panda/board/main.c

906 lines
25 KiB
C

//#define EON
//#define PANDA
// ********************* Includes *********************
#include "config.h"
#include "obj/gitversion.h"
#include "main_declarations.h"
#include "critical.h"
#include "libc.h"
#include "provision.h"
#include "faults.h"
#include "drivers/registers.h"
#include "drivers/interrupts.h"
#include "drivers/llcan.h"
#include "drivers/llgpio.h"
#include "drivers/adc.h"
#include "drivers/pwm.h"
#include "board.h"
#include "drivers/uart.h"
#include "drivers/usb.h"
#include "drivers/gmlan_alt.h"
#include "drivers/kline_init.h"
#include "drivers/timer.h"
#include "drivers/clock.h"
#include "gpio.h"
#ifndef EON
#include "drivers/spi.h"
#endif
#include "power_saving.h"
#include "safety.h"
#include "drivers/can.h"
extern int _app_start[0xc000]; // Only first 3 sectors of size 0x4000 are used
// When changing this struct, boardd and python/__init__.py needs to be kept up to date!
struct __attribute__((packed)) health_t {
uint32_t uptime_pkt;
uint32_t voltage_pkt;
uint32_t current_pkt;
uint32_t can_rx_errs_pkt;
uint32_t can_send_errs_pkt;
uint32_t can_fwd_errs_pkt;
uint32_t gmlan_send_errs_pkt;
uint32_t faults_pkt;
uint8_t ignition_line_pkt;
uint8_t ignition_can_pkt;
uint8_t controls_allowed_pkt;
uint8_t gas_interceptor_detected_pkt;
uint8_t car_harness_status_pkt;
uint8_t usb_power_mode_pkt;
uint8_t safety_mode_pkt;
int16_t safety_param_pkt;
uint8_t fault_status_pkt;
uint8_t power_save_enabled_pkt;
};
// ********************* Serial debugging *********************
bool check_started(void) {
return current_board->check_ignition() || ignition_can;
}
void debug_ring_callback(uart_ring *ring) {
char rcv;
while (getc(ring, &rcv)) {
(void)putc(ring, rcv); // misra-c2012-17.7: cast to void is ok: debug function
// only allow bootloader entry on debug builds
#ifdef ALLOW_DEBUG
// jump to DFU flash
if (rcv == 'z') {
enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC;
NVIC_SystemReset();
}
#endif
// normal reset
if (rcv == 'x') {
NVIC_SystemReset();
}
// enable CDP mode
if (rcv == 'C') {
puts("switching USB to CDP mode\n");
current_board->set_usb_power_mode(USB_POWER_CDP);
}
if (rcv == 'c') {
puts("switching USB to client mode\n");
current_board->set_usb_power_mode(USB_POWER_CLIENT);
}
if (rcv == 'D') {
puts("switching USB to DCP mode\n");
current_board->set_usb_power_mode(USB_POWER_DCP);
}
}
}
// ****************************** safety mode ******************************
// this is the only way to leave silent mode
void set_safety_mode(uint16_t mode, int16_t param) {
uint16_t mode_copy = mode;
int err = set_safety_hooks(mode_copy, param);
if (err == -1) {
puts("Error: safety set mode failed. Falling back to SILENT\n");
mode_copy = SAFETY_SILENT;
err = set_safety_hooks(mode_copy, 0);
if (err == -1) {
puts("Error: Failed setting SILENT mode. Hanging\n");
while (true) {
// TERMINAL ERROR: we can't continue if SILENT safety mode isn't succesfully set
}
}
}
switch (mode_copy) {
case SAFETY_SILENT:
set_intercept_relay(false);
if (board_has_obd()) {
current_board->set_can_mode(CAN_MODE_NORMAL);
}
can_silent = ALL_CAN_SILENT;
break;
case SAFETY_NOOUTPUT:
set_intercept_relay(false);
if (board_has_obd()) {
current_board->set_can_mode(CAN_MODE_NORMAL);
}
can_silent = ALL_CAN_LIVE;
break;
case SAFETY_ELM327:
set_intercept_relay(false);
heartbeat_counter = 0U;
if (board_has_obd()) {
current_board->set_can_mode(CAN_MODE_OBD_CAN2);
}
can_silent = ALL_CAN_LIVE;
break;
default:
set_intercept_relay(true);
heartbeat_counter = 0U;
if (board_has_obd()) {
current_board->set_can_mode(CAN_MODE_NORMAL);
}
can_silent = ALL_CAN_LIVE;
break;
}
can_init_all();
}
// ***************************** USB port *****************************
int get_health_pkt(void *dat) {
COMPILE_TIME_ASSERT(sizeof(struct health_t) <= MAX_RESP_LEN);
struct health_t * health = (struct health_t*)dat;
health->uptime_pkt = uptime_cnt;
health->voltage_pkt = adc_get_voltage();
health->current_pkt = current_board->read_current();
//Use the GPIO pin to determine ignition or use a CAN based logic
health->ignition_line_pkt = (uint8_t)(current_board->check_ignition());
health->ignition_can_pkt = (uint8_t)(ignition_can);
health->controls_allowed_pkt = controls_allowed;
health->gas_interceptor_detected_pkt = gas_interceptor_detected;
health->can_rx_errs_pkt = can_rx_errs;
health->can_send_errs_pkt = can_send_errs;
health->can_fwd_errs_pkt = can_fwd_errs;
health->gmlan_send_errs_pkt = gmlan_send_errs;
health->car_harness_status_pkt = car_harness_status;
health->usb_power_mode_pkt = usb_power_mode;
health->safety_mode_pkt = (uint8_t)(current_safety_mode);
health->safety_param_pkt = current_safety_param;
health->power_save_enabled_pkt = (uint8_t)(power_save_status == POWER_SAVE_STATUS_ENABLED);
health->fault_status_pkt = fault_status;
health->faults_pkt = faults;
return sizeof(*health);
}
int get_rtc_pkt(void *dat) {
timestamp_t t = rtc_get_time();
(void)memcpy(dat, &t, sizeof(t));
return sizeof(t);
}
int usb_cb_ep1_in(void *usbdata, int len, bool hardwired) {
UNUSED(hardwired);
CAN_FIFOMailBox_TypeDef *reply = (CAN_FIFOMailBox_TypeDef *)usbdata;
int ilen = 0;
while (ilen < MIN(len/0x10, 4) && can_pop(&can_rx_q, &reply[ilen])) {
ilen++;
}
return ilen*0x10;
}
// send on serial, first byte to select the ring
void usb_cb_ep2_out(void *usbdata, int len, bool hardwired) {
UNUSED(hardwired);
uint8_t *usbdata8 = (uint8_t *)usbdata;
uart_ring *ur = get_ring_by_number(usbdata8[0]);
if ((len != 0) && (ur != NULL)) {
if ((usbdata8[0] < 2U) || safety_tx_lin_hook(usbdata8[0] - 2U, &usbdata8[1], len - 1)) {
for (int i = 1; i < len; i++) {
while (!putc(ur, usbdata8[i])) {
// wait
}
}
}
}
}
// send on CAN
void usb_cb_ep3_out(void *usbdata, int len, bool hardwired) {
UNUSED(hardwired);
int dpkt = 0;
uint32_t *d32 = (uint32_t *)usbdata;
for (dpkt = 0; dpkt < (len / 4); dpkt += 4) {
CAN_FIFOMailBox_TypeDef to_push;
to_push.RDHR = d32[dpkt + 3];
to_push.RDLR = d32[dpkt + 2];
to_push.RDTR = d32[dpkt + 1];
to_push.RIR = d32[dpkt];
uint8_t bus_number = (to_push.RDTR >> 4) & CAN_BUS_NUM_MASK;
can_send(&to_push, bus_number, false);
}
}
void usb_cb_ep3_out_complete() {
if (can_tx_check_min_slots_free(MAX_CAN_MSGS_PER_BULK_TRANSFER)) {
usb_outep3_resume_if_paused();
}
}
void usb_cb_enumeration_complete() {
puts("USB enumeration complete\n");
is_enumerated = 1;
}
int usb_cb_control_msg(USB_Setup_TypeDef *setup, uint8_t *resp, bool hardwired) {
unsigned int resp_len = 0;
uart_ring *ur = NULL;
timestamp_t t;
switch (setup->b.bRequest) {
// **** 0xa0: get rtc time
case 0xa0:
resp_len = get_rtc_pkt(resp);
break;
// **** 0xa1: set rtc year
case 0xa1:
t = rtc_get_time();
t.year = setup->b.wValue.w;
rtc_set_time(t);
break;
// **** 0xa2: set rtc month
case 0xa2:
t = rtc_get_time();
t.month = setup->b.wValue.w;
rtc_set_time(t);
break;
// **** 0xa3: set rtc day
case 0xa3:
t = rtc_get_time();
t.day = setup->b.wValue.w;
rtc_set_time(t);
break;
// **** 0xa4: set rtc weekday
case 0xa4:
t = rtc_get_time();
t.weekday = setup->b.wValue.w;
rtc_set_time(t);
break;
// **** 0xa5: set rtc hour
case 0xa5:
t = rtc_get_time();
t.hour = setup->b.wValue.w;
rtc_set_time(t);
break;
// **** 0xa6: set rtc minute
case 0xa6:
t = rtc_get_time();
t.minute = setup->b.wValue.w;
rtc_set_time(t);
break;
// **** 0xa7: set rtc second
case 0xa7:
t = rtc_get_time();
t.second = setup->b.wValue.w;
rtc_set_time(t);
break;
// **** 0xb0: set IR power
case 0xb0:
current_board->set_ir_power(setup->b.wValue.w);
break;
// **** 0xb1: set fan power
case 0xb1:
current_board->set_fan_power(setup->b.wValue.w);
break;
// **** 0xb2: get fan rpm
case 0xb2:
resp[0] = (fan_rpm & 0x00FFU);
resp[1] = ((fan_rpm & 0xFF00U) >> 8U);
resp_len = 2;
break;
// **** 0xb3: set phone power
case 0xb3:
current_board->set_phone_power(setup->b.wValue.w > 0U);
break;
// **** 0xc0: get CAN debug info
case 0xc0:
puts("can tx: "); puth(can_tx_cnt);
puts(" txd: "); puth(can_txd_cnt);
puts(" rx: "); puth(can_rx_cnt);
puts(" err: "); puth(can_err_cnt);
puts("\n");
break;
// **** 0xc1: get hardware type
case 0xc1:
resp[0] = hw_type;
resp_len = 1;
break;
// **** 0xd0: fetch serial number
case 0xd0:
// addresses are OTP
if (setup->b.wValue.w == 1U) {
(void)memcpy(resp, (uint8_t *)0x1fff79c0, 0x10);
resp_len = 0x10;
} else {
get_provision_chunk(resp);
resp_len = PROVISION_CHUNK_LEN;
}
break;
// **** 0xd1: enter bootloader mode
case 0xd1:
// this allows reflashing of the bootstub
// so it's blocked over wifi
switch (setup->b.wValue.w) {
case 0:
// only allow bootloader entry on debug builds
#ifdef ALLOW_DEBUG
if (hardwired) {
puts("-> entering bootloader\n");
enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC;
NVIC_SystemReset();
}
#endif
break;
case 1:
puts("-> entering softloader\n");
enter_bootloader_mode = ENTER_SOFTLOADER_MAGIC;
NVIC_SystemReset();
break;
default:
puts("Bootloader mode invalid\n");
break;
}
break;
// **** 0xd2: get health packet
case 0xd2:
resp_len = get_health_pkt(resp);
break;
// **** 0xd3: get first 64 bytes of signature
case 0xd3:
{
resp_len = 64;
char * code = (char*)_app_start;
int code_len = _app_start[0];
(void)memcpy(resp, &code[code_len], resp_len);
}
break;
// **** 0xd4: get second 64 bytes of signature
case 0xd4:
{
resp_len = 64;
char * code = (char*)_app_start;
int code_len = _app_start[0];
(void)memcpy(resp, &code[code_len + 64], resp_len);
}
break;
// **** 0xd6: get version
case 0xd6:
COMPILE_TIME_ASSERT(sizeof(gitversion) <= MAX_RESP_LEN);
(void)memcpy(resp, gitversion, sizeof(gitversion));
resp_len = sizeof(gitversion) - 1U;
break;
// **** 0xd8: reset ST
case 0xd8:
NVIC_SystemReset();
break;
// **** 0xd9: set ESP power
case 0xd9:
if (setup->b.wValue.w == 1U) {
current_board->set_gps_mode(GPS_ENABLED);
} else if (setup->b.wValue.w == 2U) {
current_board->set_gps_mode(GPS_BOOTMODE);
} else {
current_board->set_gps_mode(GPS_DISABLED);
}
break;
// **** 0xda: reset ESP, with optional boot mode
case 0xda:
current_board->set_gps_mode(GPS_DISABLED);
delay(1000000);
if (setup->b.wValue.w == 1U) {
current_board->set_gps_mode(GPS_BOOTMODE);
} else {
current_board->set_gps_mode(GPS_ENABLED);
}
delay(1000000);
current_board->set_gps_mode(GPS_ENABLED);
break;
// **** 0xdb: set GMLAN (white/grey) or OBD CAN (black) multiplexing mode
case 0xdb:
if(board_has_obd()){
if (setup->b.wValue.w == 1U) {
// Enable OBD CAN
current_board->set_can_mode(CAN_MODE_OBD_CAN2);
} else {
// Disable OBD CAN
current_board->set_can_mode(CAN_MODE_NORMAL);
}
} else {
if (setup->b.wValue.w == 1U) {
// GMLAN ON
if (setup->b.wIndex.w == 1U) {
can_set_gmlan(1);
} else if (setup->b.wIndex.w == 2U) {
can_set_gmlan(2);
} else {
puts("Invalid bus num for GMLAN CAN set\n");
}
} else {
can_set_gmlan(-1);
}
}
break;
// **** 0xdc: set safety mode
case 0xdc:
// Blocked over WiFi.
// Allow SILENT, NOOUTPUT and ELM security mode to be set over wifi.
if (hardwired || (setup->b.wValue.w == SAFETY_SILENT) ||
(setup->b.wValue.w == SAFETY_NOOUTPUT) ||
(setup->b.wValue.w == SAFETY_ELM327)) {
set_safety_mode(setup->b.wValue.w, (uint16_t) setup->b.wIndex.w);
}
break;
// **** 0xdd: enable can forwarding
case 0xdd:
// wValue = Can Bus Num to forward from
// wIndex = Can Bus Num to forward to
if ((setup->b.wValue.w < BUS_MAX) && (setup->b.wIndex.w < BUS_MAX) &&
(setup->b.wValue.w != setup->b.wIndex.w)) { // set forwarding
can_set_forwarding(setup->b.wValue.w, setup->b.wIndex.w & CAN_BUS_NUM_MASK);
} else if((setup->b.wValue.w < BUS_MAX) && (setup->b.wIndex.w == 0xFFU)){ //Clear Forwarding
can_set_forwarding(setup->b.wValue.w, -1);
} else {
puts("Invalid CAN bus forwarding\n");
}
break;
// **** 0xde: set can bitrate
case 0xde:
if (setup->b.wValue.w < BUS_MAX) {
can_speed[setup->b.wValue.w] = setup->b.wIndex.w;
bool ret = can_init(CAN_NUM_FROM_BUS_NUM(setup->b.wValue.w));
UNUSED(ret);
}
break;
// **** 0xdf: set unsafe mode
case 0xdf:
// you can only set this if you are in a non car safety mode
if ((current_safety_mode == SAFETY_SILENT) ||
(current_safety_mode == SAFETY_NOOUTPUT) ||
(current_safety_mode == SAFETY_ELM327)) {
unsafe_mode = setup->b.wValue.w;
}
break;
// **** 0xe0: uart read
case 0xe0:
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) {
break;
}
// TODO: Remove this again and fix boardd code to hande the message bursts instead of single chars
if (ur == &uart_ring_gps) {
dma_pointer_handler(ur, DMA2_Stream5->NDTR);
}
// read
while ((resp_len < MIN(setup->b.wLength.w, MAX_RESP_LEN)) &&
getc(ur, (char*)&resp[resp_len])) {
++resp_len;
}
break;
// **** 0xe1: uart set baud rate
case 0xe1:
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) {
break;
}
uart_set_baud(ur->uart, setup->b.wIndex.w);
break;
// **** 0xe2: uart set parity
case 0xe2:
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) {
break;
}
switch (setup->b.wIndex.w) {
case 0:
// disable parity, 8-bit
ur->uart->CR1 &= ~(USART_CR1_PCE | USART_CR1_M);
break;
case 1:
// even parity, 9-bit
ur->uart->CR1 &= ~USART_CR1_PS;
ur->uart->CR1 |= USART_CR1_PCE | USART_CR1_M;
break;
case 2:
// odd parity, 9-bit
ur->uart->CR1 |= USART_CR1_PS;
ur->uart->CR1 |= USART_CR1_PCE | USART_CR1_M;
break;
default:
break;
}
break;
// **** 0xe4: uart set baud rate extended
case 0xe4:
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) {
break;
}
uart_set_baud(ur->uart, (int)setup->b.wIndex.w*300);
break;
// **** 0xe5: set CAN loopback (for testing)
case 0xe5:
can_loopback = (setup->b.wValue.w > 0U);
can_init_all();
break;
// **** 0xe6: set USB power
case 0xe6:
current_board->set_usb_power_mode(setup->b.wValue.w);
break;
// **** 0xe7: set power save state
case 0xe7:
set_power_save_state(setup->b.wValue.w);
break;
// **** 0xf0: k-line/l-line wake-up pulse for KWP2000 fast initialization
case 0xf0:
if(board_has_lin()) {
bool k = (setup->b.wValue.w == 0U) || (setup->b.wValue.w == 2U);
bool l = (setup->b.wValue.w == 1U) || (setup->b.wValue.w == 2U);
if (bitbang_wakeup(k, l)) {
resp_len = -1; // do not clear NAK yet (wait for bit banging to finish)
}
}
break;
// **** 0xf1: Clear CAN ring buffer.
case 0xf1:
if (setup->b.wValue.w == 0xFFFFU) {
puts("Clearing CAN Rx queue\n");
can_clear(&can_rx_q);
} else if (setup->b.wValue.w < BUS_MAX) {
puts("Clearing CAN Tx queue\n");
can_clear(can_queues[setup->b.wValue.w]);
} else {
puts("Clearing CAN CAN ring buffer failed: wrong bus number\n");
}
break;
// **** 0xf2: Clear UART ring buffer.
case 0xf2:
{
uart_ring * rb = get_ring_by_number(setup->b.wValue.w);
if (rb != NULL) {
puts("Clearing UART queue.\n");
clear_uart_buff(rb);
}
break;
}
// **** 0xf3: Heartbeat. Resets heartbeat counter.
case 0xf3:
{
heartbeat_counter = 0U;
break;
}
// **** 0xf4: k-line/l-line 5 baud initialization
case 0xf4:
if(board_has_lin()) {
bool k = (setup->b.wValue.w == 0U) || (setup->b.wValue.w == 2U);
bool l = (setup->b.wValue.w == 1U) || (setup->b.wValue.w == 2U);
uint8_t five_baud_addr = (setup->b.wIndex.w & 0xFFU);
if (bitbang_five_baud_addr(k, l, five_baud_addr)) {
resp_len = -1; // do not clear NAK yet (wait for bit banging to finish)
}
}
break;
// **** 0xf5: set clock source mode
case 0xf5:
current_board->set_clock_source_mode(setup->b.wValue.w);
break;
// **** 0xf6: set siren enabled
case 0xf6:
siren_enabled = (setup->b.wValue.w != 0U);
break;
// **** 0xf7: set green led enabled
case 0xf7:
green_led_enabled = (setup->b.wValue.w != 0U);
break;
default:
puts("NO HANDLER ");
puth(setup->b.bRequest);
puts("\n");
break;
}
return resp_len;
}
#ifndef EON
int spi_cb_rx(uint8_t *data, int len, uint8_t *data_out) {
// data[0] = endpoint
// data[2] = length
// data[4:] = data
UNUSED(len);
int resp_len = 0;
switch (data[0]) {
case 0:
// control transfer
resp_len = usb_cb_control_msg((USB_Setup_TypeDef *)(data+4), data_out, 0);
break;
case 1:
// ep 1, read
resp_len = usb_cb_ep1_in(data_out, 0x40, 0);
break;
case 2:
// ep 2, send serial
usb_cb_ep2_out(data+4, data[2], 0);
break;
case 3:
// ep 3, send CAN
usb_cb_ep3_out(data+4, data[2], 0);
break;
default:
puts("SPI data invalid");
break;
}
return resp_len;
}
#endif
// ***************************** main code *****************************
// cppcheck-suppress unusedFunction ; used in headers not included in cppcheck
void __initialize_hardware_early(void) {
early();
}
void __attribute__ ((noinline)) enable_fpu(void) {
// enable the FPU
SCB->CPACR |= ((3UL << (10U * 2U)) | (3UL << (11U * 2U)));
}
// go into SILENT when the EON does not send a heartbeat for this amount of seconds.
#define EON_HEARTBEAT_IGNITION_CNT_ON 5U
#define EON_HEARTBEAT_IGNITION_CNT_OFF 2U
// called at 8Hz
uint8_t loop_counter = 0U;
void TIM1_BRK_TIM9_IRQ_Handler(void) {
if (TIM9->SR != 0) {
// siren
current_board->set_siren((loop_counter & 1U) && siren_enabled);
// decimated to 1Hz
if(loop_counter == 0U){
can_live = pending_can_live;
current_board->usb_power_mode_tick(uptime_cnt);
//puth(usart1_dma); puts(" "); puth(DMA2_Stream5->M0AR); puts(" "); puth(DMA2_Stream5->NDTR); puts("\n");
// reset this every 16th pass
if ((uptime_cnt & 0xFU) == 0U) {
pending_can_live = 0;
}
#ifdef DEBUG
puts("** blink ");
puth(can_rx_q.r_ptr); puts(" "); puth(can_rx_q.w_ptr); puts(" ");
puth(can_tx1_q.r_ptr); puts(" "); puth(can_tx1_q.w_ptr); puts(" ");
puth(can_tx2_q.r_ptr); puts(" "); puth(can_tx2_q.w_ptr); puts("\n");
#endif
// Tick drivers
fan_tick();
// set green LED to be controls allowed
current_board->set_led(LED_GREEN, controls_allowed | green_led_enabled);
// turn off the blue LED, turned on by CAN
// unless we are in power saving mode
current_board->set_led(LED_BLUE, (uptime_cnt & 1U) && (power_save_status == POWER_SAVE_STATUS_ENABLED));
// increase heartbeat counter and cap it at the uint32 limit
if (heartbeat_counter < __UINT32_MAX__) {
heartbeat_counter += 1U;
}
#ifdef EON
// check heartbeat counter if we are running EON code.
// if the heartbeat has been gone for a while, go to SILENT safety mode and enter power save
if (heartbeat_counter >= (check_started() ? EON_HEARTBEAT_IGNITION_CNT_ON : EON_HEARTBEAT_IGNITION_CNT_OFF)) {
puts("EON hasn't sent a heartbeat for 0x");
puth(heartbeat_counter);
puts(" seconds. Safety is set to SILENT mode.\n");
if (current_safety_mode != SAFETY_SILENT) {
set_safety_mode(SAFETY_SILENT, 0U);
}
if (power_save_status != POWER_SAVE_STATUS_ENABLED) {
set_power_save_state(POWER_SAVE_STATUS_ENABLED);
}
// Also disable IR when the heartbeat goes missing
current_board->set_ir_power(0U);
// If enumerated but no heartbeat (phone up, boardd not running), turn the fan on to cool the device
if(usb_enumerated()){
current_board->set_fan_power(50U);
} else {
current_board->set_fan_power(0U);
}
}
// enter CDP mode when car starts to ensure we are charging a turned off EON
if (check_started() && (usb_power_mode != USB_POWER_CDP)) {
current_board->set_usb_power_mode(USB_POWER_CDP);
}
#endif
// check registers
check_registers();
// set ignition_can to false after 2s of no CAN seen
if (ignition_can_cnt > 2U) {
ignition_can = false;
};
// on to the next one
uptime_cnt += 1U;
safety_mode_cnt += 1U;
ignition_can_cnt += 1U;
// synchronous safety check
safety_tick(current_hooks);
}
loop_counter++;
loop_counter %= 8U;
}
TIM9->SR = 0;
}
#define MAX_FADE 8192U
int main(void) {
// Init interrupt table
init_interrupts(true);
// 8Hz timer
REGISTER_INTERRUPT(TIM1_BRK_TIM9_IRQn, TIM1_BRK_TIM9_IRQ_Handler, 10U, FAULT_INTERRUPT_RATE_TIM9)
// shouldn't have interrupts here, but just in case
disable_interrupts();
// init early devices
clock_init();
peripherals_init();
detect_configuration();
detect_board_type();
adc_init();
// print hello
puts("\n\n\n************************ MAIN START ************************\n");
// check for non-supported board types
if(hw_type == HW_TYPE_UNKNOWN){
puts("Unsupported board type\n");
while (1) { /* hang */ }
}
puts("Config:\n");
puts(" Board type: "); puts(current_board->board_type); puts("\n");
puts(has_external_debug_serial ? " Real serial\n" : " USB serial\n");
// init board
current_board->init();
// panda has an FPU, let's use it!
enable_fpu();
// enable main uart if it's connected
if (has_external_debug_serial) {
// WEIRDNESS: without this gate around the UART, it would "crash", but only if the ESP is enabled
// assuming it's because the lines were left floating and spurious noise was on them
uart_init(&uart_ring_debug, 115200);
}
if (board_has_gps()) {
uart_init(&uart_ring_gps, 9600);
} else {
// enable ESP uart
uart_init(&uart_ring_gps, 115200);
}
if(board_has_lin()){
// enable LIN
uart_init(&uart_ring_lin1, 10400);
UART5->CR2 |= USART_CR2_LINEN;
uart_init(&uart_ring_lin2, 10400);
USART3->CR2 |= USART_CR2_LINEN;
}
// init microsecond system timer
// increments 1000000 times per second
// generate an update to set the prescaler
TIM2->PSC = 48-1;
TIM2->CR1 = TIM_CR1_CEN;
TIM2->EGR = TIM_EGR_UG;
// use TIM2->CNT to read
// init to SILENT and can silent
set_safety_mode(SAFETY_SILENT, 0);
// enable CAN TXs
current_board->enable_can_transceivers(true);
#ifndef EON
spi_init();
#endif
// 8hz
timer_init(TIM9, 183);
NVIC_EnableIRQ(TIM1_BRK_TIM9_IRQn);
#ifdef DEBUG
puts("DEBUG ENABLED\n");
#endif
// enable USB (right before interrupts or enum can fail!)
usb_init();
puts("**** INTERRUPTS ON ****\n");
enable_interrupts();
// LED should keep on blinking all the time
uint64_t cnt = 0;
for (cnt=0;;cnt++) {
if (power_save_status == POWER_SAVE_STATUS_DISABLED) {
#ifdef DEBUG_FAULTS
if(fault_status == FAULT_STATUS_NONE){
#endif
uint32_t div_mode = ((usb_power_mode == USB_POWER_DCP) ? 4U : 1U);
// useful for debugging, fade breaks = panda is overloaded
for(uint32_t fade = 0U; fade < MAX_FADE; fade += div_mode){
current_board->set_led(LED_RED, true);
delay(fade >> 4);
current_board->set_led(LED_RED, false);
delay((MAX_FADE - fade) >> 4);
}
for(uint32_t fade = MAX_FADE; fade > 0U; fade -= div_mode){
current_board->set_led(LED_RED, true);
delay(fade >> 4);
current_board->set_led(LED_RED, false);
delay((MAX_FADE - fade) >> 4);
}
#ifdef DEBUG_FAULTS
} else {
current_board->set_led(LED_RED, 1);
delay(512000U);
current_board->set_led(LED_RED, 0);
delay(512000U);
}
#endif
} else {
__WFI();
}
}
return 0;
}