// Formatting library for C++ // // Copyright (c) 2012 - 2016, Victor Zverovich // All rights reserved. // // For the license information refer to format.h. #ifndef FMT_FORMAT_INL_H_ #define FMT_FORMAT_INL_H_ #include "format.h" #include #include #include #include #include #include #include // for std::ptrdiff_t #include // for std::memmove #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) # include #endif #if FMT_USE_WINDOWS_H # if !defined(FMT_HEADER_ONLY) && !defined(WIN32_LEAN_AND_MEAN) # define WIN32_LEAN_AND_MEAN # endif # if defined(NOMINMAX) || defined(FMT_WIN_MINMAX) # include # else # define NOMINMAX # include # undef NOMINMAX # endif #endif #if FMT_EXCEPTIONS # define FMT_TRY try # define FMT_CATCH(x) catch (x) #else # define FMT_TRY if (true) # define FMT_CATCH(x) if (false) #endif #ifdef _MSC_VER # pragma warning(push) # pragma warning(disable: 4127) // conditional expression is constant # pragma warning(disable: 4702) // unreachable code // Disable deprecation warning for strerror. The latter is not called but // MSVC fails to detect it. # pragma warning(disable: 4996) #endif // Dummy implementations of strerror_r and strerror_s called if corresponding // system functions are not available. inline fmt::internal::null<> strerror_r(int, char *, ...) { return fmt::internal::null<>(); } inline fmt::internal::null<> strerror_s(char *, std::size_t, ...) { return fmt::internal::null<>(); } FMT_BEGIN_NAMESPACE namespace { #ifndef _MSC_VER # define FMT_SNPRINTF snprintf #else // _MSC_VER inline int fmt_snprintf(char *buffer, size_t size, const char *format, ...) { va_list args; va_start(args, format); int result = vsnprintf_s(buffer, size, _TRUNCATE, format, args); va_end(args); return result; } # define FMT_SNPRINTF fmt_snprintf #endif // _MSC_VER #if defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT) # define FMT_SWPRINTF snwprintf #else # define FMT_SWPRINTF swprintf #endif // defined(_WIN32) && defined(__MINGW32__) && !defined(__NO_ISOCEXT) typedef void (*FormatFunc)(internal::buffer &, int, string_view); // Portable thread-safe version of strerror. // Sets buffer to point to a string describing the error code. // This can be either a pointer to a string stored in buffer, // or a pointer to some static immutable string. // Returns one of the following values: // 0 - success // ERANGE - buffer is not large enough to store the error message // other - failure // Buffer should be at least of size 1. int safe_strerror( int error_code, char *&buffer, std::size_t buffer_size) FMT_NOEXCEPT { FMT_ASSERT(buffer != FMT_NULL && buffer_size != 0, "invalid buffer"); class dispatcher { private: int error_code_; char *&buffer_; std::size_t buffer_size_; // A noop assignment operator to avoid bogus warnings. void operator=(const dispatcher &) {} // Handle the result of XSI-compliant version of strerror_r. int handle(int result) { // glibc versions before 2.13 return result in errno. return result == -1 ? errno : result; } // Handle the result of GNU-specific version of strerror_r. int handle(char *message) { // If the buffer is full then the message is probably truncated. if (message == buffer_ && strlen(buffer_) == buffer_size_ - 1) return ERANGE; buffer_ = message; return 0; } // Handle the case when strerror_r is not available. int handle(internal::null<>) { return fallback(strerror_s(buffer_, buffer_size_, error_code_)); } // Fallback to strerror_s when strerror_r is not available. int fallback(int result) { // If the buffer is full then the message is probably truncated. return result == 0 && strlen(buffer_) == buffer_size_ - 1 ? ERANGE : result; } // Fallback to strerror if strerror_r and strerror_s are not available. int fallback(internal::null<>) { errno = 0; buffer_ = strerror(error_code_); return errno; } public: dispatcher(int err_code, char *&buf, std::size_t buf_size) : error_code_(err_code), buffer_(buf), buffer_size_(buf_size) {} int run() { return handle(strerror_r(error_code_, buffer_, buffer_size_)); } }; return dispatcher(error_code, buffer, buffer_size).run(); } void format_error_code(internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT { // Report error code making sure that the output fits into // inline_buffer_size to avoid dynamic memory allocation and potential // bad_alloc. out.resize(0); static const char SEP[] = ": "; static const char ERROR_STR[] = "error "; // Subtract 2 to account for terminating null characters in SEP and ERROR_STR. std::size_t error_code_size = sizeof(SEP) + sizeof(ERROR_STR) - 2; typedef internal::int_traits::main_type main_type; main_type abs_value = static_cast(error_code); if (internal::is_negative(error_code)) { abs_value = 0 - abs_value; ++error_code_size; } error_code_size += internal::count_digits(abs_value); writer w(out); if (message.size() <= inline_buffer_size - error_code_size) { w.write(message); w.write(SEP); } w.write(ERROR_STR); w.write(error_code); assert(out.size() <= inline_buffer_size); } void report_error(FormatFunc func, int error_code, string_view message) FMT_NOEXCEPT { memory_buffer full_message; func(full_message, error_code, message); // Use Writer::data instead of Writer::c_str to avoid potential memory // allocation. std::fwrite(full_message.data(), full_message.size(), 1, stderr); std::fputc('\n', stderr); } } // namespace #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) class locale { private: std::locale locale_; public: explicit locale(std::locale loc = std::locale()) : locale_(loc) {} std::locale get() { return locale_; } }; FMT_FUNC size_t internal::count_code_points(u8string_view s) { const char8_t *data = s.data(); int num_code_points = 0; for (size_t i = 0, size = s.size(); i != size; ++i) { if ((data[i].value & 0xc0) != 0x80) ++num_code_points; } return num_code_points; } template FMT_FUNC Char internal::thousands_sep(locale_provider *lp) { std::locale loc = lp ? lp->locale().get() : std::locale(); return std::use_facet>(loc).thousands_sep(); } #else template FMT_FUNC Char internal::thousands_sep(locale_provider *lp) { return FMT_STATIC_THOUSANDS_SEPARATOR; } #endif FMT_FUNC void system_error::init( int err_code, string_view format_str, format_args args) { error_code_ = err_code; memory_buffer buffer; format_system_error(buffer, err_code, vformat(format_str, args)); std::runtime_error &base = *this; base = std::runtime_error(to_string(buffer)); } namespace internal { template int char_traits::format_float( char *buffer, std::size_t size, const char *format, int precision, T value) { return precision < 0 ? FMT_SNPRINTF(buffer, size, format, value) : FMT_SNPRINTF(buffer, size, format, precision, value); } template int char_traits::format_float( wchar_t *buffer, std::size_t size, const wchar_t *format, int precision, T value) { return precision < 0 ? FMT_SWPRINTF(buffer, size, format, value) : FMT_SWPRINTF(buffer, size, format, precision, value); } template const char basic_data::DIGITS[] = "0001020304050607080910111213141516171819" "2021222324252627282930313233343536373839" "4041424344454647484950515253545556575859" "6061626364656667686970717273747576777879" "8081828384858687888990919293949596979899"; #define FMT_POWERS_OF_10(factor) \ factor * 10, \ factor * 100, \ factor * 1000, \ factor * 10000, \ factor * 100000, \ factor * 1000000, \ factor * 10000000, \ factor * 100000000, \ factor * 1000000000 template const uint32_t basic_data::POWERS_OF_10_32[] = { 1, FMT_POWERS_OF_10(1) }; template const uint32_t basic_data::ZERO_OR_POWERS_OF_10_32[] = { 0, FMT_POWERS_OF_10(1) }; template const uint64_t basic_data::ZERO_OR_POWERS_OF_10_64[] = { 0, FMT_POWERS_OF_10(1), FMT_POWERS_OF_10(1000000000ull), 10000000000000000000ull }; // Normalized 64-bit significands of pow(10, k), for k = -348, -340, ..., 340. // These are generated by support/compute-powers.py. template const uint64_t basic_data::POW10_SIGNIFICANDS[] = { 0xfa8fd5a0081c0288, 0xbaaee17fa23ebf76, 0x8b16fb203055ac76, 0xcf42894a5dce35ea, 0x9a6bb0aa55653b2d, 0xe61acf033d1a45df, 0xab70fe17c79ac6ca, 0xff77b1fcbebcdc4f, 0xbe5691ef416bd60c, 0x8dd01fad907ffc3c, 0xd3515c2831559a83, 0x9d71ac8fada6c9b5, 0xea9c227723ee8bcb, 0xaecc49914078536d, 0x823c12795db6ce57, 0xc21094364dfb5637, 0x9096ea6f3848984f, 0xd77485cb25823ac7, 0xa086cfcd97bf97f4, 0xef340a98172aace5, 0xb23867fb2a35b28e, 0x84c8d4dfd2c63f3b, 0xc5dd44271ad3cdba, 0x936b9fcebb25c996, 0xdbac6c247d62a584, 0xa3ab66580d5fdaf6, 0xf3e2f893dec3f126, 0xb5b5ada8aaff80b8, 0x87625f056c7c4a8b, 0xc9bcff6034c13053, 0x964e858c91ba2655, 0xdff9772470297ebd, 0xa6dfbd9fb8e5b88f, 0xf8a95fcf88747d94, 0xb94470938fa89bcf, 0x8a08f0f8bf0f156b, 0xcdb02555653131b6, 0x993fe2c6d07b7fac, 0xe45c10c42a2b3b06, 0xaa242499697392d3, 0xfd87b5f28300ca0e, 0xbce5086492111aeb, 0x8cbccc096f5088cc, 0xd1b71758e219652c, 0x9c40000000000000, 0xe8d4a51000000000, 0xad78ebc5ac620000, 0x813f3978f8940984, 0xc097ce7bc90715b3, 0x8f7e32ce7bea5c70, 0xd5d238a4abe98068, 0x9f4f2726179a2245, 0xed63a231d4c4fb27, 0xb0de65388cc8ada8, 0x83c7088e1aab65db, 0xc45d1df942711d9a, 0x924d692ca61be758, 0xda01ee641a708dea, 0xa26da3999aef774a, 0xf209787bb47d6b85, 0xb454e4a179dd1877, 0x865b86925b9bc5c2, 0xc83553c5c8965d3d, 0x952ab45cfa97a0b3, 0xde469fbd99a05fe3, 0xa59bc234db398c25, 0xf6c69a72a3989f5c, 0xb7dcbf5354e9bece, 0x88fcf317f22241e2, 0xcc20ce9bd35c78a5, 0x98165af37b2153df, 0xe2a0b5dc971f303a, 0xa8d9d1535ce3b396, 0xfb9b7cd9a4a7443c, 0xbb764c4ca7a44410, 0x8bab8eefb6409c1a, 0xd01fef10a657842c, 0x9b10a4e5e9913129, 0xe7109bfba19c0c9d, 0xac2820d9623bf429, 0x80444b5e7aa7cf85, 0xbf21e44003acdd2d, 0x8e679c2f5e44ff8f, 0xd433179d9c8cb841, 0x9e19db92b4e31ba9, 0xeb96bf6ebadf77d9, 0xaf87023b9bf0ee6b, }; // Binary exponents of pow(10, k), for k = -348, -340, ..., 340, corresponding // to significands above. template const int16_t basic_data::POW10_EXPONENTS[] = { -1220, -1193, -1166, -1140, -1113, -1087, -1060, -1034, -1007, -980, -954, -927, -901, -874, -847, -821, -794, -768, -741, -715, -688, -661, -635, -608, -582, -555, -529, -502, -475, -449, -422, -396, -369, -343, -316, -289, -263, -236, -210, -183, -157, -130, -103, -77, -50, -24, 3, 30, 56, 83, 109, 136, 162, 189, 216, 242, 269, 295, 322, 348, 375, 402, 428, 455, 481, 508, 534, 561, 588, 614, 641, 667, 694, 720, 747, 774, 800, 827, 853, 880, 907, 933, 960, 986, 1013, 1039, 1066 }; template const char basic_data::RESET_COLOR[] = "\x1b[0m"; template const wchar_t basic_data::WRESET_COLOR[] = L"\x1b[0m"; // A handmade floating-point number f * pow(2, e). class fp { private: typedef uint64_t significand_type; // All sizes are in bits. static FMT_CONSTEXPR_DECL const int char_size = std::numeric_limits::digits; // Subtract 1 to account for an implicit most significant bit in the // normalized form. static FMT_CONSTEXPR_DECL const int double_significand_size = std::numeric_limits::digits - 1; static FMT_CONSTEXPR_DECL const uint64_t implicit_bit = 1ull << double_significand_size; public: significand_type f; int e; static FMT_CONSTEXPR_DECL const int significand_size = sizeof(significand_type) * char_size; fp(): f(0), e(0) {} fp(uint64_t f, int e): f(f), e(e) {} // Constructs fp from an IEEE754 double. It is a template to prevent compile // errors on platforms where double is not IEEE754. template explicit fp(Double d) { // Assume double is in the format [sign][exponent][significand]. typedef std::numeric_limits limits; const int double_size = static_cast(sizeof(Double) * char_size); const int exponent_size = double_size - double_significand_size - 1; // -1 for sign const uint64_t significand_mask = implicit_bit - 1; const uint64_t exponent_mask = (~0ull >> 1) & ~significand_mask; const int exponent_bias = (1 << exponent_size) - limits::max_exponent - 1; auto u = bit_cast(d); auto biased_e = (u & exponent_mask) >> double_significand_size; f = u & significand_mask; if (biased_e != 0) f += implicit_bit; else biased_e = 1; // Subnormals use biased exponent 1 (min exponent). e = static_cast(biased_e - exponent_bias - double_significand_size); } // Normalizes the value converted from double and multiplied by (1 << SHIFT). template void normalize() { // Handle subnormals. auto shifted_implicit_bit = implicit_bit << SHIFT; while ((f & shifted_implicit_bit) == 0) { f <<= 1; --e; } // Subtract 1 to account for hidden bit. auto offset = significand_size - double_significand_size - SHIFT - 1; f <<= offset; e -= offset; } // Compute lower and upper boundaries (m^- and m^+ in the Grisu paper), where // a boundary is a value half way between the number and its predecessor // (lower) or successor (upper). The upper boundary is normalized and lower // has the same exponent but may be not normalized. void compute_boundaries(fp &lower, fp &upper) const { lower = f == implicit_bit ? fp((f << 2) - 1, e - 2) : fp((f << 1) - 1, e - 1); upper = fp((f << 1) + 1, e - 1); upper.normalize<1>(); // 1 is to account for the exponent shift above. lower.f <<= lower.e - upper.e; lower.e = upper.e; } }; // Returns an fp number representing x - y. Result may not be normalized. inline fp operator-(fp x, fp y) { FMT_ASSERT(x.f >= y.f && x.e == y.e, "invalid operands"); return fp(x.f - y.f, x.e); } // Computes an fp number r with r.f = x.f * y.f / pow(2, 64) rounded to nearest // with half-up tie breaking, r.e = x.e + y.e + 64. Result may not be normalized. FMT_API fp operator*(fp x, fp y); // Returns cached power (of 10) c_k = c_k.f * pow(2, c_k.e) such that its // (binary) exponent satisfies min_exponent <= c_k.e <= min_exponent + 3. FMT_API fp get_cached_power(int min_exponent, int &pow10_exponent); FMT_FUNC fp operator*(fp x, fp y) { // Multiply 32-bit parts of significands. uint64_t mask = (1ULL << 32) - 1; uint64_t a = x.f >> 32, b = x.f & mask; uint64_t c = y.f >> 32, d = y.f & mask; uint64_t ac = a * c, bc = b * c, ad = a * d, bd = b * d; // Compute mid 64-bit of result and round. uint64_t mid = (bd >> 32) + (ad & mask) + (bc & mask) + (1U << 31); return fp(ac + (ad >> 32) + (bc >> 32) + (mid >> 32), x.e + y.e + 64); } FMT_FUNC fp get_cached_power(int min_exponent, int &pow10_exponent) { const double one_over_log2_10 = 0.30102999566398114; // 1 / log2(10) int index = static_cast(std::ceil( (min_exponent + fp::significand_size - 1) * one_over_log2_10)); // Decimal exponent of the first (smallest) cached power of 10. const int first_dec_exp = -348; // Difference between 2 consecutive decimal exponents in cached powers of 10. const int dec_exp_step = 8; index = (index - first_dec_exp - 1) / dec_exp_step + 1; pow10_exponent = first_dec_exp + index * dec_exp_step; return fp(data::POW10_SIGNIFICANDS[index], data::POW10_EXPONENTS[index]); } // Generates output using Grisu2 digit-gen algorithm. FMT_FUNC void grisu2_gen_digits( const fp &scaled_value, const fp &scaled_upper, uint64_t delta, char *buffer, size_t &size, int &dec_exp) { internal::fp one(1ull << -scaled_upper.e, scaled_upper.e); // hi (p1 in Grisu) contains the most significant digits of scaled_upper. // hi = floor(scaled_upper / one). uint32_t hi = static_cast(scaled_upper.f >> -one.e); // lo (p2 in Grisu) contains the least significants digits of scaled_upper. // lo = scaled_upper mod 1. uint64_t lo = scaled_upper.f & (one.f - 1); size = 0; auto exp = count_digits(hi); // kappa in Grisu. while (exp > 0) { uint32_t digit = 0; // This optimization by miloyip reduces the number of integer divisions by // one per iteration. switch (exp) { case 10: digit = hi / 1000000000; hi %= 1000000000; break; case 9: digit = hi / 100000000; hi %= 100000000; break; case 8: digit = hi / 10000000; hi %= 10000000; break; case 7: digit = hi / 1000000; hi %= 1000000; break; case 6: digit = hi / 100000; hi %= 100000; break; case 5: digit = hi / 10000; hi %= 10000; break; case 4: digit = hi / 1000; hi %= 1000; break; case 3: digit = hi / 100; hi %= 100; break; case 2: digit = hi / 10; hi %= 10; break; case 1: digit = hi; hi = 0; break; default: FMT_ASSERT(false, "invalid number of digits"); } if (digit != 0 || size != 0) buffer[size++] = static_cast('0' + digit); --exp; uint64_t remainder = (static_cast(hi) << -one.e) + lo; if (remainder <= delta) { dec_exp += exp; // TODO: use scaled_value (void)scaled_value; return; } } for (;;) { lo *= 10; delta *= 10; char digit = static_cast(lo >> -one.e); if (digit != 0 || size != 0) buffer[size++] = static_cast('0' + digit); lo &= one.f - 1; --exp; if (lo < delta) { dec_exp += exp; return; } } } FMT_FUNC void grisu2_format_positive(double value, char *buffer, size_t &size, int &dec_exp) { FMT_ASSERT(value > 0, "value is nonpositive"); fp fp_value(value); fp lower, upper; // w^- and w^+ in the Grisu paper. fp_value.compute_boundaries(lower, upper); // Find a cached power of 10 close to 1 / upper. const int min_exp = -60; // alpha in Grisu. auto dec_pow = get_cached_power( // \tilde{c}_{-k} in Grisu. min_exp - (upper.e + fp::significand_size), dec_exp); dec_exp = -dec_exp; fp_value.normalize(); fp scaled_value = fp_value * dec_pow; fp scaled_lower = lower * dec_pow; // \tilde{M}^- in Grisu. fp scaled_upper = upper * dec_pow; // \tilde{M}^+ in Grisu. ++scaled_lower.f; // \tilde{M}^- + 1 ulp -> M^-_{\uparrow}. --scaled_upper.f; // \tilde{M}^+ - 1 ulp -> M^+_{\downarrow}. uint64_t delta = scaled_upper.f - scaled_lower.f; grisu2_gen_digits(scaled_value, scaled_upper, delta, buffer, size, dec_exp); } FMT_FUNC void round(char *buffer, size_t &size, int &exp, int digits_to_remove) { size -= to_unsigned(digits_to_remove); exp += digits_to_remove; int digit = buffer[size] - '0'; // TODO: proper rounding and carry if (digit > 5 || (digit == 5 && (digits_to_remove > 1 || (buffer[size - 1] - '0') % 2) != 0)) { ++buffer[size - 1]; } } // Writes the exponent exp in the form "[+-]d{1,3}" to buffer. FMT_FUNC char *write_exponent(char *buffer, int exp) { FMT_ASSERT(-1000 < exp && exp < 1000, "exponent out of range"); if (exp < 0) { *buffer++ = '-'; exp = -exp; } else { *buffer++ = '+'; } if (exp >= 100) { *buffer++ = static_cast('0' + exp / 100); exp %= 100; const char *d = data::DIGITS + exp * 2; *buffer++ = d[0]; *buffer++ = d[1]; } else { const char *d = data::DIGITS + exp * 2; *buffer++ = d[0]; *buffer++ = d[1]; } return buffer; } FMT_FUNC void format_exp_notation( char *buffer, size_t &size, int exp, int precision, bool upper) { // Insert a decimal point after the first digit and add an exponent. std::memmove(buffer + 2, buffer + 1, size - 1); buffer[1] = '.'; exp += static_cast(size) - 1; int num_digits = precision - static_cast(size) + 1; if (num_digits > 0) { std::uninitialized_fill_n(buffer + size + 1, num_digits, '0'); size += to_unsigned(num_digits); } else if (num_digits < 0) { round(buffer, size, exp, -num_digits); } char *p = buffer + size + 1; *p++ = upper ? 'E' : 'e'; size = to_unsigned(write_exponent(p, exp) - buffer); } // Prettifies the output of the Grisu2 algorithm. // The number is given as v = buffer * 10^exp. FMT_FUNC void grisu2_prettify(char *buffer, size_t &size, int exp, int precision, bool upper) { // pow(10, full_exp - 1) <= v <= pow(10, full_exp). int int_size = static_cast(size); int full_exp = int_size + exp; const int exp_threshold = 21; if (int_size <= full_exp && full_exp <= exp_threshold) { // 1234e7 -> 12340000000[.0+] std::uninitialized_fill_n(buffer + int_size, full_exp - int_size, '0'); char *p = buffer + full_exp; if (precision > 0) { *p++ = '.'; std::uninitialized_fill_n(p, precision, '0'); p += precision; } size = to_unsigned(p - buffer); } else if (0 < full_exp && full_exp <= exp_threshold) { // 1234e-2 -> 12.34[0+] int fractional_size = -exp; std::memmove(buffer + full_exp + 1, buffer + full_exp, to_unsigned(fractional_size)); buffer[full_exp] = '.'; int num_zeros = precision - fractional_size; if (num_zeros > 0) { std::uninitialized_fill_n(buffer + size + 1, num_zeros, '0'); size += to_unsigned(num_zeros); } ++size; } else if (-6 < full_exp && full_exp <= 0) { // 1234e-6 -> 0.001234 int offset = 2 - full_exp; std::memmove(buffer + offset, buffer, size); buffer[0] = '0'; buffer[1] = '.'; std::uninitialized_fill_n(buffer + 2, -full_exp, '0'); size = to_unsigned(int_size + offset); } else { format_exp_notation(buffer, size, exp, precision, upper); } } #if FMT_CLANG_VERSION # define FMT_FALLTHROUGH [[clang::fallthrough]]; #elif FMT_GCC_VERSION >= 700 # define FMT_FALLTHROUGH [[gnu::fallthrough]]; #else # define FMT_FALLTHROUGH #endif // Formats a nonnegative value using Grisu2 algorithm. Grisu2 doesn't give any // guarantees on the shortness of the result. FMT_FUNC void grisu2_format(double value, char *buffer, size_t &size, char type, int precision, bool write_decimal_point) { FMT_ASSERT(value >= 0, "value is negative"); int dec_exp = 0; // K in Grisu. if (value > 0) { grisu2_format_positive(value, buffer, size, dec_exp); } else { *buffer = '0'; size = 1; } const int default_precision = 6; if (precision < 0) precision = default_precision; bool upper = false; switch (type) { case 'G': upper = true; FMT_FALLTHROUGH case '\0': case 'g': { int digits_to_remove = static_cast(size) - precision; if (digits_to_remove > 0) { round(buffer, size, dec_exp, digits_to_remove); // Remove trailing zeros. while (size > 0 && buffer[size - 1] == '0') { --size; ++dec_exp; } } precision = 0; break; } case 'F': upper = true; FMT_FALLTHROUGH case 'f': { int digits_to_remove = -dec_exp - precision; if (digits_to_remove > 0) { if (digits_to_remove >= static_cast(size)) digits_to_remove = static_cast(size) - 1; round(buffer, size, dec_exp, digits_to_remove); } break; } case 'e': case 'E': format_exp_notation(buffer, size, dec_exp, precision, type == 'E'); return; } if (write_decimal_point && precision < 1) precision = 1; grisu2_prettify(buffer, size, dec_exp, precision, upper); } } // namespace internal #if FMT_USE_WINDOWS_H FMT_FUNC internal::utf8_to_utf16::utf8_to_utf16(string_view s) { static const char ERROR_MSG[] = "cannot convert string from UTF-8 to UTF-16"; if (s.size() > INT_MAX) FMT_THROW(windows_error(ERROR_INVALID_PARAMETER, ERROR_MSG)); int s_size = static_cast(s.size()); if (s_size == 0) { // MultiByteToWideChar does not support zero length, handle separately. buffer_.resize(1); buffer_[0] = 0; return; } int length = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, FMT_NULL, 0); if (length == 0) FMT_THROW(windows_error(GetLastError(), ERROR_MSG)); buffer_.resize(length + 1); length = MultiByteToWideChar( CP_UTF8, MB_ERR_INVALID_CHARS, s.data(), s_size, &buffer_[0], length); if (length == 0) FMT_THROW(windows_error(GetLastError(), ERROR_MSG)); buffer_[length] = 0; } FMT_FUNC internal::utf16_to_utf8::utf16_to_utf8(wstring_view s) { if (int error_code = convert(s)) { FMT_THROW(windows_error(error_code, "cannot convert string from UTF-16 to UTF-8")); } } FMT_FUNC int internal::utf16_to_utf8::convert(wstring_view s) { if (s.size() > INT_MAX) return ERROR_INVALID_PARAMETER; int s_size = static_cast(s.size()); if (s_size == 0) { // WideCharToMultiByte does not support zero length, handle separately. buffer_.resize(1); buffer_[0] = 0; return 0; } int length = WideCharToMultiByte( CP_UTF8, 0, s.data(), s_size, FMT_NULL, 0, FMT_NULL, FMT_NULL); if (length == 0) return GetLastError(); buffer_.resize(length + 1); length = WideCharToMultiByte( CP_UTF8, 0, s.data(), s_size, &buffer_[0], length, FMT_NULL, FMT_NULL); if (length == 0) return GetLastError(); buffer_[length] = 0; return 0; } FMT_FUNC void windows_error::init( int err_code, string_view format_str, format_args args) { error_code_ = err_code; memory_buffer buffer; internal::format_windows_error(buffer, err_code, vformat(format_str, args)); std::runtime_error &base = *this; base = std::runtime_error(to_string(buffer)); } FMT_FUNC void internal::format_windows_error( internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT { FMT_TRY { wmemory_buffer buf; buf.resize(inline_buffer_size); for (;;) { wchar_t *system_message = &buf[0]; int result = FormatMessageW( FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, FMT_NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), system_message, static_cast(buf.size()), FMT_NULL); if (result != 0) { utf16_to_utf8 utf8_message; if (utf8_message.convert(system_message) == ERROR_SUCCESS) { writer w(out); w.write(message); w.write(": "); w.write(utf8_message); return; } break; } if (GetLastError() != ERROR_INSUFFICIENT_BUFFER) break; // Can't get error message, report error code instead. buf.resize(buf.size() * 2); } } FMT_CATCH(...) {} format_error_code(out, error_code, message); } #endif // FMT_USE_WINDOWS_H FMT_FUNC void format_system_error( internal::buffer &out, int error_code, string_view message) FMT_NOEXCEPT { FMT_TRY { memory_buffer buf; buf.resize(inline_buffer_size); for (;;) { char *system_message = &buf[0]; int result = safe_strerror(error_code, system_message, buf.size()); if (result == 0) { writer w(out); w.write(message); w.write(": "); w.write(system_message); return; } if (result != ERANGE) break; // Can't get error message, report error code instead. buf.resize(buf.size() * 2); } } FMT_CATCH(...) {} format_error_code(out, error_code, message); } template void basic_fixed_buffer::grow(std::size_t) { FMT_THROW(std::runtime_error("buffer overflow")); } FMT_FUNC void internal::error_handler::on_error(const char *message) { FMT_THROW(format_error(message)); } FMT_FUNC void report_system_error( int error_code, fmt::string_view message) FMT_NOEXCEPT { report_error(format_system_error, error_code, message); } #if FMT_USE_WINDOWS_H FMT_FUNC void report_windows_error( int error_code, fmt::string_view message) FMT_NOEXCEPT { report_error(internal::format_windows_error, error_code, message); } #endif FMT_FUNC void vprint(std::FILE *f, string_view format_str, format_args args) { memory_buffer buffer; vformat_to(buffer, format_str, args); std::fwrite(buffer.data(), 1, buffer.size(), f); } FMT_FUNC void vprint(std::FILE *f, wstring_view format_str, wformat_args args) { wmemory_buffer buffer; vformat_to(buffer, format_str, args); std::fwrite(buffer.data(), sizeof(wchar_t), buffer.size(), f); } FMT_FUNC void vprint(string_view format_str, format_args args) { vprint(stdout, format_str, args); } FMT_FUNC void vprint(wstring_view format_str, wformat_args args) { vprint(stdout, format_str, args); } #if !defined(FMT_STATIC_THOUSANDS_SEPARATOR) FMT_FUNC locale locale_provider::locale() { return fmt::locale(); } #endif FMT_END_NAMESPACE #ifdef _MSC_VER # pragma warning(pop) #endif #endif // FMT_FORMAT_INL_H_