1
0
Fork 0
stockfish/src/bitboard.cpp

347 lines
9.9 KiB
C++
Raw Normal View History

2008-08-31 23:59:13 -06:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
2008-08-31 23:59:13 -06:00
Stockfish is free software: you can redistribute it and/or modify
2008-08-31 23:59:13 -06:00
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
2008-08-31 23:59:13 -06:00
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
2008-08-31 23:59:13 -06:00
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cstring>
2008-08-31 23:59:13 -06:00
#include <iostream>
#include "bitboard.h"
#include "bitcount.h"
#include "rkiss.h"
2008-08-31 23:59:13 -06:00
// Global bitboards definitions with static storage duration are
// automatically set to zero before enter main().
Bitboard RMask[64];
Bitboard RMult[64];
Bitboard* RAttacks[64];
int RShift[64];
Bitboard BMask[64];
Bitboard BMult[64];
Bitboard* BAttacks[64];
int BShift[64];
Bitboard SetMaskBB[65];
Bitboard ClearMaskBB[65];
Bitboard SquaresByColorBB[2];
Bitboard FileBB[8];
Bitboard RankBB[8];
Bitboard NeighboringFilesBB[8];
Bitboard ThisAndNeighboringFilesBB[8];
Bitboard InFrontBB[2][8];
Bitboard StepAttacksBB[16][64];
Bitboard BetweenBB[64][64];
Bitboard SquaresInFrontMask[2][64];
Bitboard PassedPawnMask[2][64];
Bitboard AttackSpanMask[2][64];
Bitboard BishopPseudoAttacks[64];
Bitboard RookPseudoAttacks[64];
Bitboard QueenPseudoAttacks[64];
uint8_t BitCount8Bit[256];
namespace {
CACHE_LINE_ALIGNMENT
int BSFTable[64];
Bitboard RAttacksTable[0x19000];
Bitboard BAttacksTable[0x1480];
void init_sliding_attacks(Bitboard magic[], Bitboard* attack[], Bitboard attTable[],
Bitboard mask[], int shift[], Square delta[]);
}
2008-08-31 23:59:13 -06:00
/// print_bitboard() prints a bitboard in an easily readable format to the
/// standard output. This is sometimes useful for debugging.
2008-08-31 23:59:13 -06:00
void print_bitboard(Bitboard b) {
for (Rank r = RANK_8; r >= RANK_1; r--)
{
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
for (File f = FILE_A; f <= FILE_H; f++)
std::cout << "| " << (bit_is_set(b, make_square(f, r)) ? "X " : " ");
std::cout << "|\n";
2008-08-31 23:59:13 -06:00
}
std::cout << "+---+---+---+---+---+---+---+---+" << std::endl;
}
/// first_1() finds the least significant nonzero bit in a nonzero bitboard.
/// pop_1st_bit() finds and clears the least significant nonzero bit in a
/// nonzero bitboard.
2008-08-31 23:59:13 -06:00
#if defined(IS_64BIT) && !defined(USE_BSFQ)
2008-08-31 23:59:13 -06:00
Square first_1(Bitboard b) {
return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]);
}
Square pop_1st_bit(Bitboard* b) {
Bitboard bb = *b;
*b &= (*b - 1);
return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]);
2008-08-31 23:59:13 -06:00
}
#elif !defined(USE_BSFQ)
Square first_1(Bitboard b) {
b ^= (b - 1);
uint32_t fold = unsigned(b) ^ unsigned(b >> 32);
return Square(BSFTable[(fold * 0x783A9B23) >> 26]);
}
// Use type-punning
union b_union {
Bitboard b;
struct {
#if defined (BIGENDIAN)
uint32_t h;
uint32_t l;
#else
uint32_t l;
uint32_t h;
#endif
} dw;
};
Square pop_1st_bit(Bitboard* bb) {
b_union u;
Square ret;
u.b = *bb;
if (u.dw.l)
{
ret = Square(BSFTable[((u.dw.l ^ (u.dw.l - 1)) * 0x783A9B23) >> 26]);
u.dw.l &= (u.dw.l - 1);
*bb = u.b;
return ret;
}
ret = Square(BSFTable[((~(u.dw.h ^ (u.dw.h - 1))) * 0x783A9B23) >> 26]);
u.dw.h &= (u.dw.h - 1);
*bb = u.b;
return ret;
}
#endif // !defined(USE_BSFQ)
/// init_bitboards() initializes various bitboard arrays. It is called during
/// program initialization.
void init_bitboards() {
SquaresByColorBB[DARK] = 0xAA55AA55AA55AA55ULL;
SquaresByColorBB[LIGHT] = ~SquaresByColorBB[DARK];
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
SetMaskBB[s] = 1ULL << s;
ClearMaskBB[s] = ~SetMaskBB[s];
}
ClearMaskBB[SQ_NONE] = ~EmptyBoardBB;
2008-08-31 23:59:13 -06:00
FileBB[FILE_A] = FileABB;
RankBB[RANK_1] = Rank1BB;
2008-08-31 23:59:13 -06:00
for (int f = FILE_B; f <= FILE_H; f++)
{
FileBB[f] = FileBB[f - 1] << 1;
RankBB[f] = RankBB[f - 1] << 8;
}
for (int f = FILE_A; f <= FILE_H; f++)
{
NeighboringFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
ThisAndNeighboringFilesBB[f] = FileBB[f] | NeighboringFilesBB[f];
}
for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++)
{
InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1];
InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1];
}
for (Color c = WHITE; c <= BLACK; c++)
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s);
PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s);
AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s);
}
for (Bitboard b = 0; b < 256; b++)
BitCount8Bit[b] = (uint8_t)count_1s<CNT32_MAX15>(b);
for (int i = 0; i < 64; i++)
if (!CpuIs64Bit) // Matt Taylor's folding trick for 32 bit systems
{
Bitboard b = 1ULL << i;
b ^= b - 1;
b ^= b >> 32;
BSFTable[uint32_t(b * 0x783A9B23) >> 26] = i;
}
else
BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i;
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
{}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
for (Square s = SQ_A1; s <= SQ_H8; s++)
for (int k = 0; steps[pt][k]; k++)
{
Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]);
if (square_is_ok(to) && square_distance(s, to) < 3)
set_bit(&StepAttacksBB[make_piece(c, pt)][s], to);
}
Square RDelta[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W };
Square BDelta[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW };
init_sliding_attacks(BMult, BAttacks, BAttacksTable, BMask, BShift, BDelta);
init_sliding_attacks(RMult, RAttacks, RAttacksTable, RMask, RShift, RDelta);
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
BishopPseudoAttacks[s] = bishop_attacks_bb(s, EmptyBoardBB);
RookPseudoAttacks[s] = rook_attacks_bb(s, EmptyBoardBB);
QueenPseudoAttacks[s] = queen_attacks_bb(s, EmptyBoardBB);
}
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
if (bit_is_set(QueenPseudoAttacks[s1], s2))
{
int f = file_distance(s1, s2);
int r = rank_distance(s1, s2);
Square d = (s2 - s1) / Max(f, r);
for (Square s3 = s1 + d; s3 != s2; s3 += d)
set_bit(&BetweenBB[s1][s2], s3);
}
}
namespace {
Bitboard sliding_attacks(Square sq, Bitboard occupied, Square delta[], Bitboard excluded) {
Bitboard attacks = 0;
for (int i = 0; i < 4; i++)
{
Square s = sq + delta[i];
while ( square_is_ok(s)
&& square_distance(s, s - delta[i]) == 1
&& !bit_is_set(excluded, s))
{
set_bit(&attacks, s);
if (bit_is_set(occupied, s))
break;
s += delta[i];
}
2008-08-31 23:59:13 -06:00
}
return attacks;
2008-08-31 23:59:13 -06:00
}
Bitboard pick_magic(Bitboard mask, RKISS& rk, int booster) {
Bitboard magic;
// Values s1 and s2 are used to rotate the candidate magic of a
// quantity known to be the optimal to quickly find the magics.
int s1 = booster & 63, s2 = (booster >> 6) & 63;
while (true)
{
magic = rk.rand<Bitboard>();
magic = (magic >> s1) | (magic << (64 - s1));
magic &= rk.rand<Bitboard>();
magic = (magic >> s2) | (magic << (64 - s2));
magic &= rk.rand<Bitboard>();
if (BitCount8Bit[(mask * magic) >> 56] >= 6)
return magic;
}
}
void init_sliding_attacks(Bitboard magic[], Bitboard* attack[], Bitboard attTable[],
Bitboard mask[], int shift[], Square delta[]) {
const int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 },
{ 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } };
RKISS rk;
Bitboard occupancy[4096], reference[4096], excluded, b;
int key, maxKey, index, booster, offset = 0;
2008-08-31 23:59:13 -06:00
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
excluded = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s));
attack[s] = &attTable[offset];
mask[s] = sliding_attacks(s, EmptyBoardBB, delta, excluded);
shift[s] = (CpuIs64Bit ? 64 : 32) - count_1s<CNT32_MAX15>(mask[s]);
// Use Carry-Rippler trick to enumerate all subsets of mask[s]
b = maxKey = 0;
do {
occupancy[maxKey] = b;
reference[maxKey++] = sliding_attacks(s, b, delta, EmptyBoardBB);
b = (b - mask[s]) & mask[s];
} while (b);
offset += maxKey;
booster = MagicBoosters[CpuIs64Bit][square_rank(s)];
// Then find a possible magic and the corresponding attacks
do {
magic[s] = pick_magic(mask[s], rk, booster);
memset(attack[s], 0, maxKey * sizeof(Bitboard));
for (key = 0; key < maxKey; key++)
{
index = CpuIs64Bit ? unsigned((occupancy[key] * magic[s]) >> shift[s])
: unsigned(occupancy[key] * magic[s] ^ (occupancy[key] >> 32) * (magic[s] >> 32)) >> shift[s];
if (!attack[s][index])
attack[s][index] = reference[key];
else if (attack[s][index] != reference[key])
break;
}
} while (key != maxKey);
2008-08-31 23:59:13 -06:00
}
}
}