import math from cereal import car from common.numpy_fast import clip, interp from common.realtime import DT_MDL from common.conversions import Conversions as CV from selfdrive.modeld.constants import T_IDXS # WARNING: this value was determined based on the model's training distribution, # model predictions above this speed can be unpredictable V_CRUISE_MAX = 145 # kph V_CRUISE_MIN = 8 # kph V_CRUISE_ENABLE_MIN = 40 # kph LAT_MPC_N = 16 LON_MPC_N = 32 CONTROL_N = 17 CAR_ROTATION_RADIUS = 0.0 # this corresponds to 80deg/s and 20deg/s steering angle in a toyota corolla MAX_CURVATURE_RATES = [0.03762194918267951, 0.003441203371932992] MAX_CURVATURE_RATE_SPEEDS = [0, 35] CRUISE_LONG_PRESS = 50 CRUISE_NEAREST_FUNC = { car.CarState.ButtonEvent.Type.accelCruise: math.ceil, car.CarState.ButtonEvent.Type.decelCruise: math.floor, } CRUISE_INTERVAL_SIGN = { car.CarState.ButtonEvent.Type.accelCruise: +1, car.CarState.ButtonEvent.Type.decelCruise: -1, } class MPC_COST_LAT: PATH = 1.0 HEADING = 1.0 STEER_RATE = 1.0 def rate_limit(new_value, last_value, dw_step, up_step): return clip(new_value, last_value + dw_step, last_value + up_step) def get_steer_max(CP, v_ego): return interp(v_ego, CP.steerMaxBP, CP.steerMaxV) def update_v_cruise(v_cruise_kph, buttonEvents, button_timers, enabled, metric): # handle button presses. TODO: this should be in state_control, but a decelCruise press # would have the effect of both enabling and changing speed is checked after the state transition if not enabled: return v_cruise_kph long_press = False button_type = None v_cruise_delta = 1 if metric else 1.6 for b in buttonEvents: if b.type.raw in button_timers and not b.pressed: if button_timers[b.type.raw] > CRUISE_LONG_PRESS: return v_cruise_kph # end long press button_type = b.type.raw break else: for k in button_timers.keys(): if button_timers[k] and button_timers[k] % CRUISE_LONG_PRESS == 0: button_type = k long_press = True break if button_type: v_cruise_delta = v_cruise_delta * (5 if long_press else 1) if long_press and v_cruise_kph % v_cruise_delta != 0: # partial interval v_cruise_kph = CRUISE_NEAREST_FUNC[button_type](v_cruise_kph / v_cruise_delta) * v_cruise_delta else: v_cruise_kph += v_cruise_delta * CRUISE_INTERVAL_SIGN[button_type] v_cruise_kph = clip(round(v_cruise_kph, 1), V_CRUISE_MIN, V_CRUISE_MAX) return v_cruise_kph def initialize_v_cruise(v_ego, buttonEvents, v_cruise_last): for b in buttonEvents: # 250kph or above probably means we never had a set speed if b.type == car.CarState.ButtonEvent.Type.accelCruise and v_cruise_last < 250: return v_cruise_last return int(round(clip(v_ego * CV.MS_TO_KPH, V_CRUISE_ENABLE_MIN, V_CRUISE_MAX))) def get_lag_adjusted_curvature(CP, v_ego, psis, curvatures, curvature_rates): if len(psis) != CONTROL_N: psis = [0.0 for i in range(CONTROL_N)] curvatures = [0.0 for i in range(CONTROL_N)] curvature_rates = [0.0 for i in range(CONTROL_N)] # TODO this needs more thought, use .2s extra for now to estimate other delays delay = CP.steerActuatorDelay + .2 current_curvature = curvatures[0] psi = interp(delay, T_IDXS[:CONTROL_N], psis) desired_curvature_rate = curvature_rates[0] # MPC can plan to turn the wheel and turn back before t_delay. This means # in high delay cases some corrections never even get commanded. So just use # psi to calculate a simple linearization of desired curvature curvature_diff_from_psi = psi / (max(v_ego, 1e-1) * delay) - current_curvature desired_curvature = current_curvature + 2 * curvature_diff_from_psi max_curvature_rate = interp(v_ego, MAX_CURVATURE_RATE_SPEEDS, MAX_CURVATURE_RATES) safe_desired_curvature_rate = clip(desired_curvature_rate, -max_curvature_rate, max_curvature_rate) safe_desired_curvature = clip(desired_curvature, current_curvature - max_curvature_rate * DT_MDL, current_curvature + max_curvature_rate * DT_MDL) return safe_desired_curvature, safe_desired_curvature_rate