1
0
Fork 0
stockfish/src/nnue/layers/affine_transform.h

465 lines
19 KiB
C
Raw Normal View History

Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
// Definition of layer AffineTransform of NNUE evaluation function
#ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#define NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED
#include <iostream>
#include "../nnue_common.h"
namespace Stockfish::Eval::NNUE::Layers {
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
// Affine transformation layer
template <typename PreviousLayer, IndexType OutDims>
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
class AffineTransform {
public:
// Input/output type
using InputType = typename PreviousLayer::OutputType;
using OutputType = std::int32_t;
static_assert(std::is_same<InputType, std::uint8_t>::value, "");
// Number of input/output dimensions
static constexpr IndexType InputDimensions =
PreviousLayer::OutputDimensions;
static constexpr IndexType OutputDimensions = OutDims;
static constexpr IndexType PaddedInputDimensions =
ceil_to_multiple<IndexType>(InputDimensions, MaxSimdWidth);
#if defined (USE_AVX512)
static constexpr const IndexType OutputSimdWidth = SimdWidth / 2;
#elif defined (USE_SSSE3)
static constexpr const IndexType OutputSimdWidth = SimdWidth / 4;
#endif
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
// Size of forward propagation buffer used in this layer
static constexpr std::size_t SelfBufferSize =
ceil_to_multiple(OutputDimensions * sizeof(OutputType), CacheLineSize);
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
// Size of the forward propagation buffer used from the input layer to this layer
static constexpr std::size_t BufferSize =
PreviousLayer::BufferSize + SelfBufferSize;
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
// Hash value embedded in the evaluation file
static constexpr std::uint32_t get_hash_value() {
std::uint32_t hashValue = 0xCC03DAE4u;
hashValue += OutputDimensions;
hashValue ^= PreviousLayer::get_hash_value() >> 1;
hashValue ^= PreviousLayer::get_hash_value() << 31;
return hashValue;
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
}
// Read network parameters
bool read_parameters(std::istream& stream) {
if (!previousLayer.read_parameters(stream)) return false;
for (std::size_t i = 0; i < OutputDimensions; ++i)
biases[i] = read_little_endian<BiasType>(stream);
for (std::size_t i = 0; i < OutputDimensions * PaddedInputDimensions; ++i)
#if !defined (USE_SSSE3)
weights[i] = read_little_endian<WeightType>(stream);
#else
weights[
(i / 4) % (PaddedInputDimensions / 4) * OutputDimensions * 4 +
i / PaddedInputDimensions * 4 +
i % 4
] = read_little_endian<WeightType>(stream);
// Determine if eights of weight and input products can be summed using 16bits
// without saturation. We assume worst case combinations of 0 and 127 for all inputs.
if (OutputDimensions > 1 && !stream.fail())
{
canSaturate16.count = 0;
#if !defined(USE_VNNI)
for (IndexType i = 0; i < PaddedInputDimensions; i += 16)
for (IndexType j = 0; j < OutputDimensions; ++j)
for (int x = 0; x < 2; ++x)
{
WeightType* w = &weights[i * OutputDimensions + j * 4 + x * 2];
int sum[2] = {0, 0};
for (int k = 0; k < 8; ++k)
{
IndexType idx = k / 2 * OutputDimensions * 4 + k % 2;
sum[w[idx] < 0] += w[idx];
}
for (int sign : { -1, 1 })
while (sign * sum[sign == -1] > 258)
{
int maxK = 0, maxW = 0;
for (int k = 0; k < 8; ++k)
{
IndexType idx = k / 2 * OutputDimensions * 4 + k % 2;
if (maxW < sign * w[idx])
maxK = k, maxW = sign * w[idx];
}
IndexType idx = maxK / 2 * OutputDimensions * 4 + maxK % 2;
sum[sign == -1] -= w[idx];
canSaturate16.add(j, i + maxK / 2 * 4 + maxK % 2 + x * 2, w[idx]);
w[idx] = 0;
}
}
// Non functional optimization for faster more linear access
std::sort(canSaturate16.ids, canSaturate16.ids + canSaturate16.count,
[](const typename CanSaturate::Entry& e1, const typename CanSaturate::Entry& e2)
{ return e1.in == e2.in ? e1.out < e2.out : e1.in < e2.in; });
#endif
}
#endif
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
return !stream.fail();
}
// Forward propagation
const OutputType* propagate(
const TransformedFeatureType* transformedFeatures, char* buffer) const {
const auto input = previousLayer.propagate(
transformedFeatures, buffer + SelfBufferSize);
#if defined (USE_AVX512)
[[maybe_unused]] const __m512i Ones512 = _mm512_set1_epi16(1);
[[maybe_unused]] auto m512_hadd = [](__m512i sum, int bias) -> int {
return _mm512_reduce_add_epi32(sum) + bias;
};
[[maybe_unused]] auto m512_add_dpbusd_epi32 = [=](__m512i& acc, __m512i a, __m512i b) {
#if defined (USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a, b);
#else
__m512i product0 = _mm512_maddubs_epi16(a, b);
product0 = _mm512_madd_epi16(product0, Ones512);
acc = _mm512_add_epi32(acc, product0);
#endif
};
[[maybe_unused]] auto m512_add_dpbusd_epi32x4 = [=](__m512i& acc, __m512i a0, __m512i b0, __m512i a1, __m512i b1,
__m512i a2, __m512i b2, __m512i a3, __m512i b3) {
#if defined (USE_VNNI)
acc = _mm512_dpbusd_epi32(acc, a0, b0);
acc = _mm512_dpbusd_epi32(acc, a1, b1);
acc = _mm512_dpbusd_epi32(acc, a2, b2);
acc = _mm512_dpbusd_epi32(acc, a3, b3);
#else
__m512i product0 = _mm512_maddubs_epi16(a0, b0);
__m512i product1 = _mm512_maddubs_epi16(a1, b1);
__m512i product2 = _mm512_maddubs_epi16(a2, b2);
__m512i product3 = _mm512_maddubs_epi16(a3, b3);
product0 = _mm512_add_epi16(product0, product1);
product2 = _mm512_add_epi16(product2, product3);
product0 = _mm512_add_epi16(product0, product2);
product0 = _mm512_madd_epi16(product0, Ones512);
acc = _mm512_add_epi32(acc, product0);
#endif
};
#endif
#if defined (USE_AVX2)
[[maybe_unused]] const __m256i Ones256 = _mm256_set1_epi16(1);
[[maybe_unused]] auto m256_hadd = [](__m256i sum, int bias) -> int {
__m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(sum), _mm256_extracti128_si256(sum, 1));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_BADC));
sum128 = _mm_add_epi32(sum128, _mm_shuffle_epi32(sum128, _MM_PERM_CDAB));
return _mm_cvtsi128_si32(sum128) + bias;
};
[[maybe_unused]] auto m256_add_dpbusd_epi32 = [=](__m256i& acc, __m256i a, __m256i b) {
#if defined (USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a, b);
#else
__m256i product0 = _mm256_maddubs_epi16(a, b);
product0 = _mm256_madd_epi16(product0, Ones256);
acc = _mm256_add_epi32(acc, product0);
#endif
};
[[maybe_unused]] auto m256_add_dpbusd_epi32x4 = [=](__m256i& acc, __m256i a0, __m256i b0, __m256i a1, __m256i b1,
__m256i a2, __m256i b2, __m256i a3, __m256i b3) {
#if defined (USE_VNNI)
acc = _mm256_dpbusd_epi32(acc, a0, b0);
acc = _mm256_dpbusd_epi32(acc, a1, b1);
acc = _mm256_dpbusd_epi32(acc, a2, b2);
acc = _mm256_dpbusd_epi32(acc, a3, b3);
#else
__m256i product0 = _mm256_maddubs_epi16(a0, b0);
__m256i product1 = _mm256_maddubs_epi16(a1, b1);
__m256i product2 = _mm256_maddubs_epi16(a2, b2);
__m256i product3 = _mm256_maddubs_epi16(a3, b3);
product0 = _mm256_add_epi16(product0, product1);
product2 = _mm256_add_epi16(product2, product3);
product0 = _mm256_add_epi16(product0, product2);
product0 = _mm256_madd_epi16(product0, Ones256);
acc = _mm256_add_epi32(acc, product0);
#endif
};
#endif
#if defined (USE_SSSE3)
[[maybe_unused]] const __m128i Ones128 = _mm_set1_epi16(1);
[[maybe_unused]] auto m128_hadd = [](__m128i sum, int bias) -> int {
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0x4E)); //_MM_PERM_BADC
sum = _mm_add_epi32(sum, _mm_shuffle_epi32(sum, 0xB1)); //_MM_PERM_CDAB
return _mm_cvtsi128_si32(sum) + bias;
};
[[maybe_unused]] auto m128_add_dpbusd_epi32 = [=](__m128i& acc, __m128i a, __m128i b) {
__m128i product0 = _mm_maddubs_epi16(a, b);
product0 = _mm_madd_epi16(product0, Ones128);
acc = _mm_add_epi32(acc, product0);
};
[[maybe_unused]] auto m128_add_dpbusd_epi32x4 = [=](__m128i& acc, __m128i a0, __m128i b0, __m128i a1, __m128i b1,
__m128i a2, __m128i b2, __m128i a3, __m128i b3) {
__m128i product0 = _mm_maddubs_epi16(a0, b0);
__m128i product1 = _mm_maddubs_epi16(a1, b1);
__m128i product2 = _mm_maddubs_epi16(a2, b2);
__m128i product3 = _mm_maddubs_epi16(a3, b3);
product0 = _mm_add_epi16(product0, product1);
product2 = _mm_add_epi16(product2, product3);
product0 = _mm_add_epi16(product0, product2);
product0 = _mm_madd_epi16(product0, Ones128);
acc = _mm_add_epi32(acc, product0);
};
#endif
#if defined (USE_AVX512)
using vec_t = __m512i;
#define vec_setzero _mm512_setzero_si512
#define vec_set_32 _mm512_set1_epi32
auto& vec_add_dpbusd_32 = m512_add_dpbusd_epi32;
auto& vec_add_dpbusd_32x4 = m512_add_dpbusd_epi32x4;
auto& vec_hadd = m512_hadd;
#elif defined (USE_AVX2)
using vec_t = __m256i;
#define vec_setzero _mm256_setzero_si256
#define vec_set_32 _mm256_set1_epi32
auto& vec_add_dpbusd_32 = m256_add_dpbusd_epi32;
auto& vec_add_dpbusd_32x4 = m256_add_dpbusd_epi32x4;
auto& vec_hadd = m256_hadd;
#elif defined (USE_SSSE3)
using vec_t = __m128i;
#define vec_setzero _mm_setzero_si128
#define vec_set_32 _mm_set1_epi32
auto& vec_add_dpbusd_32 = m128_add_dpbusd_epi32;
auto& vec_add_dpbusd_32x4 = m128_add_dpbusd_epi32x4;
auto& vec_hadd = m128_hadd;
#endif
#if defined (USE_SSSE3)
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
const auto output = reinterpret_cast<OutputType*>(buffer);
const auto inputVector = reinterpret_cast<const vec_t*>(input);
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
static_assert(OutputDimensions % OutputSimdWidth == 0 || OutputDimensions == 1);
// OutputDimensions is either 1 or a multiple of SimdWidth
// because then it is also an input dimension.
if constexpr (OutputDimensions % OutputSimdWidth == 0)
{
constexpr IndexType NumChunks = PaddedInputDimensions / 4;
const auto input32 = reinterpret_cast<const std::int32_t*>(input);
vec_t* outptr = reinterpret_cast<vec_t*>(output);
std::memcpy(output, biases, OutputDimensions * sizeof(OutputType));
for (int i = 0; i < (int)NumChunks - 3; i += 4)
{
const vec_t in0 = vec_set_32(input32[i + 0]);
const vec_t in1 = vec_set_32(input32[i + 1]);
const vec_t in2 = vec_set_32(input32[i + 2]);
const vec_t in3 = vec_set_32(input32[i + 3]);
const auto col0 = reinterpret_cast<const vec_t*>(&weights[(i + 0) * OutputDimensions * 4]);
const auto col1 = reinterpret_cast<const vec_t*>(&weights[(i + 1) * OutputDimensions * 4]);
const auto col2 = reinterpret_cast<const vec_t*>(&weights[(i + 2) * OutputDimensions * 4]);
const auto col3 = reinterpret_cast<const vec_t*>(&weights[(i + 3) * OutputDimensions * 4]);
for (int j = 0; j * OutputSimdWidth < OutputDimensions; ++j)
vec_add_dpbusd_32x4(outptr[j], in0, col0[j], in1, col1[j], in2, col2[j], in3, col3[j]);
}
for (int i = 0; i < canSaturate16.count; ++i)
output[canSaturate16.ids[i].out] += input[canSaturate16.ids[i].in] * canSaturate16.ids[i].w;
}
else if constexpr (OutputDimensions == 1)
{
#if defined (USE_AVX512)
if constexpr (PaddedInputDimensions % (SimdWidth * 2) != 0)
{
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
const auto inputVector256 = reinterpret_cast<const __m256i*>(input);
__m256i sum0 = _mm256_setzero_si256();
const auto row0 = reinterpret_cast<const __m256i*>(&weights[0]);
for (int j = 0; j < (int)NumChunks; ++j)
{
const __m256i in = inputVector256[j];
m256_add_dpbusd_epi32(sum0, in, row0[j]);
}
output[0] = m256_hadd(sum0, biases[0]);
}
else
#endif
{
#if defined (USE_AVX512)
constexpr IndexType NumChunks = PaddedInputDimensions / (SimdWidth * 2);
#else
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
#endif
vec_t sum0 = vec_setzero();
const auto row0 = reinterpret_cast<const vec_t*>(&weights[0]);
for (int j = 0; j < (int)NumChunks; ++j)
{
const vec_t in = inputVector[j];
vec_add_dpbusd_32(sum0, in, row0[j]);
}
output[0] = vec_hadd(sum0, biases[0]);
}
}
#else
// Use old implementation for the other architectures.
auto output = reinterpret_cast<OutputType*>(buffer);
#if defined(USE_SSE2)
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
const __m128i Zeros = _mm_setzero_si128();
const auto inputVector = reinterpret_cast<const __m128i*>(input);
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
#elif defined(USE_MMX)
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
const __m64 Zeros = _mm_setzero_si64();
const auto inputVector = reinterpret_cast<const __m64*>(input);
#elif defined(USE_NEON)
constexpr IndexType NumChunks = PaddedInputDimensions / SimdWidth;
const auto inputVector = reinterpret_cast<const int8x8_t*>(input);
#endif
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
for (IndexType i = 0; i < OutputDimensions; ++i) {
const IndexType offset = i * PaddedInputDimensions;
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
#if defined(USE_SSE2)
__m128i sumLo = _mm_cvtsi32_si128(biases[i]);
__m128i sumHi = Zeros;
const auto row = reinterpret_cast<const __m128i*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
__m128i row_j = _mm_load_si128(&row[j]);
__m128i input_j = _mm_load_si128(&inputVector[j]);
__m128i extendedRowLo = _mm_srai_epi16(_mm_unpacklo_epi8(row_j, row_j), 8);
__m128i extendedRowHi = _mm_srai_epi16(_mm_unpackhi_epi8(row_j, row_j), 8);
__m128i extendedInputLo = _mm_unpacklo_epi8(input_j, Zeros);
__m128i extendedInputHi = _mm_unpackhi_epi8(input_j, Zeros);
__m128i productLo = _mm_madd_epi16(extendedRowLo, extendedInputLo);
__m128i productHi = _mm_madd_epi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_epi32(sumLo, productLo);
sumHi = _mm_add_epi32(sumHi, productHi);
}
__m128i sum = _mm_add_epi32(sumLo, sumHi);
__m128i sumHigh_64 = _mm_shuffle_epi32(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sumHigh_64);
__m128i sum_second_32 = _mm_shufflelo_epi16(sum, _MM_SHUFFLE(1, 0, 3, 2));
sum = _mm_add_epi32(sum, sum_second_32);
output[i] = _mm_cvtsi128_si32(sum);
#elif defined(USE_MMX)
__m64 sumLo = _mm_cvtsi32_si64(biases[i]);
__m64 sumHi = Zeros;
const auto row = reinterpret_cast<const __m64*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
__m64 row_j = row[j];
__m64 input_j = inputVector[j];
__m64 extendedRowLo = _mm_srai_pi16(_mm_unpacklo_pi8(row_j, row_j), 8);
__m64 extendedRowHi = _mm_srai_pi16(_mm_unpackhi_pi8(row_j, row_j), 8);
__m64 extendedInputLo = _mm_unpacklo_pi8(input_j, Zeros);
__m64 extendedInputHi = _mm_unpackhi_pi8(input_j, Zeros);
__m64 productLo = _mm_madd_pi16(extendedRowLo, extendedInputLo);
__m64 productHi = _mm_madd_pi16(extendedRowHi, extendedInputHi);
sumLo = _mm_add_pi32(sumLo, productLo);
sumHi = _mm_add_pi32(sumHi, productHi);
}
__m64 sum = _mm_add_pi32(sumLo, sumHi);
sum = _mm_add_pi32(sum, _mm_unpackhi_pi32(sum, sum));
output[i] = _mm_cvtsi64_si32(sum);
#elif defined(USE_NEON)
int32x4_t sum = {biases[i]};
const auto row = reinterpret_cast<const int8x8_t*>(&weights[offset]);
for (IndexType j = 0; j < NumChunks; ++j) {
int16x8_t product = vmull_s8(inputVector[j * 2], row[j * 2]);
product = vmlal_s8(product, inputVector[j * 2 + 1], row[j * 2 + 1]);
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
sum = vpadalq_s16(sum, product);
}
output[i] = sum[0] + sum[1] + sum[2] + sum[3];
#else
OutputType sum = biases[i];
for (IndexType j = 0; j < InputDimensions; ++j) {
sum += weights[offset + j] * input[j];
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
}
output[i] = sum;
#endif
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
}
#if defined(USE_MMX)
_mm_empty();
#endif
#endif
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
return output;
}
private:
using BiasType = OutputType;
using WeightType = std::int8_t;
PreviousLayer previousLayer;
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
alignas(CacheLineSize) BiasType biases[OutputDimensions];
alignas(CacheLineSize) WeightType weights[OutputDimensions * PaddedInputDimensions];
#if defined (USE_SSSE3)
struct CanSaturate {
int count;
struct Entry {
uint16_t out;
uint16_t in;
int8_t w;
} ids[PaddedInputDimensions * OutputDimensions * 3 / 4];
void add(int i, int j, int8_t w) {
ids[count].out = i;
ids[count].in = j;
ids[count].w = w;
++count;
}
} canSaturate16;
#endif
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
};
} // namespace Stockfish::Eval::NNUE::Layers
Add NNUE evaluation This patch ports the efficiently updatable neural network (NNUE) evaluation to Stockfish. Both the NNUE and the classical evaluations are available, and can be used to assign a value to a position that is later used in alpha-beta (PVS) search to find the best move. The classical evaluation computes this value as a function of various chess concepts, handcrafted by experts, tested and tuned using fishtest. The NNUE evaluation computes this value with a neural network based on basic inputs. The network is optimized and trained on the evalutions of millions of positions at moderate search depth. The NNUE evaluation was first introduced in shogi, and ported to Stockfish afterward. It can be evaluated efficiently on CPUs, and exploits the fact that only parts of the neural network need to be updated after a typical chess move. [The nodchip repository](https://github.com/nodchip/Stockfish) provides additional tools to train and develop the NNUE networks. This patch is the result of contributions of various authors, from various communities, including: nodchip, ynasu87, yaneurao (initial port and NNUE authors), domschl, FireFather, rqs, xXH4CKST3RXx, tttak, zz4032, joergoster, mstembera, nguyenpham, erbsenzaehler, dorzechowski, and vondele. This new evaluation needed various changes to fishtest and the corresponding infrastructure, for which tomtor, ppigazzini, noobpwnftw, daylen, and vondele are gratefully acknowledged. The first networks have been provided by gekkehenker and sergiovieri, with the latter net (nn-97f742aaefcd.nnue) being the current default. The evaluation function can be selected at run time with the `Use NNUE` (true/false) UCI option, provided the `EvalFile` option points the the network file (depending on the GUI, with full path). The performance of the NNUE evaluation relative to the classical evaluation depends somewhat on the hardware, and is expected to improve quickly, but is currently on > 80 Elo on fishtest: 60000 @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f28fe6ea5abc164f05e4c4c ELO: 92.77 +-2.1 (95%) LOS: 100.0% Total: 60000 W: 24193 L: 8543 D: 27264 Ptnml(0-2): 609, 3850, 9708, 10948, 4885 40000 @ 20+0.2 th 8 https://tests.stockfishchess.org/tests/view/5f290229a5abc164f05e4c58 ELO: 89.47 +-2.0 (95%) LOS: 100.0% Total: 40000 W: 12756 L: 2677 D: 24567 Ptnml(0-2): 74, 1583, 8550, 7776, 2017 At the same time, the impact on the classical evaluation remains minimal, causing no significant regression: sprt @ 10+0.1 th 1 https://tests.stockfishchess.org/tests/view/5f2906a2a5abc164f05e4c5b LLR: 2.94 (-2.94,2.94) {-6.00,-4.00} Total: 34936 W: 6502 L: 6825 D: 21609 Ptnml(0-2): 571, 4082, 8434, 3861, 520 sprt @ 60+0.6 th 1 https://tests.stockfishchess.org/tests/view/5f2906cfa5abc164f05e4c5d LLR: 2.93 (-2.94,2.94) {-6.00,-4.00} Total: 10088 W: 1232 L: 1265 D: 7591 Ptnml(0-2): 49, 914, 3170, 843, 68 The needed networks can be found at https://tests.stockfishchess.org/nns It is recommended to use the default one as indicated by the `EvalFile` UCI option. Guidelines for testing new nets can be found at https://github.com/glinscott/fishtest/wiki/Creating-my-first-test#nnue-net-tests Integration has been discussed in various issues: https://github.com/official-stockfish/Stockfish/issues/2823 https://github.com/official-stockfish/Stockfish/issues/2728 The integration branch will be closed after the merge: https://github.com/official-stockfish/Stockfish/pull/2825 https://github.com/official-stockfish/Stockfish/tree/nnue-player-wip closes https://github.com/official-stockfish/Stockfish/pull/2912 This will be an exciting time for computer chess, looking forward to seeing the evolution of this approach. Bench: 4746616
2020-08-05 09:11:15 -06:00
#endif // #ifndef NNUE_LAYERS_AFFINE_TRANSFORM_H_INCLUDED