; This is a GNSS-SDR configuration file ; The configuration API is described at https://gnss-sdr.org/docs/sp-blocks/ ; SPDX-License-Identifier: GPL-3.0-or-later ; SPDX-FileCopyrightText: (C) 2010-2020 (see AUTHORS file for a list of contributors) ; Default configuration file ; You can define your own front-end calibration tool configuration and invoke it by doing ; ./front-end-cal --config_file=my_GNSS_SDR_configuration.conf ; [GNSS-SDR] ;######### INITIAL RECEIVER POSITIION ###### ; san francisco scenario ;GNSS-SDR.init_latitude_deg=40.74846557442795 ;GNSS-SDR.init_longitude_deg=-73.98593961814200 ;GNSS-SDR.init_altitude_m=329.11968943169342 ; Barcelona CTTC GNSS-SDR.init_latitude_deg=41.27719585553101 GNSS-SDR.init_longitude_deg=1.988782985790802 GNSS-SDR.init_altitude_m=10 ; Mozoncillo ;GNSS-SDR.init_latitude_deg=41.14534824586196 ;GNSS-SDR.init_longitude_deg=-4.187125019737464 ;GNSS-SDR.init_altitude_m=900 ;######### GLOBAL OPTIONS ################## ;internal_fs_sps: Internal signal sampling frequency after the signal conditioning stage [samples per second]. GNSS-SDR.internal_fs_sps=2000000 ;######### SUPL RRLP GPS assistance configuration ##### ; Check https://www.mcc-mnc.com/ ; On Android: https://play.google.com/store/apps/details?id=net.its_here.cellidinfo&hl=en GNSS-SDR.SUPL_gps_enabled=true GNSS-SDR.SUPL_read_gps_assistance_xml=false GNSS-SDR.SUPL_gps_ephemeris_server=supl.google.com GNSS-SDR.SUPL_gps_ephemeris_port=7275 GNSS-SDR.SUPL_gps_acquisition_server=supl.google.com GNSS-SDR.SUPL_gps_acquisition_port=7275 GNSS-SDR.SUPL_MCC=217 GNSS-SDR.SUPL_MNC=7 GNSS-SDR.SUPL_LAC=861 GNSS-SDR.SUPL_CI=40184 ;######### SIGNAL_SOURCE CONFIG ############ SignalSource.implementation=Osmosdr_Signal_Source ;#freq: RF front-end center frequency in [Hz] SignalSource.freq=1575420000 ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. SignalSource.item_type=gr_complex ;#sampling_frequency: Original Signal sampling frequency in samples per second SignalSource.sampling_frequency=2000000 ;#gain: Front-end Gain in [dB] SignalSource.gain=40 SignalSource.rf_gain=40 SignalSource.if_gain=30 SignalSource.AGC_enabled=false ;# Please note that the new RTL-SDR Blog V3 dongles ship a < 1 PPM ;# temperature compensated oscillator (TCXO), which is well suited for GNSS ;# signal processing, and a 4.5 V powered bias-tee to feed an active antenna. ;# Whether the bias-tee is turned off before reception depends on which version ;# of gr-osmosdr was used when compiling GNSS-SDR. With an old version ;# (for example, v0.1.4-8), the utility rtl_biast may be used to switch the ;# bias-tee, and then call gnss-sdr. ;# See https://github.com/rtlsdrblog/rtl_biast ;# After reception the bias-tee is switched off automatically by the program. ;# With newer versions of gr-osmosdr (>= 0.1.4-13), the bias-tee can be ;# activated by uncommenting the following line: ;SignalSource.osmosdr_args=rtl,bias=1 ;#samples: Number of samples to be processed. Notice that 0 means infinite samples. SignalSource.samples=0 ;#repeat: Repeat the processing file. SignalSource.repeat=false ;#dump: Dump the Signal source data to a file. SignalSource.dump=false SignalSource.dump_filename=../data/signal_source.dat ;######### SIGNAL_CONDITIONER CONFIG ############ ;## It holds blocks to change data type, filter and resample input data. ;#implementation: Use [Pass_Through] or [Signal_Conditioner] ;#[Pass_Through] disables this block and the [DataTypeAdapter], [InputFilter] and [Resampler] blocks ;#[Signal_Conditioner] enables this block. Then you have to configure [DataTypeAdapter], [InputFilter] and [Resampler] blocks SignalConditioner.implementation=Pass_Through ;######### DATA_TYPE_ADAPTER CONFIG ############ ;## Changes the type of input data. ;#implementation: Use [Ishort_To_Complex] or [Pass_Through] DataTypeAdapter.implementation=Pass_Through ;#dump: Dump the filtered data to a file. DataTypeAdapter.dump=false ;#dump_filename: Log path and filename. DataTypeAdapter.dump_filename=../data/data_type_adapter.dat ;######### INPUT_FILTER CONFIG ############ ;## Filter the input data. Can be combined with frequency translation for IF signals ;#implementation: Use [Pass_Through] or [Fir_Filter] or [Freq_Xlating_Fir_Filter] ;#[Pass_Through] disables this block ;#[Fir_Filter] enables a FIR Filter ;#[Freq_Xlating_Fir_Filter] enables FIR filter and a composite frequency translation that shifts IF down to zero Hz. InputFilter.implementation=Freq_Xlating_Fir_Filter ;#The following options are used in the filter design of Fir_Filter and Freq_Xlating_Fir_Filter implementation. ;#These options are based on parameters of gnuradio's function: gr_remez. ;#This function calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges, ;#the desired response on those bands, and the weight given to the error in those bands. ;#input_item_type: Type and resolution for input signal samples. InputFilter.input_item_type=gr_complex ;#outut_item_type: Type and resolution for output filtered signal samples. InputFilter.output_item_type=gr_complex ;#taps_item_type: Type and resolution for the taps of the filter. Use only float in this version. InputFilter.taps_item_type=float ;#number_of_taps: Number of taps in the filter. Increasing this parameter increases the processing time InputFilter.number_of_taps=5 ;#number_of _bands: Number of frequency bands in the filter. InputFilter.number_of_bands=2 ;#bands: frequency at the band edges [ b1 e1 b2 e2 b3 e3 ...]. ;#Frequency is in the range [0, 1], with 1 being the Nyquist frequency (Fs/2) ;#The number of band_begin and band_end elements must match the number of bands InputFilter.band1_begin=0.0 ;InputFilter.band1_end=0.8 InputFilter.band1_end=0.85 InputFilter.band2_begin=0.90 InputFilter.band2_end=1.0 ;#ampl: desired amplitude at the band edges [ a(b1) a(e1) a(b2) a(e2) ...]. ;#The number of ampl_begin and ampl_end elements must match the number of bands InputFilter.ampl1_begin=1.0 InputFilter.ampl1_end=1.0 InputFilter.ampl2_begin=0.0 InputFilter.ampl2_end=0.0 ;#band_error: weighting applied to each band (usually 1). ;#The number of band_error elements must match the number of bands InputFilter.band1_error=1.0 InputFilter.band2_error=1.0 ;#filter_type: one of "bandpass", "hilbert" or "differentiator" InputFilter.filter_type=bandpass ;#grid_density: determines how accurately the filter will be constructed. ;The minimum value is 16; higher values are slower to compute the filter. InputFilter.grid_density=16 ;#The following options are used only in Freq_Xlating_Fir_Filter implementation. ;#InputFilter.IF is the intermediate frequency (in Hz) shifted down to zero Hz InputFilter.sampling_frequency=2000000 InputFilter.IF=0 InputFilter.decimation_factor=1 ;#dump: Dump the filtered data to a file. InputFilter.dump=false ;#dump_filename: Log path and filename. InputFilter.dump_filename=../data/input_filter.dat ;######### RESAMPLER CONFIG ############ ;## Resamples the input data. ;#implementation: Use [Pass_Through] or [Direct_Resampler] ;#[Pass_Through] disables this block Resampler.implementation=Pass_Through ;######### ACQUISITION GLOBAL CONFIG ############ Acquisition_1C.implementation=GPS_L1_CA_PCPS_Acquisition_Fine_Doppler ;#item_type: Type and resolution for each of the signal samples. Use only gr_complex in this version. Acquisition.item_type=gr_complex ;#sampled_ms: Signal block duration for the acquisition signal detection [ms] Acquisition.sampled_ms=1 ;#threshold: Acquisition threshold Acquisition.threshold=0.015 ;#doppler_max: Maximum expected Doppler shift [Hz] Acquisition.doppler_max=100000 ;#doppler_max: Maximum expected Doppler shift [Hz] Acquisition.doppler_min=-100000 ;#doppler_step Doppler step in the grid search [Hz] Acquisition.doppler_step=500 ;#maximum dwells Acquisition.max_dwells=15 ;#dump: Enable or disable the acquisition internal data file logging [true] or [false] Acquisition.dump=false ;#filename: Log path and filename Acquisition.dump_filename=./acq_dump.dat