#include #include #include #include #include "visionbuf.h" #include "visionipc_client.h" #include "common/swaglog.h" #include "common/clutil.h" #include "common/util.h" #include "models/driving.h" #include "messaging.hpp" ExitHandler do_exit; // globals bool run_model; mat3 cur_transform; pthread_mutex_t transform_lock; void* live_thread(void *arg) { set_thread_name("live"); set_realtime_priority(50); SubMaster sm({"liveCalibration"}); /* import numpy as np from common.transformations.model import medmodel_frame_from_road_frame medmodel_frame_from_ground = medmodel_frame_from_road_frame[:, (0, 1, 3)] ground_from_medmodel_frame = np.linalg.inv(medmodel_frame_from_ground) */ Eigen::Matrix ground_from_medmodel_frame; ground_from_medmodel_frame << 0.00000000e+00, 0.00000000e+00, 1.00000000e+00, -1.09890110e-03, 0.00000000e+00, 2.81318681e-01, -1.84808520e-20, 9.00738606e-04,-4.28751576e-02; Eigen::Matrix fcam_intrinsics; #ifndef QCOM2 fcam_intrinsics << 910.0, 0.0, 582.0, 0.0, 910.0, 437.0, 0.0, 0.0, 1.0; float db_s = 0.5; // debayering does a 2x downscale #else fcam_intrinsics << 2648.0, 0.0, 1928.0/2, 0.0, 2648.0, 1208.0/2, 0.0, 0.0, 1.0; float db_s = 1.0; #endif mat3 yuv_transform = transform_scale_buffer((mat3){{ 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, }}, db_s); while (!do_exit) { if (sm.update(100) > 0){ auto extrinsic_matrix = sm["liveCalibration"].getLiveCalibration().getExtrinsicMatrix(); Eigen::Matrix extrinsic_matrix_eigen; for (int i = 0; i < 4*3; i++){ extrinsic_matrix_eigen(i / 4, i % 4) = extrinsic_matrix[i]; } auto camera_frame_from_road_frame = fcam_intrinsics * extrinsic_matrix_eigen; Eigen::Matrix camera_frame_from_ground; camera_frame_from_ground.col(0) = camera_frame_from_road_frame.col(0); camera_frame_from_ground.col(1) = camera_frame_from_road_frame.col(1); camera_frame_from_ground.col(2) = camera_frame_from_road_frame.col(3); auto warp_matrix = camera_frame_from_ground * ground_from_medmodel_frame; mat3 transform = {}; for (int i=0; i<3*3; i++) { transform.v[i] = warp_matrix(i / 3, i % 3); } mat3 model_transform = matmul3(yuv_transform, transform); pthread_mutex_lock(&transform_lock); cur_transform = model_transform; run_model = true; pthread_mutex_unlock(&transform_lock); } } return NULL; } int main(int argc, char **argv) { int err; set_realtime_priority(54); #ifdef QCOM set_core_affinity(2); #elif QCOM2 // CPU usage is much lower when pinned to a single big core set_core_affinity(4); #endif pthread_mutex_init(&transform_lock, NULL); // start calibration thread pthread_t live_thread_handle; err = pthread_create(&live_thread_handle, NULL, live_thread, NULL); assert(err == 0); // messaging PubMaster pm({"modelV2", "model", "cameraOdometry"}); SubMaster sm({"pathPlan", "frame"}); // cl init cl_device_id device_id = cl_get_device_id(CL_DEVICE_TYPE_DEFAULT); cl_context context = CL_CHECK_ERR(clCreateContext(NULL, 1, &device_id, NULL, NULL, &err)); // init the models ModelState model; model_init(&model, device_id, context); LOGW("models loaded, modeld starting"); VisionIpcClient vipc_client = VisionIpcClient("camerad", VISION_STREAM_YUV_BACK, true, device_id, context); while (!do_exit){ if (!vipc_client.connect(false)){ util::sleep_for(100); continue; } break; } // loop while (!do_exit) { VisionBuf *b = &vipc_client.buffers[0]; LOGW("connected with buffer size: %d (%d x %d)", b->len, b->width, b->height); // setup filter to track dropped frames const float dt = 1. / MODEL_FREQ; const float ts = 10.0; // filter time constant (s) const float frame_filter_k = (dt / ts) / (1. + dt / ts); float frames_dropped = 0; uint32_t frame_id = 0, last_vipc_frame_id = 0; double last = 0; int desire = -1; uint32_t run_count = 0; while (!do_exit) { VisionIpcBufExtra extra; VisionBuf *buf = vipc_client.recv(&extra); if (buf == nullptr){ continue; } pthread_mutex_lock(&transform_lock); mat3 model_transform = cur_transform; const bool run_model_this_iter = run_model; pthread_mutex_unlock(&transform_lock); if (sm.update(0) > 0){ // TODO: path planner timeout? desire = ((int)sm["pathPlan"].getPathPlan().getDesire()); frame_id = sm["frame"].getFrame().getFrameId(); } double mt1 = 0, mt2 = 0; if (run_model_this_iter) { run_count++; float vec_desire[DESIRE_LEN] = {0}; if (desire >= 0 && desire < DESIRE_LEN) { vec_desire[desire] = 1.0; } mt1 = millis_since_boot(); ModelDataRaw model_buf = model_eval_frame(&model, buf->buf_cl, buf->width, buf->height, model_transform, vec_desire); mt2 = millis_since_boot(); float model_execution_time = (mt2 - mt1) / 1000.0; // tracked dropped frames uint32_t vipc_dropped_frames = extra.frame_id - last_vipc_frame_id - 1; frames_dropped = (1. - frame_filter_k) * frames_dropped + frame_filter_k * (float)std::min(vipc_dropped_frames, 10U); if (run_count < 10) frames_dropped = 0; // let frame drops warm up float frame_drop_ratio = frames_dropped / (1 + frames_dropped); const float *raw_pred_ptr = send_raw_pred ? &model.output[0] : nullptr; model_publish(pm, extra.frame_id, frame_id, frame_drop_ratio, model_buf, raw_pred_ptr, extra.timestamp_eof, model_execution_time); posenet_publish(pm, extra.frame_id, vipc_dropped_frames, model_buf, extra.timestamp_eof); LOGD("model process: %.2fms, from last %.2fms, vipc_frame_id %u, frame_id, %u, frame_drop %.3f", mt2-mt1, mt1-last, extra.frame_id, frame_id, frame_drop_ratio); last = mt1; last_vipc_frame_id = extra.frame_id; } } } model_free(&model); LOG("joining live_thread"); err = pthread_join(live_thread_handle, NULL); assert(err == 0); CL_CHECK(clReleaseContext(context)); pthread_mutex_destroy(&transform_lock); return 0; }