/* * Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren, * Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor, * Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan, * Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl * * This file is part of acados. * * The 2-Clause BSD License * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE.; */ #ifndef ACADOS_SOLVER_{{ model.name }}_H_ #define ACADOS_SOLVER_{{ model.name }}_H_ #include "acados_c/ocp_nlp_interface.h" #include "acados_c/external_function_interface.h" #define {{ model.name | upper }}_NX {{ dims.nx }} #define {{ model.name | upper }}_NZ {{ dims.nz }} #define {{ model.name | upper }}_NU {{ dims.nu }} #define {{ model.name | upper }}_NP {{ dims.np }} #define {{ model.name | upper }}_NBX {{ dims.nbx }} #define {{ model.name | upper }}_NBX0 {{ dims.nbx_0 }} #define {{ model.name | upper }}_NBU {{ dims.nbu }} #define {{ model.name | upper }}_NSBX {{ dims.nsbx }} #define {{ model.name | upper }}_NSBU {{ dims.nsbu }} #define {{ model.name | upper }}_NSH {{ dims.nsh }} #define {{ model.name | upper }}_NSG {{ dims.nsg }} #define {{ model.name | upper }}_NSPHI {{ dims.nsphi }} #define {{ model.name | upper }}_NSHN {{ dims.nsh_e }} #define {{ model.name | upper }}_NSGN {{ dims.nsg_e }} #define {{ model.name | upper }}_NSPHIN {{ dims.nsphi_e }} #define {{ model.name | upper }}_NSBXN {{ dims.nsbx_e }} #define {{ model.name | upper }}_NS {{ dims.ns }} #define {{ model.name | upper }}_NSN {{ dims.ns_e }} #define {{ model.name | upper }}_NG {{ dims.ng }} #define {{ model.name | upper }}_NBXN {{ dims.nbx_e }} #define {{ model.name | upper }}_NGN {{ dims.ng_e }} #define {{ model.name | upper }}_NY0 {{ dims.ny_0 }} #define {{ model.name | upper }}_NY {{ dims.ny }} #define {{ model.name | upper }}_NYN {{ dims.ny_e }} #define {{ model.name | upper }}_N {{ dims.N }} #define {{ model.name | upper }}_NH {{ dims.nh }} #define {{ model.name | upper }}_NPHI {{ dims.nphi }} #define {{ model.name | upper }}_NHN {{ dims.nh_e }} #define {{ model.name | upper }}_NPHIN {{ dims.nphi_e }} #define {{ model.name | upper }}_NR {{ dims.nr }} #ifdef __cplusplus extern "C" { #endif // ** capsule for solver data ** typedef struct {{ model.name }}_solver_capsule { // acados objects ocp_nlp_in *nlp_in; ocp_nlp_out *nlp_out; ocp_nlp_out *sens_out; ocp_nlp_solver *nlp_solver; void *nlp_opts; ocp_nlp_plan_t *nlp_solver_plan; ocp_nlp_config *nlp_config; ocp_nlp_dims *nlp_dims; // number of expected runtime parameters unsigned int nlp_np; /* external functions */ // dynamics {% if solver_options.integrator_type == "ERK" %} external_function_param_casadi *forw_vde_casadi; external_function_param_casadi *expl_ode_fun; {% if solver_options.hessian_approx == "EXACT" %} external_function_param_casadi *hess_vde_casadi; {%- endif %} {% elif solver_options.integrator_type == "IRK" %} external_function_param_casadi *impl_dae_fun; external_function_param_casadi *impl_dae_fun_jac_x_xdot_z; external_function_param_casadi *impl_dae_jac_x_xdot_u_z; {% if solver_options.hessian_approx == "EXACT" %} external_function_param_casadi *impl_dae_hess; {%- endif %} {% elif solver_options.integrator_type == "LIFTED_IRK" %} external_function_param_casadi *impl_dae_fun; external_function_param_casadi *impl_dae_fun_jac_x_xdot_u; {% elif solver_options.integrator_type == "GNSF" %} external_function_param_casadi *gnsf_phi_fun; external_function_param_casadi *gnsf_phi_fun_jac_y; external_function_param_casadi *gnsf_phi_jac_y_uhat; external_function_param_casadi *gnsf_f_lo_jac_x1_x1dot_u_z; external_function_param_casadi *gnsf_get_matrices_fun; {% elif solver_options.integrator_type == "DISCRETE" %} external_function_param_{{ model.dyn_ext_fun_type }} *discr_dyn_phi_fun; external_function_param_{{ model.dyn_ext_fun_type }} *discr_dyn_phi_fun_jac_ut_xt; {%- if solver_options.hessian_approx == "EXACT" %} external_function_param_{{ model.dyn_ext_fun_type }} *discr_dyn_phi_fun_jac_ut_xt_hess; {%- endif %} {%- endif %} // cost {% if cost.cost_type == "NONLINEAR_LS" %} external_function_param_casadi *cost_y_fun; external_function_param_casadi *cost_y_fun_jac_ut_xt; external_function_param_casadi *cost_y_hess; {%- elif cost.cost_type == "EXTERNAL" %} external_function_param_{{ cost.cost_ext_fun_type }} *ext_cost_fun; external_function_param_{{ cost.cost_ext_fun_type }} *ext_cost_fun_jac; external_function_param_{{ cost.cost_ext_fun_type }} *ext_cost_fun_jac_hess; {% endif %} {% if cost.cost_type_0 == "NONLINEAR_LS" %} external_function_param_casadi cost_y_0_fun; external_function_param_casadi cost_y_0_fun_jac_ut_xt; external_function_param_casadi cost_y_0_hess; {% elif cost.cost_type_0 == "EXTERNAL" %} external_function_param_{{ cost.cost_ext_fun_type_0 }} ext_cost_0_fun; external_function_param_{{ cost.cost_ext_fun_type_0 }} ext_cost_0_fun_jac; external_function_param_{{ cost.cost_ext_fun_type_0 }} ext_cost_0_fun_jac_hess; {%- endif %} {% if cost.cost_type_e == "NONLINEAR_LS" %} external_function_param_casadi cost_y_e_fun; external_function_param_casadi cost_y_e_fun_jac_ut_xt; external_function_param_casadi cost_y_e_hess; {% elif cost.cost_type_e == "EXTERNAL" %} external_function_param_{{ cost.cost_ext_fun_type_e }} ext_cost_e_fun; external_function_param_{{ cost.cost_ext_fun_type_e }} ext_cost_e_fun_jac; external_function_param_{{ cost.cost_ext_fun_type_e }} ext_cost_e_fun_jac_hess; {%- endif %} // constraints {%- if constraints.constr_type == "BGP" %} external_function_param_casadi *phi_constraint; {% elif constraints.constr_type == "BGH" and dims.nh > 0 %} external_function_param_casadi *nl_constr_h_fun_jac; external_function_param_casadi *nl_constr_h_fun; external_function_param_casadi *nl_constr_h_fun_jac_hess; {%- endif %} {% if constraints.constr_type_e == "BGP" %} external_function_param_casadi phi_e_constraint; {% elif constraints.constr_type_e == "BGH" and dims.nh_e > 0 %} external_function_param_casadi nl_constr_h_e_fun_jac; external_function_param_casadi nl_constr_h_e_fun; external_function_param_casadi nl_constr_h_e_fun_jac_hess; {%- endif %} } {{ model.name }}_solver_capsule; {{ model.name }}_solver_capsule * {{ model.name }}_acados_create_capsule(void); int {{ model.name }}_acados_free_capsule({{ model.name }}_solver_capsule *capsule); int {{ model.name }}_acados_create({{ model.name }}_solver_capsule * capsule); /** * Generic version of {{ model.name }}_acados_create which allows to use a different number of shooting intervals than * the number used for code generation. If new_time_steps=NULL and n_time_steps matches the number used for code * generation, the time-steps from code generation is used. */ int {{ model.name }}_acados_create_with_discretization({{ model.name }}_solver_capsule * capsule, int n_time_steps, double* new_time_steps); /** * Update the time step vector. Number N must be identical to the currently set number of shooting nodes in the * nlp_solver_plan. Returns 0 if no error occurred and a otherwise a value other than 0. */ int {{ model.name }}_acados_update_time_steps({{ model.name }}_solver_capsule * capsule, int N, double* new_time_steps); /** * This function is used for updating an already initialized solver with a different number of qp_cond_N. */ int {{ model.name }}_acados_update_qp_solver_cond_N({{ model.name }}_solver_capsule * capsule, int qp_solver_cond_N); int {{ model.name }}_acados_update_params({{ model.name }}_solver_capsule * capsule, int stage, double *value, int np); int {{ model.name }}_acados_solve({{ model.name }}_solver_capsule * capsule); int {{ model.name }}_acados_free({{ model.name }}_solver_capsule * capsule); void {{ model.name }}_acados_print_stats({{ model.name }}_solver_capsule * capsule); ocp_nlp_in *{{ model.name }}_acados_get_nlp_in({{ model.name }}_solver_capsule * capsule); ocp_nlp_out *{{ model.name }}_acados_get_nlp_out({{ model.name }}_solver_capsule * capsule); ocp_nlp_out *{{ model.name }}_acados_get_sens_out({{ model.name }}_solver_capsule * capsule); ocp_nlp_solver *{{ model.name }}_acados_get_nlp_solver({{ model.name }}_solver_capsule * capsule); ocp_nlp_config *{{ model.name }}_acados_get_nlp_config({{ model.name }}_solver_capsule * capsule); void *{{ model.name }}_acados_get_nlp_opts({{ model.name }}_solver_capsule * capsule); ocp_nlp_dims *{{ model.name }}_acados_get_nlp_dims({{ model.name }}_solver_capsule * capsule); ocp_nlp_plan_t *{{ model.name }}_acados_get_nlp_plan({{ model.name }}_solver_capsule * capsule); #ifdef __cplusplus } /* extern "C" */ #endif #endif // ACADOS_SOLVER_{{ model.name }}_H_