#include "selfdrive/ui/ui.h" #include #include #include #include "common/transformations/orientation.hpp" #include "selfdrive/common/params.h" #include "selfdrive/common/swaglog.h" #include "selfdrive/common/util.h" #include "selfdrive/common/watchdog.h" #include "selfdrive/hardware/hw.h" #define BACKLIGHT_DT 0.05 #define BACKLIGHT_TS 10.00 #define BACKLIGHT_OFFROAD 50 // Projects a point in car to space to the corresponding point in full frame // image space. static bool calib_frame_to_full_frame(const UIState *s, float in_x, float in_y, float in_z, QPointF *out) { const float margin = 500.0f; const QRectF clip_region{-margin, -margin, s->fb_w + 2 * margin, s->fb_h + 2 * margin}; const vec3 pt = (vec3){{in_x, in_y, in_z}}; const vec3 Ep = matvecmul3(s->scene.view_from_calib, pt); const vec3 KEp = matvecmul3(s->wide_camera ? ecam_intrinsic_matrix : fcam_intrinsic_matrix, Ep); // Project. QPointF point = s->car_space_transform.map(QPointF{KEp.v[0] / KEp.v[2], KEp.v[1] / KEp.v[2]}); if (clip_region.contains(point)) { *out = point; return true; } return false; } static int get_path_length_idx(const cereal::ModelDataV2::XYZTData::Reader &line, const float path_height) { const auto line_x = line.getX(); int max_idx = 0; for (int i = 1; i < TRAJECTORY_SIZE && line_x[i] <= path_height; ++i) { max_idx = i; } return max_idx; } static void update_leads(UIState *s, const cereal::RadarState::Reader &radar_state, const cereal::ModelDataV2::XYZTData::Reader &line) { for (int i = 0; i < 2; ++i) { auto lead_data = (i == 0) ? radar_state.getLeadOne() : radar_state.getLeadTwo(); if (lead_data.getStatus()) { float z = line.getZ()[get_path_length_idx(line, lead_data.getDRel())]; calib_frame_to_full_frame(s, lead_data.getDRel(), -lead_data.getYRel(), z + 1.22, &s->scene.lead_vertices[i]); } } } static void update_line_data(const UIState *s, const cereal::ModelDataV2::XYZTData::Reader &line, float y_off, float z_off, line_vertices_data *pvd, int max_idx) { const auto line_x = line.getX(), line_y = line.getY(), line_z = line.getZ(); QPointF *v = &pvd->v[0]; for (int i = 0; i <= max_idx; i++) { v += calib_frame_to_full_frame(s, line_x[i], line_y[i] - y_off, line_z[i] + z_off, v); } for (int i = max_idx; i >= 0; i--) { v += calib_frame_to_full_frame(s, line_x[i], line_y[i] + y_off, line_z[i] + z_off, v); } pvd->cnt = v - pvd->v; assert(pvd->cnt <= std::size(pvd->v)); } static void update_model(UIState *s, const cereal::ModelDataV2::Reader &model) { UIScene &scene = s->scene; auto model_position = model.getPosition(); float max_distance = std::clamp(model_position.getX()[TRAJECTORY_SIZE - 1], MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE); // update lane lines const auto lane_lines = model.getLaneLines(); const auto lane_line_probs = model.getLaneLineProbs(); int max_idx = get_path_length_idx(lane_lines[0], max_distance); for (int i = 0; i < std::size(scene.lane_line_vertices); i++) { scene.lane_line_probs[i] = lane_line_probs[i]; update_line_data(s, lane_lines[i], 0.025 * scene.lane_line_probs[i], 0, &scene.lane_line_vertices[i], max_idx); } // update road edges const auto road_edges = model.getRoadEdges(); const auto road_edge_stds = model.getRoadEdgeStds(); for (int i = 0; i < std::size(scene.road_edge_vertices); i++) { scene.road_edge_stds[i] = road_edge_stds[i]; update_line_data(s, road_edges[i], 0.025, 0, &scene.road_edge_vertices[i], max_idx); } // update path auto lead_one = (*s->sm)["radarState"].getRadarState().getLeadOne(); if (lead_one.getStatus()) { const float lead_d = lead_one.getDRel() * 2.; max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance); } max_idx = get_path_length_idx(model_position, max_distance); update_line_data(s, model_position, 0.5, 1.22, &scene.track_vertices, max_idx); } static void update_sockets(UIState *s) { s->sm->update(0); } static void update_state(UIState *s) { SubMaster &sm = *(s->sm); UIScene &scene = s->scene; if (sm.updated("liveCalibration")) { auto rpy_list = sm["liveCalibration"].getLiveCalibration().getRpyCalib(); Eigen::Vector3d rpy; rpy << rpy_list[0], rpy_list[1], rpy_list[2]; Eigen::Matrix3d device_from_calib = euler2rot(rpy); Eigen::Matrix3d view_from_device; view_from_device << 0,1,0, 0,0,1, 1,0,0; Eigen::Matrix3d view_from_calib = view_from_device * device_from_calib; for (int i = 0; i < 3; i++) { for (int j = 0; j < 3; j++) { scene.view_from_calib.v[i*3 + j] = view_from_calib(i,j); } } } if (s->worldObjectsVisible()) { if (sm.updated("modelV2")) { update_model(s, sm["modelV2"].getModelV2()); } if (sm.updated("radarState") && sm.rcv_frame("modelV2") > s->scene.started_frame) { update_leads(s, sm["radarState"].getRadarState(), sm["modelV2"].getModelV2().getPosition()); } } if (sm.updated("pandaStates")) { auto pandaStates = sm["pandaStates"].getPandaStates(); if (pandaStates.size() > 0) { scene.pandaType = pandaStates[0].getPandaType(); if (scene.pandaType != cereal::PandaState::PandaType::UNKNOWN) { scene.ignition = false; for (const auto& pandaState : pandaStates) { scene.ignition |= pandaState.getIgnitionLine() || pandaState.getIgnitionCan(); } } } } else if ((s->sm->frame - s->sm->rcv_frame("pandaStates")) > 5*UI_FREQ) { scene.pandaType = cereal::PandaState::PandaType::UNKNOWN; } if (sm.updated("carParams")) { scene.longitudinal_control = sm["carParams"].getCarParams().getOpenpilotLongitudinalControl(); } if (!scene.started && sm.updated("sensorEvents")) { for (auto sensor : sm["sensorEvents"].getSensorEvents()) { if (sensor.which() == cereal::SensorEventData::ACCELERATION) { auto accel = sensor.getAcceleration().getV(); if (accel.totalSize().wordCount) { // TODO: sometimes empty lists are received. Figure out why scene.accel_sensor = accel[2]; } } else if (sensor.which() == cereal::SensorEventData::GYRO_UNCALIBRATED) { auto gyro = sensor.getGyroUncalibrated().getV(); if (gyro.totalSize().wordCount) { scene.gyro_sensor = gyro[1]; } } } } if (!Hardware::TICI() && sm.updated("roadCameraState")) { auto camera_state = sm["roadCameraState"].getRoadCameraState(); float max_lines = Hardware::EON() ? 5408 : 1904; float max_gain = Hardware::EON() ? 1.0: 10.0; float max_ev = max_lines * max_gain; float ev = camera_state.getGain() * float(camera_state.getIntegLines()); scene.light_sensor = std::clamp(1.0 - (ev / max_ev), 0.0, 1.0); } else if (Hardware::TICI() && sm.updated("wideRoadCameraState")) { auto camera_state = sm["wideRoadCameraState"].getWideRoadCameraState(); float max_lines = 1904; float max_gain = 10.0; float max_ev = max_lines * max_gain / 6; float ev = camera_state.getGain() * float(camera_state.getIntegLines()); scene.light_sensor = std::clamp(1.0 - (ev / max_ev), 0.0, 1.0); } scene.started = sm["deviceState"].getDeviceState().getStarted() && scene.ignition; } void ui_update_params(UIState *s) { s->scene.is_metric = Params().getBool("IsMetric"); } void UIState::updateStatus() { if (scene.started && sm->updated("controlsState")) { auto controls_state = (*sm)["controlsState"].getControlsState(); auto alert_status = controls_state.getAlertStatus(); if (alert_status == cereal::ControlsState::AlertStatus::USER_PROMPT) { status = STATUS_WARNING; } else if (alert_status == cereal::ControlsState::AlertStatus::CRITICAL) { status = STATUS_ALERT; } else { status = controls_state.getEnabled() ? STATUS_ENGAGED : STATUS_DISENGAGED; } } // Handle onroad/offroad transition if (scene.started != started_prev || sm->frame == 1) { if (scene.started) { status = STATUS_DISENGAGED; scene.started_frame = sm->frame; scene.end_to_end = Params().getBool("EndToEndToggle"); wide_camera = Hardware::TICI() ? Params().getBool("EnableWideCamera") : false; } started_prev = scene.started; emit offroadTransition(!scene.started); } } UIState::UIState(QObject *parent) : QObject(parent) { sm = std::make_unique>({ "modelV2", "controlsState", "liveCalibration", "radarState", "deviceState", "roadCameraState", "pandaStates", "carParams", "driverMonitoringState", "sensorEvents", "carState", "liveLocationKalman", "wideRoadCameraState", }); Params params; wide_camera = Hardware::TICI() ? params.getBool("EnableWideCamera") : false; prime_type = std::atoi(params.get("PrimeType").c_str()); // update timer timer = new QTimer(this); QObject::connect(timer, &QTimer::timeout, this, &UIState::update); timer->start(1000 / UI_FREQ); } void UIState::update() { update_sockets(this); update_state(this); updateStatus(); if (sm->frame % UI_FREQ == 0) { watchdog_kick(); } emit uiUpdate(*this); } Device::Device(QObject *parent) : brightness_filter(BACKLIGHT_OFFROAD, BACKLIGHT_TS, BACKLIGHT_DT), QObject(parent) { setAwake(true); resetInteractiveTimout(); QObject::connect(uiState(), &UIState::uiUpdate, this, &Device::update); } void Device::update(const UIState &s) { updateBrightness(s); updateWakefulness(s); // TODO: remove from UIState and use signals uiState()->awake = awake; } void Device::setAwake(bool on) { if (on != awake) { awake = on; Hardware::set_display_power(awake); LOGD("setting display power %d", awake); emit displayPowerChanged(awake); } } void Device::resetInteractiveTimout() { interactive_timeout = (ignition_on ? 10 : 30) * UI_FREQ; } void Device::updateBrightness(const UIState &s) { float clipped_brightness = BACKLIGHT_OFFROAD; if (s.scene.started) { // Scale to 0% to 100% clipped_brightness = 100.0 * s.scene.light_sensor; // CIE 1931 - https://www.photonstophotos.net/GeneralTopics/Exposure/Psychometric_Lightness_and_Gamma.htm if (clipped_brightness <= 8) { clipped_brightness = (clipped_brightness / 903.3); } else { clipped_brightness = std::pow((clipped_brightness + 16.0) / 116.0, 3.0); } // Scale back to 10% to 100% clipped_brightness = std::clamp(100.0f * clipped_brightness, 10.0f, 100.0f); } int brightness = brightness_filter.update(clipped_brightness); if (!awake) { brightness = 0; } if (brightness != last_brightness) { if (!brightness_future.isRunning()) { brightness_future = QtConcurrent::run(Hardware::set_brightness, brightness); last_brightness = brightness; } } } bool Device::motionTriggered(const UIState &s) { static float accel_prev = 0; static float gyro_prev = 0; bool accel_trigger = abs(s.scene.accel_sensor - accel_prev) > 0.2; bool gyro_trigger = abs(s.scene.gyro_sensor - gyro_prev) > 0.15; gyro_prev = s.scene.gyro_sensor; accel_prev = (accel_prev * (accel_samples - 1) + s.scene.accel_sensor) / accel_samples; return (!awake && accel_trigger && gyro_trigger); } void Device::updateWakefulness(const UIState &s) { bool ignition_just_turned_off = !s.scene.ignition && ignition_on; ignition_on = s.scene.ignition; if (ignition_just_turned_off || motionTriggered(s)) { resetInteractiveTimout(); } else if (interactive_timeout > 0 && --interactive_timeout == 0) { emit interactiveTimout(); } setAwake(s.scene.ignition || interactive_timeout > 0); } UIState *uiState() { static UIState ui_state; return &ui_state; }