
Karoo GP

Karoo GP Quick Start Guide

Genetic Programming in Python

ver. 20160708b

by Kai Staats

Karoo GP by Kai Staats www.kaistaats.com/research/

Karoo GP

Karoo GP Quick Start Guide
Welcome to Karoo GP!

Karoo GP is an evolutionary algorithm, a genetic programming application suite which provides both symbolic
regression and classification analysis. Written in the programming language Python, Karoo GP owes its foundation
to the “Field Guide to Genetic Programming” by Poli, Langdon, McPhee, and Koza.

Karoo GP provides a transparent interface to the inner workings of tree-based Genetic Programming. As a teaching
tool, it enables instructors to share step-by-step how an evolutionary algorithm arrives to its solution. As a hands-on
learning tool, Karoo GP supports rapid, repeatable experimentation with a simple, no-programming-required
interface. Included with Karoo GP are two executables: one with an intuitive text-based user interface designed for
your desktop, the other a configuration script that when executed, performs without user intervention. Both are able
to work with the built-in, real-world test cases or user provided data.

Requirements:

• Python 2.7.6 [GCC 4.8.2]

• libraries: Nu m P y 1.9.2, S ym P y 0.7.6.1, pprocess 0.5.1, sklearn 0.16.1, matplotlib, csv, os, sys, time

Tested systems:

• Ubuntu Linux 14.04 Desktop on Intel i5/i7 (4 core): no known issues

• Ubuntu Linux 14.04.3 LTS on Intel Xeon E5-2650 (40 core): no known issues

Launch Karoo GP:

(from a native shell): $ python karoo_gp.main.py

(from iPython): $ run karoo_gp_main.py

This Quick Start Tutorial is designed to give you a crash course in tree-based Genetic Programming and a light
introduction to preparing datasets for machine learning. Even if you are an expert in machine learning, you are
encouraged to make time to read this document in order to anticipate all that Karoo GP has to offer.

What is Genetic Programming?

Genetic Programming (GP) is a type of evolutionary algorithm, a subset of machine learning. Inspired by biological
evolution, GP is a computer program that uses random mutation, crossover, a fitness function, and multiple
generations of evolution to resolve a user-defined task. At the foundation level, genetic programming discovers the
relationship between dataset features—correlations between measurements of the real world.

Long before the advent of gene sequencing or machine learning, taxonomists conducted precise measurements of
physical plants and animals in order to differentiate species. In 1936, biologist R.A. Fisher worked to differentiate
species of Iris flowers using data generated by Edgar Anderson. In his paper “The use of multiple measurements in
taxonomic problems”, Fisher states “When two or more populations have been measured in several characters,
xl, ..., x8, special interest attaches to certain linear functions of the measurements by which the populations are best
discriminated.” Using Genetic Programming, we readily discover the mathematical functions that cleanly separate
the 3 Iris species using just 50 data points each. This Iris multivariate dataset is a simple yet classic, must-solve
problem for all Machine Learning developers of classification algorithms, and is included with Karoo GP as the
default Classification dataset.

In general, genetic programming can be used to discover a relationship between features in data (symbolic
regression) or to group data into categories (classification). Both of these employ a training (learning) and test
(validation) phase, after which the resulting function (mathematical expression) may be employed in a live data
stream for realtime regression or classification analysis, accordingly.

Karoo GP by Kai Staats www.kaistaats.com/research/

https://www.python.org/
http://matplotlib.org/
http://scikit-learn.org/
http://www.boddie.org.uk/python/pprocess.html
http://www.sympy.org/
http://www.sympy.org/
http://www.sympy.org/
http://www.sympy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.numpy.org/
http://www.gp-field-guide.org.uk/

Karoo GP

First Time Through

The Karoo GP user interface will prompt you for a series of inputs. Your first
time through, enter Play mode in order to understand the functions of Karoo GP
and to learn to visualise a GP tree, as follows:

1. Select Play mode.

2. Select a Full tree.

3. Select a depth of 1.

Depth 1: 1 operator, 2 variables, eg: a / c

Depth 2: 3 operators, 4 variables, eg: a + b – 2 * c

Depth 3: 7 operators, 8 variables, eg: c + b * c^3 / a + c / a

Take a look the GP tree represented on-screen. There are 3 nodes
composed of 2 terminals (variables) and 1 function (operator).
Select Play mode a few more times, playing with larger trees and
both Full and Grow methods. You will find that the branches of
Full trees always reach the bottom, where the branches of Grow
trees may terminate early, with a terminal as the final node. With
some practice, you can read the tree as printed on screen. Future
versions of Karoo GP will provide an option to generate an image
(similar to the cover page) in addition to this text-based format.

Second Time Through

Run Karoo GP again, but this time simply press ENTER at each of the queries. Sit back and watch as Karoo GP
works to resolve a simple relationship between 3 variables which represent 3 columns of data: a + b + c = s.

We know the answer, but Karoo GP must discover a solution through an evolutionary process. As GP is based on
random number generation, there is a chance that in the default 10 generations it will not work, or it might find a
relationship between the columns of data other than that which was expected.

By configuring a run for deeper trees, or by increasing the minimum number of nodes required, you can encourage
the evolutionary process to discover more complex solutions.

When done, you will be presented with pause. Type ? and ENTER to review the menu:

1. Type l and ENTER to view all trees which provide the correct solution.

2. Type p, ENTER, and then the unique number of any tree in the list, to print that tree to screen.

3. The solution will be listed in both its raw and Sympyfied format. Remember that multiple trees may
carry the same or more than one solution to the same problem.

4. You may adjust the (b)alance of the operators, (cont)inue the evolutionary process, (test) the trees, or (q)uit.

Karoo GP by Kai Staats www.kaistaats.com/research/

Karoo GP

Subsequent runs

When you are ready to dive in a bit further, take a few minutes to learn about each of the following:

1 - KERNEL SELECT

When prompted with a choice of (a)bs diff, (c)lassify, or (m)atch:

Absolute Value is a minimisation function, meaning it seeks a fitness score with the lowest number. By default,
this kernel will attempt to solve Kepler's 3rd Law of Planetary Motion. As the correct solution is t^2 / r^3, the
challenge is for GP to not fall to a local minimum of t/t or r/r. You can experiment with both deeper trees and
increasing the minimum number of nodes. Or, let Karoo GP run for 20, 30, ... 50 or more generations and random
mutation might just discover the correct solution.

To learn more, visit: www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws

Classification is a maximisation function, meaning it seeks a fitness
score with the highest number. By default, this kernel will attempt to
solve the Iris flower problem. This is a machine learning classic
built upon data generated before the dawn of DNA classification,
when botanists used microscopes and calipers to measure the
features of plants and animals. While Kepler's Law has one solution,
the Iris problem has many. If you plot one of the GP generated
functions over a scatter plot of the data (see tools/) you should find a
clean separation of 2 or 3 species.

To learn more, visit: archive.ics.uci.edu/ml/datasets/Iris

Karoo GP supports multiclass classification from 2 to n classes, with automated scaling. See Additional Scripts
(below) to learn more, and to play with the included karoo_multiclassifier.py found in the tools/ directory.

Match will attempt to discover the relationship between variables a, b, and c as a + b + c, as noted in Second
Time Through (above). This is also the simplest and most rewarding of the fitness functions to experiment with
on your own, but has limited realworld application. Try increasing tree depth and the minimum number of nodes.
See Using Your Own Data at the bottom of this guide to learn how to replace the default data with your own.

2 - TYPE OF TREE

Full trees have branches that all reach the maximum
depth. These trees are less likely to solve problems, as
they are not as flexible in their solution space. For
example, if the desired solution is a + b + c (5
elements) but a Full tree is confined to 15 elements,
some of those elements will be forced to cancel each
other in order to arrive to the desired function.
Possible, but less probable and at the cost of more
effort. However, Full trees do contribute to higher order, non-linear solutions.

Grow trees have unbalanced branches, meaning some branches reach the maximum depth while others do not.
Grow trees are more likely to find simpler solutions.

Ramped Half/Half initialises the first population with a graduated ramp from the maximum to minimum depths. It
then applies the Grow method to each population for all subsequent generations. This is the most popular method
among GP researchers as it injects a higher degree of evolutionary creativity into the initial population.

Karoo GP by Kai Staats www.kaistaats.com/research/

http://archive.ics.uci.edu/ml/datasets/Iris
http://www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws

Karoo GP

3 – MAXIMUM TREE DEPTH

Karoo GP is unique from traditional tree-based GP in that it sets a user defined maximum tree depth, thereby
restricting program bloat. The maximum depth relates to the number of nodes by the fuction:

nodes = 2^(depth + 1) – 1

As noted above, deeper trees present greater opportunity for more complex solutions, and they enable the inclusion
of a greater number of features (columns in your .csv) from the data in a single expression.

4 - MINIMUM NUMBER OF NODES

The greater the minimum number of nodes (including both variables and operators), the higher degree of
complexity to be found in the expressions generated by the trees. In Karoo GP, the gene pool from which the
tournament selection operates is built only from those trees which meet the minimum number of nodes criterion.
You may change this number during Karoo GP runs and discover how it affects the evolutionary process.

Be careful! if you set the minimum number of nodes too high, you may invoke a kind of elitism in the population,
killing off simpler solutions or even the entire population.

5 - NUMBER OF TREES

100 trees per population is a good place to start. However, larger populations offer a greater diversity of possible
solutions. Feel free to experiment with larger populations.

6 - NUMBER OF GENERATIONS

For simpler problems with less than a dozen features, 10 generations will often give you a sense of whether or not
Karoo GP is on the right track. With more complex problems, 20, 30, … 50 or more generations are required for the
random process of evolution to generate an improved tree which provides the desired solution.

You may (cont)inue with subsequent generations when all generations have run their course (see bottom).

7 - DISPLAY MODE

The display modes (i)nteractive, (m)inimal, (g)eneration, and (s)ilent are the means by which you interact with and
monitor the evolutionary process of Karoo GP. They do not affect the outcome of the process itself.

Interactive - pause with each step of the Karoo GP process.

Minimal - runs through the entire evolution, start to finish without pause. However, it does display each tree as
it is evaluated, which is a lot of fun to watch.

Generation – pause with the end of each generation, allowing you to make adjustments once per generation.

Silent - designed to run remotely on a server with limited overhead. This mode presents the results of each
generation just to let you know it is still alive and cranking through data while you are engaged in data
reductions, Facebook, or a Star Wars role playing game.

Karoo GP by Kai Staats www.kaistaats.com/research/

Karoo GP

There are 2 additional modes available to you at any time, but listed only with the pause menu:

Debug - for those of you who want to watch the evolutionary process at the intimate level, this is a fully
transparent window to the inner workings of tree-by-tree mutation and crossover reproduction. In addition, you
will watch the criteria of the engaged fitness function, the tournament selection, and the population of the gene
pool from which the next generation will be selected.

Timer - allows you to monitor the performance of your current GP run against the number of CPU cores
currently engaged. At each pause, you may select (c), enter the number of CPU cores, and then ENTER again
to continue. Karoo GP is multi-core engaged, meaning it spawns processes across physical CPU cores (not
multiple threads on a single core). At the time of this edit, Karoo GP is not GPU enabled.

You can switch to any mode at any pause.

Once you are in minimal or silent modes, there are no longer opportunities to modify the evolutionary parameters
until all generations are complete. However, you may continue the evolutionary process and Karoo GP will pick up
where you left off. Simply enter (cont) followed by the number of subsequent generations, and off you go.

If new parameters are desired, remember to set all configurations before you continue.

What You See On-Screen

The pause menu

Be certain to play around with all the options available to you in pause. Typer “?” or “help” followed by
ENTER will display all available options. You can change the level of interaction, minimum number of nodes,
number of CPU cores; print and test trees, and more.

The most fit trees

At the end of each generation of population evolution, a list of bold numbers is presented on-screen. These are
the trees GP has found to have the best overall fitness score in the latest generation. At each pause, you may
(l)ist, (p)rint, and/or test (various tests may be applied) any given tree, and again at the end of any given run.

 The leading Trees and their associated expressions are:

 1 : 2*a - b + 2*c

 2 : a + 2*b + 1

 5 : a + 2*b + 1

 6 : a + b + c

 10 : a + 2*b + 1

 12 : a + 2*b + 1

 83 : 2*a - b + 2*c

 21 : 2*a - b + 2*c

 94 : a + 2*b + 1

 62 : 2*a + b + 2

Karoo GP by Kai Staats www.kaistaats.com/research/

Karoo GP

The Evolutionary Operators

There are 4 evolutionary operators applied in Karoo GP. The foundation for these evolutionary operators was
derived from the “Field Guide to Genetic Programming” * by Riccardo Poli, William Langdon, and Nicholas
McPhee, with contributions by John Koza. Using the (b)alance option in the pause menu, you can set the ratio of
the operators, such that combined they equal 100%.

In the following, tournament selection refers to the random selection of a number of trees (default 10) whose fitness
scores are compared. The tree with the highest score is moved to the next generation through an evolutionary
operation. We use tournament selection, not a top-to-bottom evaluation of the entire population, else we risk
elitism, premature convergence on what may not be the best overall solution.

Reproduction

Through tournament selection, a single tree from the prior
population is copied without mutation to the next generation.
In the biological world, this is analogous to a member of a
population entering the gene pool of the subsequent
(younger) generation.

Point Mutation

Through tournament selection, a copy of a tree from the prior
population mutates a single node before being added to the
next generation. In the biological world, this may be
analogous to asexual reproduction, that is, a copy of an
individual with a minor mutation. In this method, a single
point is selected for mutation while maintaining function
nodes as functions (operators) and terminal nodes as
terminals (variables). The size and shape of the tree will remain identical.

Branch Mutation

Through tournament selection, a copy of a tree from the prior
population mutates before being added to the next generation.
In the biological world, this may be analogous to asexual
reproduction, that is, a copy of an individual but with a
potentially substantial mutation. Unlike Point Mutation, in
this method an entire branch is selected. If the evolutionary
run is designated as Full, the size and shape of the tree will
remain identical, each node mutated sequentially, where functions remain functions and terminals remain terminals.
If the evolutionary run is designated as Grow or Ramped Half/Half, the size and shape of the tree may grow smaller
or larger, but it may not exceed the maximum depth defined by the user.

* The Field Guide and many other books about GP are listed at www.geneticprogramming.com

Karoo GP by Kai Staats www.kaistaats.com/research/

http://www.geneticprogramming.com/
http://www.gp-field-guide.org.uk/

Karoo GP

Crossover

Through tournament selection, two trees are selected
as parents to produce offspring. Within each parent
tree a branch is selected. Parent A is copied, with its
selected branch deleted. Parent B's branch is then
copied to the former location of Parent A's branch,
and inserted (grafted). This is reversed for child B.
The size and shape of the offspring may be smaller or
larger than either of the parents, but may not exceed
the maximum depth defined by the user.

This process combines genetic code from two trees,
both of which were chosen by the tournament process
as having a higher fitness than the average
population. Therefore, there is a chance their
offspring will provide an improvement in total fitness.

According to the literature, crossover is the most
commonly applied evolutionary operator at 70-90%.

Functions (Operators)

The functions (operators) applied to Karoo GP are designated by you, as found in the files/ directory. The most
often used operators are basic arithmetic [+, -, *, /], trigonometric [cos, sin], and boolean [and, or, if, not]. All
operators presented to Karoo GP must be followed by an arity, that is, the number of variables or constants the
operators expects to work with.

For example, * has an arity of 2, meaning it expects something before and after itself, as in the expression a * b

Nearly all operators have an arity of 2, with the exception of the boolean operators not which has an arity of 1 and
if which has an arity of 3, as in if a then b, else c. There is a list of many operators in the files/templates/ directory.
The limitation is the ability for the Python library SymPy to process them. To learn more about SymPy and its
capabilities, visit www.sympy.org

NOTE: Not all operators have been tested. As of the writing of this guide, boolean not and if are not yet supported.

Karoo GP by Kai Staats www.kaistaats.com/research/

http://www.sympy.org/

Karoo GP

The power function (**) is not typically necessary as this is generated by any variable multiplied by itself. In the
real world, most non-linear laws of nature are based on powers of 2 or 3, not 5, or 12. As such, GP finds these quite
easily without the explicit operator. What's more, the introduction of ** often results in stalled runs as the random
nature of genetic programming will generate nested exponents which brings the CPU to a grinding halt.

Square root too can be discovered through * and /, but this may be manually introduced if anticipated.

With Karoo GP, all trig functions must be preceded by another operator, as in + cos such that if you introduce cos to
your list of operators, you will likely want to include all 4 of the arithmetic operators:

+ cos,2
- cos,2
* cos,2
/ cos,2

NOTE: There is no space between the operator, the comma, and the arity.

An example of the contents of a functions_[kernel].csv file follows:

operator, arity
+,2
-,2
*,2
/,2
+,2
-,2
*,2
/,2
+,2
-,2
*,2
/,2
+,2
-,2
*,2
/,2
+ cos,2
- cos,2
* cos,2
/ cos,2

Take note of the inclusion of the arithmetic operators 4 times. As the selection of any operator from this list is
entirely random, the quantity of times any given operator appears relates to its chance of being selected, and
therefore biases the outcome of the evolutionary process. If you have a single trigonometric function which is
represented 4 times, then you may desire to provide each of the arithmetic operators 4 times as well.

Karoo GP by Kai Staats www.kaistaats.com/research/

Karoo GP

Terminals (Operands)

Karoo GP automatically extracts the terminals (variables and constants) from the top of the data .csv file which you
have provided. This enables you to name each column of your data to represent that particular feature. Later, when
you read a GP derived expression, you will see how it relates to the features and original data.

Variables

If you are attempting to predict the weather using historical data[1] you might have something like this:

Where “jd” is the variable for “Julian Day” or the time, “sat” for the Sun's altitude, “saz” for the Sun's azimuth,
“hum” for relative humidity, “tmp” for temperature, “wm” for the magnitude of the wind, and “wd” for the
direction of the wind. The final column, “s” is the solution, that is, what you are are solving for. In this case, we are
applying a regression algorithm, with a minimisation function approaching zero in order to discover a correlation
between the given variables.

Constants

You can inject constants into the mix. In the current implementation of Karoo GP, constants are added at the top of
unique columns in the data .csv. The entire column associated with each constant is then filled with zeros. These
zeros are space fillers which have no impact on the processing of the data or function.

For example, you might add a set of constant values [-5,-4,-3,-2,-1,1,2,3,4,5] which are balanced across the origin.
Or, if you have a sense of how the variables need to be weighted, you may choose a particular set of constants. The
same weather dataset above could include 5 constants expressed as decimal fractions, as the predicted variations in
weights applied to this normalised data is relatively small.

Future versions of Karoo GP will include constants as a user defined function.

[1] data from the SALT weather monitoring station and weather prediction software developed by Dr. Stephen
Potter, head astronomer, South African Astronomical Observatory; Karoo GP is used to determine the weights

Karoo GP by Kai Staats www.kaistaats.com/research/

jd sat saz hum tmp wm wd s
0 0.9292 1 0.2613 0.549 0.3956 0.0837 0

0.0092 0.9027 0.9865 0.2368 0.5862 0.4377 0.1328 0
0.0184 0.8761 0.9697 0.195 0.5908 0.4048 0.0913 0
0.0276 0.8496 0.9562 0.2021 0.6077 0.1905 0.1159 0
0.0368 0.8142 0.9461 0.2076 0.6156 0.2106 0.1221 0
0.0461 0.7788 0.9327 0.1821 0.611 0.185 0.0999 0
0.0553 0.7522 0.9226 0.1993 0.6099 0.152 0.3873 0
0.0645 0.7168 0.9125 0.2109 0.6043 0.2271 0.1416 0

jd sat saz hum tmp wm wd 0.1 0.2 0.3 0.4 0.5 s
0 0.9292 1 0.2613 0.549 0.3956 0.0837 0 0 0 0 0 0

0.0092 0.9027 0.9865 0.2368 0.5862 0.4377 0.1328 0 0 0 0 0 0
0.0184 0.8761 0.9697 0.195 0.5908 0.4048 0.0913 0 0 0 0 0 0
0.0276 0.8496 0.9562 0.2021 0.6077 0.1905 0.1159 0 0 0 0 0 0
0.0368 0.8142 0.9461 0.2076 0.6156 0.2106 0.1221 0 0 0 0 0 0
0.0461 0.7788 0.9327 0.1821 0.611 0.185 0.0999 0 0 0 0 0 0
0.0553 0.7522 0.9226 0.1993 0.6099 0.152 0.3873 0 0 0 0 0 0
0.0645 0.7168 0.9125 0.2109 0.6043 0.2271 0.1416 0 0 0 0 0 0

Karoo GP

Data Management

Default Data Format

While Karoo GP can be made to work with any data format, by default, it anticipates .csv (comma separated
values) files as readily exported from spreadsheet applications. Each row in a .csv file is a data point (eg: a time
stamp in a time series), with 3 or more columns (including the solution). Each column holds a raw data value or a
value derived through feature extraction (more below). In supervised machine learning, it is standard for the right-
most column to be the solution, either a value for which a regression algorithm is working to approach, or a label
for classification. Karoo GP anticipates the header for this column to be labeled lower-case “s”.

Loading your Dataset

Karoo GP is designed for easily repeatable experimentation. When you launch Karoo GP, data and function files
associated with the user selected kernel are auto-loaded. For example, if you select “c” for classification, then
“files/data_CLASSIFY.csv” and “files/functions_CLASSIFY.csv” are loaded accordingly.

When you are ready to apply your own dataset, you can replace the data in one of the .csv files in the files/
directory (keeping the file name the same), or point Karoo GP to a properly prepared .csv which contains your data,
as follows:

(from a native shell): $ python karoo_gp.main.py /[directory]/[your_file].csv

(from iPython): $ run karoo_gp_main.py /[directory]/[your_file].csv

NOTE: At the time of this writing, run-time loading a dataset does not load an associated, alternative set of
functions. These must be manually edited in files/functions_[kernel].csv file and selected according to the kernel
you select through the karoo_gp_main user interface or the karoo_gp_server configuration file..

A few things to keep in mind:

1. If you generate your own dataset using a spreadsheet application, be certain to save the original
spreadsheet as .ods or .xls in addition to the .csv required by Karoo GP in order to preserve any formula,
notes, or formatting for reference or modification.

2. If you replace the contents of an existing .csv in the files directory with your own, pay attention to the
following:

• If editing the .csv using a text editor, do NOT add spaces between the variables and the comma.

• Label each column with a variable. For example: a,b,c or a1,a2,a3 or give each column a variable
which represents the real-world measurement, such as t for time or p for pressure.

• The right-most column must be labeled “s” (lower case, no spaces before or after).

3. Be very wary of your editor applying hidden characters in the .csv as these will cause Karoo to crash.

4. If sending a .csv file through email, wrap it in an archive (.zip, .tar.gz) else data corruption might occur.

NOTE: Your .csv must conform to the format described in the above or bad things will happen.

Karoo GP by Kai Staats www.kaistaats.com/research/

Karoo GP

Data Size

In theory, the size of the .csv file is limited only by the amount of RAM in your computer … and your patience. A
practical run of GP is often against 10,000 rows of data in a given .csv file. You can imagine that this takes some
time, far more than the simple Kepler and Iris examples given.

Train vs Test

Using a SciKit Learn module, Karoo GP auto-splits all datasets greater than 10 lines into TRAINING and TEST in
order to offer data on which to test that is unique from the training. However, if you present Karoo with 10 or fewer
rows in your .csv, it automatically copies the same data into both TRAIN and TEST as it is assumed you are using
Karoo GP in an instructional or experimental mode.

Tree Population Management

What Is Saved Off-Screen

All trees generated for all populations of any given Karoo GP run are stored in files/ as follows:

population_a.csv - includes the foundation population and all subsequent evolved populations. If you run 10
generations with 100 trees each, you will have a .csv file with 1000 trees.

population_b.csv - written only if you export a snapshot of the evolutionary process (from the pause menu)
using the (w) command.

population_final.csv - the final generation of GP trees and should, if all goes well, offer the most fit trees of all
the generations. While this final generation is also included in population_a, this file is isolated in order to
make it easier for you to locate and work with these solutions.

Learn more about loading your own datasets, archiving and loading tree populations, data size and train / test splits
in the section titled Data Management, below.

Archive & Restore

To archive a population of trees at any time, copy files/population_f.csv to a safe place.

When you desire to restore a population, rename the prior as population_s.csv and move it back into the files/
directory. From the pause menu, select “load” and immediately, the former population_s will be copied to and
overwrite population_a which is the foundation population for the next generation.

If you desire to load an archived population at the very start, choose (g)eneration, (i)interactive, or (s)ilent mode. At
the first pause, conduct the load and then press ENTER to go.

NOTE: The Karoo GP population files are very specific in their format. Do not alter the file structure, in any way.

Loading Prior or Seed Populations

With Karoo GP it is possible to load a former population, or a hand-crafted seed population at any pause. This
enables you to load archived populations and apply a new series of tests, or to carry forward with an evolutionary
run with a new set of parameters to test a new hypothesis. What's more, it allows you to start with the same
population and test any number of evolutionary parameter configurations over varying generations in order to
determine which enables the most rapid convergence on a desired solution.

Karoo GP by Kai Staats www.kaistaats.com/research/

Karoo GP

Feature Generation

If a dataset is a collection of raw data points, one or more values or measurements related to observation of the real
world, then features are transformed data, values extracted from the observational data. However, in the world of
Machine Learning, a set of features is often referred to as a “dataset” even though Machine Learning seldom works
with raw, observational data.

Feature Selection

Feature selection is the process of selecting a subset of relevant features which best describe the dataset as a whole,
as some features may not be rich in discriminatory power. Feature selection helps reduce the dimensionality of the
data in order that the machine learning algorithm is more readily able to learn.

Feature Extraction

Feature extraction works with observational data to build new, derived, informative values from or relationships
between selected data parameters.

According to Dr. Arun Aniyan, post-doctorate fellow at the Square Kilometer Array, features are:

• Informative and non-redundant.

• Support subsequent learning and generalization.

• Reduce dimensionality (in some cases).

• Lead to better human interpretation of the overall data.

SciKit Learn offers freely available methods for conducting Feature Selection and Feature Extraction in Python.

Write Your Own Fitness Function

Advanced users may modify existing fitness function kernels or create their own. This Quick Start Tutorial does not
provide a detailed guide, rather a pointer to the places in Karoo GP which require modification, as follows:

• In karoo_gp_main.py, add the new kernel to the TUI query for gp.kernel

• In karoo_gp_base_class.py:

1. In the method fx_karoo_data_load, modify the dictionaries: data_dict, func_dict, and fitt_dict

2. In the method fx_fitness_gym, search for “[other]” and modify.

3. In the method fx_fitness_eval, search for “[other]” and modify.

4. Now build your new fitness function as a Python method. Search for “def fx_fitness_function_[other]”
to find the place-holder. Keep in mind that due to the multi-core functionality of this particular section,
it is imperative that your sum be passed back through the pprocess portal, not saved as a global
variable. Refer to the other fitness functions for examples.

Karoo GP by Kai Staats www.kaistaats.com/research/

http://scikit-learn.org/stable/modules/feature_extraction.html
http://scikit-learn.org/stable/modules/feature_selection.html

Karoo GP

Tools

The following scripts are found inside the included directory karoo_gp/tools/

Karoo Data Sort

In machine learning, it is often the case that your engaged dataset is derived from a larger parent. In constructing
the subset, if we grab a series of datapoints (rows in a .csv) from the larger dataset in sequential order, only from
the top, middle, or bottom, we will likely bias the new dataset and incorrectly train the machine learning algorithm.
Therefore, it is imperative that we engage a random function, guided only by the number of data points for each
class.

This script can be used *before* karoo_normalise.py, and assumes no header has yet been applied to the .csv.

Karoo Data Normalise

This script works with a raw dataset to prepare a new, normalised dataset. It does so by comparing all values in
each given column, finding the maximum and minimum values, and then modifying each value to fall between a
high of 1 and low of 0. The modified values are written to a new file, the original remaining untouched.

This script can be used *after* karoo_features_sort.py, and assumes no header has yet been applied to the .csv.

Karoo Multiclass Classifier

This is a toy script, designed to allow you to play with multiclass classification using the same underlying function
as employed by Karoo GP. You can enter finite or infinite wing bins, and as many classes as you desire:

 class 0 as -1.0 <= 0
class 0 as -0.5 <= 0
class 0 as 0.0 <= 0
class 1 as 0 < 0.5 <= 1
class 1 as 0 < 1.0 <= 1
class 2 as 1.5 > 1
class 2 as 2.0 > 1
class 2 as 2.5 > 1

Karoo Iris Plot

This is a functional, even if rudimentary script designed to help you visualise your 2D or 3D data against a function
generated by Karoo GP. The challenge comes with solving complex equations for a single variable such that you
have a plot-able function. If the algebra required is beyond your skills (or you forgot what you learned in high
school), tools such as Matlab may be of some assistance. If you desire to normalise your data in advance of using
this script, the Karoo GP normalisation script included in the karoo_gp/toos/ directory is very easy to use.

By default, this script plots a Karoo GP derived function against a scatter plot of one of the Iris datasets included
with this package: karoo_gp/files/Iris_dataset/data_IRIS_virginica-vs-setosa_3-col_PLOT.csv

Experiment! Explore! Evolve!

You cannot damage Karoo GP by experimenting. If you screw up a data file, either Karoo GP or Python will
complain (or just come to a screeching halt). Keep backups of your data and functions. Save templates of those that
work well. But most of all, have fun! And if you find any errors in the code (there may be a few), do not hesitate to
contact me. I will do my best to respond quickly --kai

Karoo GP by Kai Staats www.kaistaats.com/research/

	Karoo GP Quick Start Guide
	Genetic Programming in Python
	Karoo GP Quick Start Guide
	What is Genetic Programming?
	First Time Through
	Second Time Through
	Subsequent runs
	1 - KERNEL SELECT
	2 - TYPE OF TREE
	3 – MAXIMUM TREE DEPTH
	4 - MINIMUM NUMBER OF NODES
	5 - NUMBER OF TREES
	6 - NUMBER OF GENERATIONS
	7 - DISPLAY MODE
	What You See On-Screen
	The pause menu
	The most fit trees

	The Evolutionary Operators
	There are 4 evolutionary operators applied in Karoo GP. The foundation for these evolutionary operators was derived from the “Field Guide to Genetic Programming” * by Riccardo Poli, William Langdon, and Nicholas McPhee, with contributions by John Koza. Using the (b)alance option in the pause menu, you can set the ratio of the operators, such that combined they equal 100%.
	In the following, tournament selection refers to the random selection of a number of trees (default 10) whose fitness scores are compared. The tree with the highest score is moved to the next generation through an evolutionary operation. We use tournament selection, not a top-to-bottom evaluation of the entire population, else we risk elitism, premature convergence on what may not be the best overall solution.
	Reproduction
	Point Mutation
	Branch Mutation
	Crossover

	
	Functions (Operators)
	Terminals (Operands)
	Variables
	Constants

	Data Management
	Default Data Format
	Loading your Dataset
	Data Size
	Train vs Test

	Using a SciKit Learn module, Karoo GP auto-splits all datasets greater than 10 lines into TRAINING and TEST in order to offer data on which to test that is unique from the training. However, if you present Karoo with 10 or fewer rows in your .csv, it automatically copies the same data into both TRAIN and TEST as it is assumed you are using Karoo GP in an instructional or experimental mode.
	Tree Population Management
	What Is Saved Off-Screen
	Archive & Restore

	To archive a population of trees at any time, copy files/population_f.csv to a safe place.
	When you desire to restore a population, rename the prior as population_s.csv and move it back into the files/ directory. From the pause menu, select “load” and immediately, the former population_s will be copied to and overwrite population_a which is the foundation population for the next generation.
	If you desire to load an archived population at the very start, choose (g)eneration, (i)interactive, or (s)ilent mode. At the first pause, conduct the load and then press ENTER to go.
	Loading Prior or Seed Populations

	With Karoo GP it is possible to load a former population, or a hand-crafted seed population at any pause. This enables you to load archived populations and apply a new series of tests, or to carry forward with an evolutionary run with a new set of parameters to test a new hypothesis. What's more, it allows you to start with the same population and test any number of evolutionary parameter configurations over varying generations in order to determine which enables the most rapid convergence on a desired solution.
	Feature Generation
	Feature Selection
	Feature Extraction

	SciKit Learn offers freely available methods for conducting Feature Selection and Feature Extraction in Python.
	Write Your Own Fitness Function
	Tools
	Karoo Data Sort
	Karoo Data Normalise
	Karoo Multiclass Classifier
	Karoo Iris Plot

	Experiment! Explore! Evolve!

