1:
self.rx_len = ((rx_data[0] & 0x0F) << 8) + rx_data[1]
self.rx_dat = rx_data[2:]
self.rx_idx = 0
self.rx_done = False
if self.debug:
print(f"ISO-TP: RX - first frame - idx={self.rx_idx} done={self.rx_done}")
if self.debug:
print("ISO-TP: TX - flow control continue")
# send flow control message (send all bytes)
msg = b"\x30\x00\x00".ljust(self.max_len, b"\x00")
self._can_client.send([msg])
return
# consecutive rx frame
if rx_data[0] >> 4 == 0x2:
assert not self.rx_done, "isotp - rx: consecutive frame with no active frame"
self.rx_idx += 1
assert self.rx_idx & 0xF == rx_data[0] & 0xF, "isotp - rx: invalid consecutive frame index"
rx_size = self.rx_len - len(self.rx_dat)
self.rx_dat += rx_data[1:1 + rx_size]
if self.rx_len == len(self.rx_dat):
self.rx_done = True
if self.debug:
print(f"ISO-TP: RX - consecutive frame - idx={self.rx_idx} done={self.rx_done}")
return
# flow control
if rx_data[0] >> 4 == 0x3:
assert not self.tx_done, "isotp - rx: flow control with no active frame"
assert rx_data[0] != 0x32, "isotp - rx: flow-control overflow/abort"
assert rx_data[0] == 0x30 or rx_data[0] == 0x31, "isotp - rx: flow-control transfer state indicator invalid"
if rx_data[0] == 0x30:
if self.debug:
print("ISO-TP: RX - flow control continue")
delay_ts = rx_data[2] & 0x7F
# scale is 1 milliseconds if first bit == 0, 100 micro seconds if first bit == 1
delay_div = 1000. if rx_data[2] & 0x80 == 0 else 10000.
delay_sec = delay_ts / delay_div
# first frame = 6 bytes, each consecutive frame = 7 bytes
num_bytes = self.max_len - 1
start = 6 + self.tx_idx * num_bytes
count = rx_data[1]
end = start + count * num_bytes if count > 0 else self.tx_len
tx_msgs = []
for i in range(start, end, num_bytes):
self.tx_idx += 1
# consecutive tx messages
msg = (bytes([0x20 | (self.tx_idx & 0xF)]) + self.tx_dat[i:i + num_bytes]).ljust(self.max_len, b"\x00")
tx_msgs.append(msg)
# send consecutive tx messages
self._can_client.send(tx_msgs, delay=delay_sec)
if end >= self.tx_len:
self.tx_done = True
if self.debug:
print(f"ISO-TP: TX - consecutive frame - idx={self.tx_idx} done={self.tx_done}")
elif rx_data[0] == 0x31:
# wait (do nothing until next flow control message)
if self.debug:
print("ISO-TP: TX - flow control wait")
FUNCTIONAL_ADDRS = [0x7DF, 0x18DB33F1]
def get_rx_addr_for_tx_addr(tx_addr, rx_offset=0x8):
if tx_addr in FUNCTIONAL_ADDRS:
return None
if tx_addr < 0xFFF8:
# pseudo-standard 11 bit response addr (add 8) works for most manufacturers
# allow override; some manufacturers use other offsets for non-OBD2 access
return tx_addr + rx_offset
if tx_addr > 0x10000000 and tx_addr < 0xFFFFFFFF:
# standard 29 bit response addr (flip last two bytes)
return (tx_addr & 0xFFFF0000) + (tx_addr << 8 & 0xFF00) + (tx_addr >> 8 & 0xFF)
raise ValueError("invalid tx_addr: {}".format(tx_addr))
class UdsClient():
def __init__(self, panda, tx_addr: int, rx_addr: int = None, bus: int = 0, timeout: float = 1, debug: bool = False):
self.bus = bus
self.tx_addr = tx_addr
self.rx_addr = rx_addr if rx_addr is not None else get_rx_addr_for_tx_addr(tx_addr)
self.timeout = timeout
self.debug = debug
self._can_client = CanClient(panda.can_send, panda.can_recv, self.tx_addr, self.rx_addr, self.bus, debug=self.debug)
# generic uds request
def _uds_request(self, service_type: SERVICE_TYPE, subfunction: int = None, data: bytes = None) -> bytes:
req = bytes([service_type])
if subfunction is not None:
req += bytes([subfunction])
if data is not None:
req += data
# send request, wait for response
isotp_msg = IsoTpMessage(self._can_client, self.timeout, self.debug)
isotp_msg.send(req)
while True:
resp = isotp_msg.recv()
if resp is None:
continue
resp_sid = resp[0] if len(resp) > 0 else None
# negative response
if resp_sid == 0x7F:
service_id = resp[1] if len(resp) > 1 else -1
try:
service_desc = SERVICE_TYPE(service_id).name
except BaseException:
service_desc = 'NON_STANDARD_SERVICE'
error_code = resp[2] if len(resp) > 2 else -1
try:
error_desc = _negative_response_codes[error_code]
except BaseException:
error_desc = resp[3:].hex()
# wait for another message if response pending
if error_code == 0x78:
if self.debug:
print("UDS-RX: response pending")
continue
raise NegativeResponseError('{} - {}'.format(service_desc, error_desc), service_id, error_code)
# positive response
if service_type + 0x40 != resp_sid:
resp_sid_hex = hex(resp_sid) if resp_sid is not None else None
raise InvalidServiceIdError('invalid response service id: {}'.format(resp_sid_hex))
if subfunction is not None:
resp_sfn = resp[1] if len(resp) > 1 else None
if subfunction != resp_sfn:
resp_sfn_hex = hex(resp_sfn) if resp_sfn is not None else None
raise InvalidSubFunctioneError(f'invalid response subfunction: {resp_sfn_hex:x}')
# return data (exclude service id and sub-function id)
return resp[(1 if subfunction is None else 2):]
# services
def diagnostic_session_control(self, session_type: SESSION_TYPE):
self._uds_request(SERVICE_TYPE.DIAGNOSTIC_SESSION_CONTROL, subfunction=session_type)
def ecu_reset(self, reset_type: RESET_TYPE):
resp = self._uds_request(SERVICE_TYPE.ECU_RESET, subfunction=reset_type)
power_down_time = None
if reset_type == RESET_TYPE.ENABLE_RAPID_POWER_SHUTDOWN:
power_down_time = resp[0]
return power_down_time
def security_access(self, access_type: ACCESS_TYPE, security_key: bytes = None):
request_seed = access_type % 2 != 0
if request_seed and security_key is not None:
raise ValueError('security_key not allowed')
if not request_seed and security_key is None:
raise ValueError('security_key is missing')
resp = self._uds_request(SERVICE_TYPE.SECURITY_ACCESS, subfunction=access_type, data=security_key)
if request_seed:
security_seed = resp
return security_seed
def communication_control(self, control_type: CONTROL_TYPE, message_type: MESSAGE_TYPE):
data = bytes([message_type])
self._uds_request(SERVICE_TYPE.COMMUNICATION_CONTROL, subfunction=control_type, data=data)
def tester_present(self, ):
self._uds_request(SERVICE_TYPE.TESTER_PRESENT, subfunction=0x00)
def access_timing_parameter(self, timing_parameter_type: TIMING_PARAMETER_TYPE, parameter_values: bytes = None):
write_custom_values = timing_parameter_type == TIMING_PARAMETER_TYPE.SET_TO_GIVEN_VALUES
read_values = (timing_parameter_type == TIMING_PARAMETER_TYPE.READ_CURRENTLY_ACTIVE or
timing_parameter_type == TIMING_PARAMETER_TYPE.READ_EXTENDED_SET)
if not write_custom_values and parameter_values is not None:
raise ValueError('parameter_values not allowed')
if write_custom_values and parameter_values is None:
raise ValueError('parameter_values is missing')
resp = self._uds_request(SERVICE_TYPE.ACCESS_TIMING_PARAMETER, subfunction=timing_parameter_type, data=parameter_values)
if read_values:
# TODO: parse response into values?
parameter_values = resp
return parameter_values
def secured_data_transmission(self, data: bytes):
# TODO: split data into multiple input parameters?
resp = self._uds_request(SERVICE_TYPE.SECURED_DATA_TRANSMISSION, subfunction=None, data=data)
# TODO: parse response into multiple output values?
return resp
def control_dtc_setting(self, dtc_setting_type: DTC_SETTING_TYPE):
self._uds_request(SERVICE_TYPE.CONTROL_DTC_SETTING, subfunction=dtc_setting_type)
def response_on_event(self, response_event_type: RESPONSE_EVENT_TYPE, store_event: bool, window_time: int,
event_type_record: int, service_response_record: int):
if store_event:
response_event_type |= 0x20 # type: ignore
# TODO: split record parameters into arrays
data = bytes([window_time, event_type_record, service_response_record])
resp = self._uds_request(SERVICE_TYPE.RESPONSE_ON_EVENT, subfunction=response_event_type, data=data)
if response_event_type == RESPONSE_EVENT_TYPE.REPORT_ACTIVATED_EVENTS:
return {
"num_of_activated_events": resp[0],
"data": resp[1:], # TODO: parse the reset of response
}
return {
"num_of_identified_events": resp[0],
"event_window_time": resp[1],
"data": resp[2:], # TODO: parse the reset of response
}
def link_control(self, link_control_type: LINK_CONTROL_TYPE, baud_rate_type: BAUD_RATE_TYPE = None):
data: Optional[bytes]
if link_control_type == LINK_CONTROL_TYPE.VERIFY_BAUDRATE_TRANSITION_WITH_FIXED_BAUDRATE:
# baud_rate_type = BAUD_RATE_TYPE
data = bytes([cast(int, baud_rate_type)])
elif link_control_type == LINK_CONTROL_TYPE.VERIFY_BAUDRATE_TRANSITION_WITH_SPECIFIC_BAUDRATE:
# baud_rate_type = custom value (3 bytes big-endian)
data = struct.pack('!I', baud_rate_type)[1:]
else:
data = None
self._uds_request(SERVICE_TYPE.LINK_CONTROL, subfunction=link_control_type, data=data)
def read_data_by_identifier(self, data_identifier_type: DATA_IDENTIFIER_TYPE):
# TODO: support list of identifiers
data = struct.pack('!H', data_identifier_type)
resp = self._uds_request(SERVICE_TYPE.READ_DATA_BY_IDENTIFIER, subfunction=None, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != data_identifier_type:
raise ValueError('invalid response data identifier: {}'.format(hex(resp_id)))
return resp[2:]
def read_memory_by_address(self, memory_address: int, memory_size: int, memory_address_bytes: int = 4, memory_size_bytes: int = 1):
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError('invalid memory_address_bytes: {}'.format(memory_address_bytes))
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError('invalid memory_size_bytes: {}'.format(memory_size_bytes))
data = bytes([memory_size_bytes << 4 | memory_address_bytes])
if memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError('invalid memory_address: {}'.format(memory_address))
data += struct.pack('!I', memory_address)[4 - memory_address_bytes:]
if memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError('invalid memory_size: {}'.format(memory_size))
data += struct.pack('!I', memory_size)[4 - memory_size_bytes:]
resp = self._uds_request(SERVICE_TYPE.READ_MEMORY_BY_ADDRESS, subfunction=None, data=data)
return resp
def read_scaling_data_by_identifier(self, data_identifier_type: DATA_IDENTIFIER_TYPE):
data = struct.pack('!H', data_identifier_type)
resp = self._uds_request(SERVICE_TYPE.READ_SCALING_DATA_BY_IDENTIFIER, subfunction=None, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != data_identifier_type:
raise ValueError('invalid response data identifier: {}'.format(hex(resp_id)))
return resp[2:] # TODO: parse the response
def read_data_by_periodic_identifier(self, transmission_mode_type: TRANSMISSION_MODE_TYPE, periodic_data_identifier: int):
# TODO: support list of identifiers
data = bytes([transmission_mode_type, periodic_data_identifier])
self._uds_request(SERVICE_TYPE.READ_DATA_BY_PERIODIC_IDENTIFIER, subfunction=None, data=data)
def dynamically_define_data_identifier(self, dynamic_definition_type: DYNAMIC_DEFINITION_TYPE, dynamic_data_identifier: int,
source_definitions: List[DynamicSourceDefinition], memory_address_bytes: int = 4, memory_size_bytes: int = 1):
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError('invalid memory_address_bytes: {}'.format(memory_address_bytes))
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError('invalid memory_size_bytes: {}'.format(memory_size_bytes))
data = struct.pack('!H', dynamic_data_identifier)
if dynamic_definition_type == DYNAMIC_DEFINITION_TYPE.DEFINE_BY_IDENTIFIER:
for s in source_definitions:
data += struct.pack('!H', s.data_identifier) + bytes([s.position, s.memory_size])
elif dynamic_definition_type == DYNAMIC_DEFINITION_TYPE.DEFINE_BY_MEMORY_ADDRESS:
data += bytes([memory_size_bytes << 4 | memory_address_bytes])
for s in source_definitions:
if s.memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError('invalid memory_address: {}'.format(s.memory_address))
data += struct.pack('!I', s.memory_address)[4 - memory_address_bytes:]
if s.memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError('invalid memory_size: {}'.format(s.memory_size))
data += struct.pack('!I', s.memory_size)[4 - memory_size_bytes:]
elif dynamic_definition_type == DYNAMIC_DEFINITION_TYPE.CLEAR_DYNAMICALLY_DEFINED_DATA_IDENTIFIER:
pass
else:
raise ValueError('invalid dynamic identifier type: {}'.format(hex(dynamic_definition_type)))
self._uds_request(SERVICE_TYPE.DYNAMICALLY_DEFINE_DATA_IDENTIFIER, subfunction=dynamic_definition_type, data=data)
def write_data_by_identifier(self, data_identifier_type: DATA_IDENTIFIER_TYPE, data_record: bytes):
data = struct.pack('!H', data_identifier_type) + data_record
resp = self._uds_request(SERVICE_TYPE.WRITE_DATA_BY_IDENTIFIER, subfunction=None, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != data_identifier_type:
raise ValueError('invalid response data identifier: {}'.format(hex(resp_id)))
def write_memory_by_address(self, memory_address: int, memory_size: int, data_record: bytes, memory_address_bytes: int = 4, memory_size_bytes: int = 1):
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError('invalid memory_address_bytes: {}'.format(memory_address_bytes))
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError('invalid memory_size_bytes: {}'.format(memory_size_bytes))
data = bytes([memory_size_bytes << 4 | memory_address_bytes])
if memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError('invalid memory_address: {}'.format(memory_address))
data += struct.pack('!I', memory_address)[4 - memory_address_bytes:]
if memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError('invalid memory_size: {}'.format(memory_size))
data += struct.pack('!I', memory_size)[4 - memory_size_bytes:]
data += data_record
self._uds_request(SERVICE_TYPE.WRITE_MEMORY_BY_ADDRESS, subfunction=0x00, data=data)
def clear_diagnostic_information(self, dtc_group_type: DTC_GROUP_TYPE):
data = struct.pack('!I', dtc_group_type)[1:] # 3 bytes
self._uds_request(SERVICE_TYPE.CLEAR_DIAGNOSTIC_INFORMATION, subfunction=None, data=data)
def read_dtc_information(self, dtc_report_type: DTC_REPORT_TYPE, dtc_status_mask_type: DTC_STATUS_MASK_TYPE = DTC_STATUS_MASK_TYPE.ALL,
dtc_severity_mask_type: DTC_SEVERITY_MASK_TYPE = DTC_SEVERITY_MASK_TYPE.ALL, dtc_mask_record: int = 0xFFFFFF,
dtc_snapshot_record_num: int = 0xFF, dtc_extended_record_num: int = 0xFF):
data = b''
# dtc_status_mask_type
if dtc_report_type == DTC_REPORT_TYPE.NUMBER_OF_DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.MIRROR_MEMORY_DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.NUMBER_OF_MIRROR_MEMORY_DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.NUMBER_OF_EMISSIONS_RELATED_OBD_DTC_BY_STATUS_MASK or \
dtc_report_type == DTC_REPORT_TYPE.EMISSIONS_RELATED_OBD_DTC_BY_STATUS_MASK:
data += bytes([dtc_status_mask_type])
# dtc_mask_record
if dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_IDENTIFICATION or \
dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.MIRROR_MEMORY_DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.SEVERITY_INFORMATION_OF_DTC:
data += struct.pack('!I', dtc_mask_record)[1:] # 3 bytes
# dtc_snapshot_record_num
if dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_IDENTIFICATION or \
dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.DTC_SNAPSHOT_RECORD_BY_RECORD_NUMBER:
data += bytes([dtc_snapshot_record_num])
# dtc_extended_record_num
if dtc_report_type == DTC_REPORT_TYPE.DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER or \
dtc_report_type == DTC_REPORT_TYPE.MIRROR_MEMORY_DTC_EXTENDED_DATA_RECORD_BY_DTC_NUMBER:
data += bytes([dtc_extended_record_num])
# dtc_severity_mask_type
if dtc_report_type == DTC_REPORT_TYPE.NUMBER_OF_DTC_BY_SEVERITY_MASK_RECORD or \
dtc_report_type == DTC_REPORT_TYPE.DTC_BY_SEVERITY_MASK_RECORD:
data += bytes([dtc_severity_mask_type, dtc_status_mask_type])
resp = self._uds_request(SERVICE_TYPE.READ_DTC_INFORMATION, subfunction=dtc_report_type, data=data)
# TODO: parse response
return resp
def input_output_control_by_identifier(self, data_identifier_type: DATA_IDENTIFIER_TYPE, control_parameter_type: CONTROL_PARAMETER_TYPE,
control_option_record: bytes, control_enable_mask_record: bytes = b''):
data = struct.pack('!H', data_identifier_type) + bytes([control_parameter_type]) + control_option_record + control_enable_mask_record
resp = self._uds_request(SERVICE_TYPE.INPUT_OUTPUT_CONTROL_BY_IDENTIFIER, subfunction=None, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != data_identifier_type:
raise ValueError('invalid response data identifier: {}'.format(hex(resp_id)))
return resp[2:]
def routine_control(self, routine_control_type: ROUTINE_CONTROL_TYPE, routine_identifier_type: ROUTINE_IDENTIFIER_TYPE, routine_option_record: bytes = b''):
data = struct.pack('!H', routine_identifier_type) + routine_option_record
resp = self._uds_request(SERVICE_TYPE.ROUTINE_CONTROL, subfunction=routine_control_type, data=data)
resp_id = struct.unpack('!H', resp[0:2])[0] if len(resp) >= 2 else None
if resp_id != routine_identifier_type:
raise ValueError('invalid response routine identifier: {}'.format(hex(resp_id)))
return resp[2:]
def request_download(self, memory_address: int, memory_size: int, memory_address_bytes: int = 4, memory_size_bytes: int = 4, data_format: int = 0x00):
data = bytes([data_format])
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError('invalid memory_address_bytes: {}'.format(memory_address_bytes))
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError('invalid memory_size_bytes: {}'.format(memory_size_bytes))
data += bytes([memory_size_bytes << 4 | memory_address_bytes])
if memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError('invalid memory_address: {}'.format(memory_address))
data += struct.pack('!I', memory_address)[4 - memory_address_bytes:]
if memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError('invalid memory_size: {}'.format(memory_size))
data += struct.pack('!I', memory_size)[4 - memory_size_bytes:]
resp = self._uds_request(SERVICE_TYPE.REQUEST_DOWNLOAD, subfunction=None, data=data)
max_num_bytes_len = resp[0] >> 4 if len(resp) > 0 else 0
if max_num_bytes_len >= 1 and max_num_bytes_len <= 4:
max_num_bytes = struct.unpack('!I', (b"\x00" * (4 - max_num_bytes_len)) + resp[1:max_num_bytes_len + 1])[0]
else:
raise ValueError('invalid max_num_bytes_len: {}'.format(max_num_bytes_len))
return max_num_bytes # max number of bytes per transfer data request
def request_upload(self, memory_address: int, memory_size: int, memory_address_bytes: int = 4, memory_size_bytes: int = 4, data_format: int = 0x00):
data = bytes([data_format])
if memory_address_bytes < 1 or memory_address_bytes > 4:
raise ValueError('invalid memory_address_bytes: {}'.format(memory_address_bytes))
if memory_size_bytes < 1 or memory_size_bytes > 4:
raise ValueError('invalid memory_size_bytes: {}'.format(memory_size_bytes))
data += bytes([memory_size_bytes << 4 | memory_address_bytes])
if memory_address >= 1 << (memory_address_bytes * 8):
raise ValueError('invalid memory_address: {}'.format(memory_address))
data += struct.pack('!I', memory_address)[4 - memory_address_bytes:]
if memory_size >= 1 << (memory_size_bytes * 8):
raise ValueError('invalid memory_size: {}'.format(memory_size))
data += struct.pack('!I', memory_size)[4 - memory_size_bytes:]
resp = self._uds_request(SERVICE_TYPE.REQUEST_UPLOAD, subfunction=None, data=data)
max_num_bytes_len = resp[0] >> 4 if len(resp) > 0 else 0
if max_num_bytes_len >= 1 and max_num_bytes_len <= 4:
max_num_bytes = struct.unpack('!I', (b"\x00" * (4 - max_num_bytes_len)) + resp[1:max_num_bytes_len + 1])[0]
else:
raise ValueError('invalid max_num_bytes_len: {}'.format(max_num_bytes_len))
return max_num_bytes # max number of bytes per transfer data request
def transfer_data(self, block_sequence_count: int, data: bytes = b''):
data = bytes([block_sequence_count]) + data
resp = self._uds_request(SERVICE_TYPE.TRANSFER_DATA, subfunction=None, data=data)
resp_id = resp[0] if len(resp) > 0 else None
if resp_id != block_sequence_count:
raise ValueError('invalid block_sequence_count: {}'.format(resp_id))
return resp[1:]
def request_transfer_exit(self):
self._uds_request(SERVICE_TYPE.REQUEST_TRANSFER_EXIT, subfunction=None)