panda/board/main.c

1022 lines
24 KiB
C

#include "config.h"
#include "early.h"
#define NULL ((void*)0)
// assign CAN numbering
// old: CAN1 = 1 CAN2 = 0
// panda: CAN1 = 0 CAN2 = 1 CAN3 = 4
#ifdef PANDA
int can_numbering[] = {0,1,4};
#else
int can_numbering[] = {1,0,-1};
#endif
// can forwards FROM -> TO
#define CAN_MAX 3
int can_forwarding[] = {-1,-1,-1};
// *** end config ***
#include "obj/gitversion.h"
// debug safety check: is controls allowed?
int controls_allowed = 0;
int started = 0;
int can_live = 0, pending_can_live = 0;
// optional features
int gas_interceptor_detected = 0;
int started_signal_detected = 0;
// detect high on UART
// TODO: check for UART high
int did_usb_enumerate = 0;
// Declare puts to supress warning
int puts ( const char * str );
// ********************* instantiate queues *********************
typedef struct {
uint32_t w_ptr;
uint32_t r_ptr;
uint32_t fifo_size;
CAN_FIFOMailBox_TypeDef *elems;
} can_ring;
#define can_buffer(x, size) \
CAN_FIFOMailBox_TypeDef elems_##x[size]; \
can_ring can_##x = { .w_ptr = 0, .r_ptr = 0, .fifo_size = size, .elems = (CAN_FIFOMailBox_TypeDef *)&elems_##x };
can_buffer(rx_q, 0x1000)
can_buffer(tx1_q, 0x100)
can_buffer(tx2_q, 0x100)
can_buffer(tx3_q, 0x100)
// ********************* interrupt safe queue *********************
int pop(can_ring *q, CAN_FIFOMailBox_TypeDef *elem) {
if (q->w_ptr != q->r_ptr) {
*elem = q->elems[q->r_ptr];
if ((q->r_ptr + 1) == q->fifo_size) q->r_ptr = 0;
else q->r_ptr += 1;
return 1;
}
return 0;
}
int push(can_ring *q, CAN_FIFOMailBox_TypeDef *elem) {
uint32_t next_w_ptr;
if ((q->w_ptr + 1) == q->fifo_size) next_w_ptr = 0;
else next_w_ptr = q->w_ptr + 1;
if (next_w_ptr != q->r_ptr) {
q->elems[q->w_ptr] = *elem;
q->w_ptr = next_w_ptr;
return 1;
}
puts("push failed!\n");
return 0;
}
// ***************************** serial port queues *****************************
#define FIFO_SIZE 0x100
typedef struct uart_ring {
uint8_t w_ptr_tx;
uint8_t r_ptr_tx;
uint8_t elems_tx[FIFO_SIZE];
uint8_t w_ptr_rx;
uint8_t r_ptr_rx;
uint8_t elems_rx[FIFO_SIZE];
USART_TypeDef *uart;
void (*callback)(struct uart_ring*);
} uart_ring;
int getc(uart_ring *q, char *elem);
int putc(uart_ring *q, char elem);
// esp = USART1
uart_ring esp_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = USART1 };
// lin1, K-LINE = UART5
// lin2, L-LINE = USART3
uart_ring lin1_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = UART5 };
uart_ring lin2_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = USART3 };
// debug = USART2
void debug_ring_callback(uart_ring *ring);
uart_ring debug_ring = { .w_ptr_tx = 0, .r_ptr_tx = 0,
.w_ptr_rx = 0, .r_ptr_rx = 0,
.uart = USART2,
.callback = debug_ring_callback};
uart_ring *get_ring_by_number(int a) {
switch(a) {
case 0:
return &debug_ring;
case 1:
return &esp_ring;
case 2:
return &lin1_ring;
case 3:
return &lin2_ring;
default:
return NULL;
}
}
void accord_framing_callback(uart_ring *q) {
uint8_t r_ptr_rx_tmp = q->r_ptr_rx;
int sof1 = -1;
int sof2 = -1;
int i;
char junk;
int jlen = 0;
int plen = 0;
while (q->w_ptr_rx != r_ptr_rx_tmp) {
if ((q->elems_rx[r_ptr_rx_tmp] & 0x80) == 0) {
if (sof1 == -1) {
sof1 = r_ptr_rx_tmp;
} else {
sof2 = r_ptr_rx_tmp;
break;
}
}
if (sof1 != -1) {
plen++;
} else {
jlen++;
}
r_ptr_rx_tmp++;
}
// drop until SOF1
if (sof1 != -1) {
for (i = 0; i < jlen; i++) getc(q, &junk);
}
if (sof2 != -1) {
//puth(sof1); puts(" "); puth(sof2); puts("\n");
if (plen > 8) {
// drop oversized packet
for (i = 0; i < plen; i++) getc(q, &junk);
} else {
// packet received
CAN_FIFOMailBox_TypeDef to_push;
to_push.RIR = 0;
to_push.RDTR = plen;
to_push.RDLR = 0;
to_push.RDHR = 0;
// 8 is K-line, 9 is L-line
if (q->uart == UART5) {
to_push.RDTR |= 8 << 4;
} else if (q->uart == USART3) {
to_push.RDTR |= 9 << 4;
}
// get data from queue
for (i = 0; i < plen; i++) {
getc(q, &(((char*)(&to_push.RDLR))[i]));
}
push(&can_rx_q, &to_push);
}
}
}
void debug_ring_callback(uart_ring *ring) {
char rcv;
while (getc(ring, &rcv)) {
putc(ring, rcv);
// jump to DFU flash
if (rcv == 'z') {
enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC;
NVIC_SystemReset();
}
if (rcv == 'x') {
// normal reset
NVIC_SystemReset();
}
}
}
// ***************************** serial port *****************************
void uart_ring_process(uart_ring *q) {
// TODO: check if external serial is connected
int sr = q->uart->SR;
if (q->w_ptr_tx != q->r_ptr_tx) {
if (sr & USART_SR_TXE) {
q->uart->DR = q->elems_tx[q->r_ptr_tx];
q->r_ptr_tx += 1;
} else {
// push on interrupt later
q->uart->CR1 |= USART_CR1_TXEIE;
}
} else {
// nothing to send
q->uart->CR1 &= ~USART_CR1_TXEIE;
}
if (sr & USART_SR_RXNE) {
uint8_t c = q->uart->DR; // TODO: can drop packets
uint8_t next_w_ptr = q->w_ptr_rx + 1;
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = c;
q->w_ptr_rx = next_w_ptr;
if (q->callback) q->callback(q);
}
}
}
// interrupt boilerplate
void USART1_IRQHandler(void) {
NVIC_DisableIRQ(USART1_IRQn);
uart_ring_process(&esp_ring);
NVIC_EnableIRQ(USART1_IRQn);
}
void USART2_IRQHandler(void) {
NVIC_DisableIRQ(USART2_IRQn);
uart_ring_process(&debug_ring);
NVIC_EnableIRQ(USART2_IRQn);
}
void USART3_IRQHandler(void) {
NVIC_DisableIRQ(USART3_IRQn);
uart_ring_process(&lin2_ring);
NVIC_EnableIRQ(USART3_IRQn);
}
void UART5_IRQHandler(void) {
NVIC_DisableIRQ(UART5_IRQn);
uart_ring_process(&lin1_ring);
NVIC_EnableIRQ(UART5_IRQn);
}
int getc(uart_ring *q, char *elem) {
if (q->w_ptr_rx != q->r_ptr_rx) {
*elem = q->elems_rx[q->r_ptr_rx];
q->r_ptr_rx += 1;
return 1;
}
return 0;
}
int injectc(uart_ring *q, char elem) {
uint8_t next_w_ptr = q->w_ptr_rx + 1;
int ret = 0;
if (next_w_ptr != q->r_ptr_rx) {
q->elems_rx[q->w_ptr_rx] = elem;
q->w_ptr_rx = next_w_ptr;
ret = 1;
}
return ret;
}
int putc(uart_ring *q, char elem) {
uint8_t next_w_ptr = q->w_ptr_tx + 1;
int ret = 0;
if (next_w_ptr != q->r_ptr_tx) {
q->elems_tx[q->w_ptr_tx] = elem;
q->w_ptr_tx = next_w_ptr;
ret = 1;
}
uart_ring_process(q);
return ret;
}
// ********************* includes *********************
#include "libc.h"
#include "gpio.h"
#include "uart.h"
#include "adc.h"
#include "timer.h"
#include "usb.h"
#include "can.h"
#include "spi.h"
void safety_rx_hook(CAN_FIFOMailBox_TypeDef *to_push);
int safety_tx_hook(CAN_FIFOMailBox_TypeDef *to_send, int hardwired);
int safety_tx_lin_hook(int lin_num, uint8_t *data, int len, int hardwired);
#ifdef PANDA_SAFETY
#include "panda_safety.h"
#else
#include "honda_safety.h"
#endif
// ***************************** CAN *****************************
void process_can(CAN_TypeDef *CAN, can_ring *can_q, int can_number) {
#ifdef DEBUG
puts("process CAN TX\n");
#endif
// add successfully transmitted message to my fifo
if ((CAN->TSR & CAN_TSR_TXOK0) == CAN_TSR_TXOK0) {
CAN_FIFOMailBox_TypeDef to_push;
to_push.RIR = CAN->sTxMailBox[0].TIR;
to_push.RDTR = (CAN->sTxMailBox[0].TDTR & 0xFFFF000F) | ((can_number+2) << 4);
to_push.RDLR = CAN->sTxMailBox[0].TDLR;
to_push.RDHR = CAN->sTxMailBox[0].TDHR;
push(&can_rx_q, &to_push);
}
// check for empty mailbox
CAN_FIFOMailBox_TypeDef to_send;
if ((CAN->TSR & CAN_TSR_TME0) == CAN_TSR_TME0) {
if (pop(can_q, &to_send)) {
// only send if we have received a packet
CAN->sTxMailBox[0].TDLR = to_send.RDLR;
CAN->sTxMailBox[0].TDHR = to_send.RDHR;
CAN->sTxMailBox[0].TDTR = to_send.RDTR;
CAN->sTxMailBox[0].TIR = to_send.RIR;
}
}
// clear interrupt
CAN->TSR |= CAN_TSR_RQCP0;
}
// send more, possible for these to not trigger?
void CAN1_TX_IRQHandler() {
process_can(CAN1, &can_tx1_q, can_numbering[0]);
}
void CAN2_TX_IRQHandler() {
process_can(CAN2, &can_tx2_q, can_numbering[1]);
}
#ifdef CAN3
void CAN3_TX_IRQHandler() {
process_can(CAN3, &can_tx3_q, can_numbering[2]);
}
#endif
void send_can(CAN_FIFOMailBox_TypeDef *to_push, int flags);
// CAN receive handlers
// blink blue when we are receiving CAN messages
void can_rx(CAN_TypeDef *CAN, int can_index) {
int can_number = can_numbering[can_index];
while (CAN->RF0R & CAN_RF0R_FMP0) {
// can is live
pending_can_live = 1;
// add to my fifo
CAN_FIFOMailBox_TypeDef to_push;
to_push.RIR = CAN->sFIFOMailBox[0].RIR;
to_push.RDTR = CAN->sFIFOMailBox[0].RDTR;
to_push.RDLR = CAN->sFIFOMailBox[0].RDLR;
to_push.RDHR = CAN->sFIFOMailBox[0].RDHR;
// forwarding (panda only)
#ifdef PANDA
if (can_forwarding[can_index] != -1 && can_numbering[can_forwarding[can_index]] != -1) {
CAN_FIFOMailBox_TypeDef to_send;
to_send.RIR = to_push.RIR | 1; // TXRQ
to_send.RDTR = to_push.RDTR;
to_send.RDLR = to_push.RDLR;
to_send.RDHR = to_push.RDHR;
send_can(&to_send, can_numbering[can_forwarding[can_index]]);
}
#endif
// modify RDTR for our API
to_push.RDTR = (to_push.RDTR & 0xFFFF000F) | (can_number << 4);
safety_rx_hook(&to_push);
#ifdef PANDA
set_led(LED_GREEN, 1);
#endif
push(&can_rx_q, &to_push);
// next
CAN->RF0R |= CAN_RF0R_RFOM0;
}
}
void CAN1_RX0_IRQHandler() {
//puts("CANRX1");
//delay(10000);
can_rx(CAN1, 0);
}
void CAN2_RX0_IRQHandler() {
//puts("CANRX0");
//delay(10000);
can_rx(CAN2, 1);
}
#ifdef CAN3
void CAN3_RX0_IRQHandler() {
//puts("CANRX0");
//delay(10000);
can_rx(CAN3, 2);
}
#endif
void CAN1_SCE_IRQHandler() {
//puts("CAN1_SCE\n");
can_sce(CAN1);
}
void CAN2_SCE_IRQHandler() {
//puts("CAN2_SCE\n");
can_sce(CAN2);
}
#ifdef CAN3
void CAN3_SCE_IRQHandler() {
//puts("CAN3_SCE\n");
can_sce(CAN3);
}
#endif
// ***************************** USB port *****************************
int get_health_pkt(void *dat) {
struct __attribute__((packed)) {
uint32_t voltage;
uint32_t current;
uint8_t started;
uint8_t controls_allowed;
uint8_t gas_interceptor_detected;
uint8_t started_signal_detected;
uint8_t started_alt;
} *health = dat;
health->voltage = adc_get(ADCCHAN_VOLTAGE);
#ifdef ENABLE_CURRENT_SENSOR
health->current = adc_get(ADCCHAN_CURRENT);
#else
health->current = 0;
#endif
health->started = started;
#ifdef PANDA
health->started_alt = (GPIOA->IDR & (1 << 1)) == 0;
#else
health->started_alt = 0;
#endif
health->controls_allowed = controls_allowed;
health->gas_interceptor_detected = gas_interceptor_detected;
health->started_signal_detected = started_signal_detected;
return sizeof(*health);
}
void set_fan_speed(int fan_speed) {
TIM3->CCR3 = fan_speed;
}
int usb_cb_ep1_in(uint8_t *usbdata, int len, int hardwired) {
CAN_FIFOMailBox_TypeDef *reply = (CAN_FIFOMailBox_TypeDef *)usbdata;;
int ilen = 0;
while (ilen < min(len/0x10, 4) && pop(&can_rx_q, &reply[ilen])) ilen++;
return ilen*0x10;
}
// send on serial, first byte to select
void usb_cb_ep2_out(uint8_t *usbdata, int len, int hardwired) {
int i;
if (len == 0) return;
uart_ring *ur = get_ring_by_number(usbdata[0]);
if (!ur) return;
if ((usbdata[0] < 2) || safety_tx_lin_hook(usbdata[0]-2, usbdata+1, len-1, hardwired)) {
for (i = 1; i < len; i++) while (!putc(ur, usbdata[i]));
}
}
void send_can(CAN_FIFOMailBox_TypeDef *to_push, int flags) {
int i;
CAN_TypeDef *CAN;
can_ring *can_q;
if (flags == can_numbering[0]) {
CAN = CAN1;
can_q = &can_tx1_q;
} else if (flags == can_numbering[1]) {
CAN = CAN2;
can_q = &can_tx2_q;
#ifdef CAN3
} else if (flags == can_numbering[2]) {
CAN = CAN3;
can_q = &can_tx3_q;
#endif
} else if (flags == 8 || flags == 9) {
// fake LIN as CAN
uart_ring *lin_ring = (flags == 8) ? &lin1_ring : &lin2_ring;
for (i = 0; i < min(8, to_push->RDTR & 0xF); i++) {
putc(lin_ring, ((uint8_t*)&to_push->RDLR)[i]);
}
return;
} else {
// no crash
return;
}
// add CAN packet to send queue
// bus number isn't passed through
to_push->RDTR &= 0xF;
push(can_q, to_push);
// flags = can_number
process_can(CAN, can_q, flags);
}
// send on CAN
void usb_cb_ep3_out(uint8_t *usbdata, int len, int hardwired) {
int dpkt = 0;
for (dpkt = 0; dpkt < len; dpkt += 0x10) {
uint32_t *tf = (uint32_t*)(&usbdata[dpkt]);
// make a copy
CAN_FIFOMailBox_TypeDef to_push;
to_push.RDHR = tf[3];
to_push.RDLR = tf[2];
to_push.RDTR = tf[1];
to_push.RIR = tf[0];
int flags = (to_push.RDTR >> 4) & 0xF;
if (safety_tx_hook(&to_push, hardwired)) {
send_can(&to_push, flags);
}
}
}
void usb_cb_enumeration_complete() {
// power down the ESP
// this doesn't work and makes the board unflashable
// because the ESP spews shit on serial on startup
//GPIOC->ODR &= ~(1 << 14);
did_usb_enumerate = 1;
}
int usb_cb_control_msg(USB_Setup_TypeDef *setup, uint8_t *resp, int hardwired) {
int resp_len = 0;
uart_ring *ur = NULL;
int i;
switch (setup->b.bRequest) {
case 0xd0:
// fetch serial number
#ifdef PANDA
// addresses are OTP
if (setup->b.wValue.w == 1) {
memcpy(resp, (void *)0x1fff79c0, 0x10);
resp_len = 0x10;
} else {
memcpy(resp, (void *)0x1fff79e0, 0x20);
resp_len = 0x20;
}
#endif
break;
case 0xd1:
if (hardwired) {
enter_bootloader_mode = ENTER_BOOTLOADER_MAGIC;
NVIC_SystemReset();
}
break;
case 0xd2:
resp_len = get_health_pkt(resp);
break;
case 0xd3:
set_fan_speed(setup->b.wValue.w);
break;
case 0xd6: // GET_VERSION
// assert(sizeof(gitversion) <= MAX_RESP_LEN);
memcpy(resp, gitversion, sizeof(gitversion));
resp_len = sizeof(gitversion);
break;
case 0xd8: // RESET
NVIC_SystemReset();
break;
case 0xd9: // ESP SET POWER
if (setup->b.wValue.w == 1) {
// on
GPIOC->ODR |= (1 << 14);
} else {
// off
GPIOC->ODR &= ~(1 << 14);
}
break;
case 0xda: // ESP RESET
// pull low for ESP boot mode
if (setup->b.wValue.w == 1) {
GPIOC->ODR &= ~(1 << 5);
}
// do ESP reset
GPIOC->ODR &= ~(1 << 14);
delay(1000000);
GPIOC->ODR |= (1 << 14);
delay(1000000);
// reset done, no more boot mode
// TODO: ESP doesn't seem to listen here
if (setup->b.wValue.w == 1) {
GPIOC->ODR |= (1 << 5);
}
break;
case 0xdb: // toggle GMLAN
if (setup->b.wIndex.w == 3) {
set_can_mode(2, 0);
set_can_mode(3, setup->b.wValue.w);
} else {
set_can_mode(3, 0);
set_can_mode(2, setup->b.wValue.w);
}
break;
case 0xdc: // set controls allowed
controls_allowed = setup->b.wValue.w == 0x1337;
// take CAN out of SILM, careful with speed!
can_init(CAN1, 0);
can_init(CAN2, 0);
#ifdef CAN3
can_init(CAN3, 0);
#endif
break;
case 0xdd: // enable can forwarding
if (setup->b.wValue.w != 0 && setup->b.wValue.w <= CAN_MAX) {
// 0 sets it to -1
if (setup->b.wIndex.w <= CAN_MAX) {
can_forwarding[setup->b.wValue.w-1] = setup->b.wIndex.w-1;
}
}
break;
case 0xe0: // uart read
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) break;
// read
while (resp_len < min(setup->b.wLength.w, MAX_RESP_LEN) && getc(ur, (char*)&resp[resp_len])) {
++resp_len;
}
break;
case 0xe1: // uart set baud rate
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) break;
uart_set_baud(ur->uart, setup->b.wIndex.w);
break;
case 0xe2: // uart set parity
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) break;
switch (setup->b.wIndex.w) {
case 0:
// disable parity, 8-bit
ur->uart->CR1 &= ~(USART_CR1_PCE | USART_CR1_M);
break;
case 1:
// even parity, 9-bit
ur->uart->CR1 &= ~USART_CR1_PS;
ur->uart->CR1 |= USART_CR1_PCE | USART_CR1_M;
break;
case 2:
// odd parity, 9-bit
ur->uart->CR1 |= USART_CR1_PS;
ur->uart->CR1 |= USART_CR1_PCE | USART_CR1_M;
break;
default:
break;
}
break;
case 0xe3: // uart install accord framing callback
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) break;
if (setup->b.wIndex.w == 1) {
ur->callback = accord_framing_callback;
} else {
ur->callback = NULL;
}
break;
case 0xe4: // uart set baud rate extended
ur = get_ring_by_number(setup->b.wValue.w);
if (!ur) break;
uart_set_baud(ur->uart, (int)setup->b.wIndex.w*300);
break;
case 0xf0: // k-line wValue pulse on uart2
if (setup->b.wValue.w == 1) {
GPIOC->ODR &= ~(1 << 10);
GPIOC->MODER &= ~GPIO_MODER_MODER10_1;
GPIOC->MODER |= GPIO_MODER_MODER10_0;
} else {
GPIOC->ODR &= ~(1 << 12);
GPIOC->MODER &= ~GPIO_MODER_MODER12_1;
GPIOC->MODER |= GPIO_MODER_MODER12_0;
}
for (i = 0; i < 80; i++) {
delay(8000);
if (setup->b.wValue.w == 1) {
GPIOC->ODR |= (1 << 10);
GPIOC->ODR &= ~(1 << 10);
} else {
GPIOC->ODR |= (1 << 12);
GPIOC->ODR &= ~(1 << 12);
}
}
if (setup->b.wValue.w == 1) {
GPIOC->MODER &= ~GPIO_MODER_MODER10_0;
GPIOC->MODER |= GPIO_MODER_MODER10_1;
} else {
GPIOC->MODER &= ~GPIO_MODER_MODER12_0;
GPIOC->MODER |= GPIO_MODER_MODER12_1;
}
delay(140 * 9000);
break;
default:
puts("NO HANDLER ");
puth(setup->b.bRequest);
puts("\n");
break;
}
return resp_len;
}
void OTG_FS_IRQHandler(void) {
NVIC_DisableIRQ(OTG_FS_IRQn);
//__disable_irq();
usb_irqhandler();
//__enable_irq();
NVIC_EnableIRQ(OTG_FS_IRQn);
}
void ADC_IRQHandler(void) {
puts("ADC_IRQ\n");
}
#ifdef ENABLE_SPI
#define SPI_BUF_SIZE 256
uint8_t spi_buf[SPI_BUF_SIZE];
int spi_buf_count = 0;
int spi_total_count = 0;
uint8_t spi_tx_buf[0x44];
void handle_spi(uint8_t *data, int len) {
memset(spi_tx_buf, 0xaa, 0x44);
// data[0] = endpoint
// data[2] = length
// data[4:] = data
int *resp_len = (int*)spi_tx_buf;
*resp_len = 0;
switch (data[0]) {
case 0:
// control transfer
*resp_len = usb_cb_control_msg((USB_Setup_TypeDef *)(data+4), spi_tx_buf+4, 0);
break;
case 1:
// ep 1, read
*resp_len = usb_cb_ep1_in(spi_tx_buf+4, 0x40, 0);
break;
case 2:
// ep 2, send serial
usb_cb_ep2_out(data+4, data[2], 0);
break;
case 3:
// ep 3, send CAN
usb_cb_ep3_out(data+4, data[2], 0);
break;
}
spi_tx_dma(spi_tx_buf, 0x44);
// signal data is ready by driving low
// esp must be configured as input by this point
GPIOB->MODER &= ~(GPIO_MODER_MODER0);
GPIOB->MODER |= GPIO_MODER_MODER0_0;
GPIOB->ODR &= ~(GPIO_ODR_ODR_0);
}
// SPI RX
void DMA2_Stream2_IRQHandler(void) {
// ack
DMA2->LIFCR = DMA_LIFCR_CTCIF2;
handle_spi(spi_buf, 0x14);
}
// SPI TX
void DMA2_Stream3_IRQHandler(void) {
// ack
DMA2->LIFCR = DMA_LIFCR_CTCIF3;
// reset handshake back to pull up
GPIOB->MODER &= ~(GPIO_MODER_MODER0);
GPIOB->PUPDR |= GPIO_PUPDR_PUPDR0_0;
}
void EXTI4_IRQHandler(void) {
int pr = EXTI->PR;
// SPI CS rising
if (pr & (1 << 4)) {
spi_total_count = 0;
spi_rx_dma(spi_buf, 0x14);
//puts("exti4\n");
}
EXTI->PR = pr;
}
#endif
// ***************************** main code *****************************
void __initialize_hardware_early() {
early();
}
int main() {
// init devices
clock_init();
periph_init();
detect();
gpio_init();
// enable main uart
uart_init(USART2, 115200);
// enable ESP uart
uart_init(USART1, 115200);
// enable LIN
uart_init(UART5, 10400);
UART5->CR2 |= USART_CR2_LINEN;
uart_init(USART3, 10400);
USART3->CR2 |= USART_CR2_LINEN;
/*puts("EXTERNAL");
puth(has_external_debug_serial);
puts("\n");*/
// enable USB
usb_init();
// default to silent mode to prevent issues with Ford
#ifdef PANDA_SAFETY
can_init(CAN1, 1);
can_init(CAN2, 1);
#ifdef CAN3
can_init(CAN3, 1);
#endif
#else
can_init(CAN1, 0);
can_init(CAN2, 0);
#ifdef CAN3
can_init(CAN3, 0);
#endif
#endif
adc_init();
#ifdef ENABLE_SPI
spi_init();
#endif
// timer for fan PWM
TIM3->CCMR2 = TIM_CCMR2_OC3M_2 | TIM_CCMR2_OC3M_1;
TIM3->CCER = TIM_CCER_CC3E;
// max value of the timer
// 64 makes it above the audible range
//TIM3->ARR = 64;
// 10 prescale makes it below the audible range
timer_init(TIM3, 10);
puth(DBGMCU->IDCODE);
// set PWM
set_fan_speed(65535);
puts("**** INTERRUPTS ON ****\n");
__disable_irq();
// 4 uarts!
NVIC_EnableIRQ(USART1_IRQn);
NVIC_EnableIRQ(USART2_IRQn);
NVIC_EnableIRQ(USART3_IRQn);
NVIC_EnableIRQ(UART5_IRQn);
NVIC_EnableIRQ(OTG_FS_IRQn);
NVIC_EnableIRQ(ADC_IRQn);
// CAN has so many interrupts!
NVIC_EnableIRQ(CAN1_TX_IRQn);
NVIC_EnableIRQ(CAN1_RX0_IRQn);
NVIC_EnableIRQ(CAN1_SCE_IRQn);
NVIC_EnableIRQ(CAN2_TX_IRQn);
NVIC_EnableIRQ(CAN2_RX0_IRQn);
NVIC_EnableIRQ(CAN2_SCE_IRQn);
#ifdef CAN3
NVIC_EnableIRQ(CAN3_TX_IRQn);
NVIC_EnableIRQ(CAN3_RX0_IRQn);
NVIC_EnableIRQ(CAN3_SCE_IRQn);
#endif
#ifdef ENABLE_SPI
NVIC_EnableIRQ(DMA2_Stream2_IRQn);
NVIC_EnableIRQ(DMA2_Stream3_IRQn);
//NVIC_EnableIRQ(SPI1_IRQn);
// setup interrupt on falling edge of SPI enable (on PA4)
SYSCFG->EXTICR[2] = SYSCFG_EXTICR2_EXTI4_PA;
EXTI->IMR = (1 << 4);
EXTI->FTSR = (1 << 4);
NVIC_EnableIRQ(EXTI4_IRQn);
#endif
__enable_irq();
puts("OPTCR: "); puth(FLASH->OPTCR); puts("\n");
// LED should keep on blinking all the time
uint64_t cnt;
for (cnt=0;;cnt++) {
can_live = pending_can_live;
// reset this every 16th pass
if ((cnt&0xF) == 0) pending_can_live = 0;
/*#ifdef DEBUG
puts("** blink ");
puth(can_rx_q.r_ptr); puts(" "); puth(can_rx_q.w_ptr); puts(" ");
puth(can_tx1_q.r_ptr); puts(" "); puth(can_tx1_q.w_ptr); puts(" ");
puth(can_tx2_q.r_ptr); puts(" "); puth(can_tx2_q.w_ptr); puts("\n");
#endif*/
/*puts("voltage: "); puth(adc_get(ADCCHAN_VOLTAGE)); puts(" ");
puts("current: "); puth(adc_get(ADCCHAN_CURRENT)); puts("\n");*/
// set LED to be controls allowed, blue on panda, green on legacy
#ifdef PANDA
set_led(LED_BLUE, controls_allowed);
#else
set_led(LED_GREEN, controls_allowed);
#endif
// blink the red LED
set_led(LED_RED, 0);
delay(2000000);
set_led(LED_RED, 1);
delay(2000000);
// turn off the green LED, turned on by CAN
#ifdef PANDA
set_led(LED_GREEN, 0);
#endif
#ifdef ENABLE_SPI
/*if (spi_buf_count > 0) {
hexdump(spi_buf, spi_buf_count);
spi_buf_count = 0;
}*/
#endif
// started logic
#ifdef PANDA
int started_signal = (GPIOB->IDR & (1 << 12)) == 0;
#else
int started_signal = (GPIOC->IDR & (1 << 13)) != 0;
#endif
if (started_signal) { started_signal_detected = 1; }
if (started_signal || (!started_signal_detected && can_live)) {
started = 1;
// turn on fan at half speed
set_fan_speed(32768);
} else {
started = 0;
// turn off fan
set_fan_speed(0);
}
}
return 0;
}