1
0
Fork 0

Move globals to id_loop()

No functional change.

Signed-off-by: Marco Costalba <mcostalba@gmail.com>
sf_2.3.1_base
Marco Costalba 2011-01-17 10:44:00 +01:00
parent 2e2f1064ba
commit 846087e4fb
2 changed files with 55 additions and 58 deletions

View File

@ -195,7 +195,7 @@ const string pretty_pv(Position& pos, int time, int depth,
size_t length = 0;
// First print depth, score, time and searched nodes...
s << std::setw(2) << depth
s << std::setw(2) << depth / 2
<< (type == VALUE_TYPE_LOWER ? " >" : type == VALUE_TYPE_UPPER ? " <" : " ")
<< std::setw(7) << score_string(score)
<< std::setw(8) << time_string(time);

View File

@ -129,7 +129,7 @@ namespace {
void extract_pv_from_tt(Position& pos);
void insert_pv_in_tt(Position& pos);
std::string pv_info_to_uci(Position& pos, Value alpha, Value beta, int pvLine = 0);
std::string pv_info_to_uci(Position& pos, Depth depth, Value alpha, Value beta, int pvLine = 0);
int64_t nodes;
Value pv_score;
@ -150,6 +150,8 @@ namespace {
void sort() { insertion_sort<RootMove, Base::iterator>(begin(), end()); }
void sort_multipv(int n) { insertion_sort<RootMove, Base::iterator>(begin(), begin() + n); }
int bestMoveChanges;
};
@ -251,16 +253,6 @@ namespace {
// Pointer to root move list
RootMoveList* Rml;
// Iteration counter
int Iteration;
// Scores and number of times the best move changed for each iteration
Value ValueByIteration[PLY_MAX_PLUS_2];
int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
// Search window management
int AspirationDelta;
// MultiPV mode
int MultiPV;
@ -602,11 +594,17 @@ namespace {
Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove) {
SearchStack ss[PLY_MAX_PLUS_2];
Depth depth;
Move EasyMove = MOVE_NONE;
Value value, alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
int researchCountFL, researchCountFH;
int iteration;
int bestMoveChanges[PLY_MAX_PLUS_2];
Value values[PLY_MAX_PLUS_2];
int aspirationDelta = 0;
// Moves to search are verified, scored and sorted
RootMoveList rml(pos, searchMoves);
Rml = &rml;
@ -626,13 +624,13 @@ namespace {
TT.new_search();
H.clear();
init_ss_array(ss, PLY_MAX_PLUS_2);
ValueByIteration[1] = rml[0].pv_score;
Iteration = 1;
values[1] = rml[0].pv_score;
iteration = 1;
// Send initial RootMoveList scoring (iteration 1)
cout << set960(pos.is_chess960()) // Is enough to set once at the beginning
<< "info depth " << Iteration
<< "\n" << rml[0].pv_info_to_uci(pos, alpha, beta) << endl;
<< "info depth " << iteration
<< "\n" << rml[0].pv_info_to_uci(pos, ONE_PLY, alpha, beta) << endl;
// Is one move significantly better than others after initial scoring ?
if ( rml.size() == 1
@ -640,28 +638,28 @@ namespace {
EasyMove = rml[0].pv[0];
// Iterative deepening loop
while (Iteration < PLY_MAX)
while (iteration < PLY_MAX)
{
// Initialize iteration
Iteration++;
BestMoveChangesByIteration[Iteration] = 0;
iteration++;
Rml->bestMoveChanges = 0;
cout << "info depth " << Iteration << endl;
cout << "info depth " << iteration << endl;
// Calculate dynamic aspiration window based on previous iterations
if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN)
if (MultiPV == 1 && iteration >= 6 && abs(values[iteration - 1]) < VALUE_KNOWN_WIN)
{
int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2];
int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3];
int prevDelta1 = values[iteration - 1] - values[iteration - 2];
int prevDelta2 = values[iteration - 2] - values[iteration - 3];
AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize
aspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize
alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE);
beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE);
alpha = Max(values[iteration - 1] - aspirationDelta, -VALUE_INFINITE);
beta = Min(values[iteration - 1] + aspirationDelta, VALUE_INFINITE);
}
depth = (Iteration - 2) * ONE_PLY + InitialDepth;
depth = (iteration - 2) * ONE_PLY + InitialDepth;
researchCountFL = researchCountFH = 0;
@ -673,17 +671,17 @@ namespace {
rml.set_non_pv_scores(pos, rml[0].pv[0], ss);
rml.sort();
// Search to the current depth, rml is updated and sorted
// Search to the current depth
value = search<PV, false, true>(pos, ss, alpha, beta, depth, 0);
// Sort the moves before to return
// Sort the moves and write PV lines to transposition table, in case
// the relevant entries have been overwritten during the search.
rml.sort();
// Write PV lines to transposition table, in case the relevant entries
// have been overwritten during the search.
for (int i = 0; i < Min(MultiPV, (int)rml.size()); i++)
rml[i].insert_pv_in_tt(pos);
bestMoveChanges[iteration] = Rml->bestMoveChanges;
if (StopRequest)
break;
@ -692,7 +690,7 @@ namespace {
if (value >= beta)
{
// Prepare for a research after a fail high, each time with a wider window
beta = Min(beta + AspirationDelta * (1 << researchCountFH), VALUE_INFINITE);
beta = Min(beta + aspirationDelta * (1 << researchCountFH), VALUE_INFINITE);
researchCountFH++;
}
else if (value <= alpha)
@ -701,7 +699,7 @@ namespace {
StopOnPonderhit = false;
// Prepare for a research after a fail low, each time with a wider window
alpha = Max(alpha - AspirationDelta * (1 << researchCountFL), -VALUE_INFINITE);
alpha = Max(alpha - aspirationDelta * (1 << researchCountFL), -VALUE_INFINITE);
researchCountFL++;
}
else
@ -712,7 +710,7 @@ namespace {
break; // Value cannot be trusted. Break out immediately!
//Save info about search result
ValueByIteration[Iteration] = value;
values[iteration] = value;
// Drop the easy move if differs from the new best move
if (rml[0].pv[0] != EasyMove)
@ -721,40 +719,39 @@ namespace {
if (UseTimeManagement)
{
// Time to stop?
bool stopSearch = false;
bool noMoreTime = false;
// Stop search early if there is only a single legal move,
// we search up to Iteration 6 anyway to get a proper score.
if (Iteration >= 6 && rml.size() == 1)
stopSearch = true;
if (iteration >= 6 && rml.size() == 1)
noMoreTime = true;
// Stop search early when the last two iterations returned a mate score
if ( Iteration >= 6
&& abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
&& abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
stopSearch = true;
if ( iteration >= 6
&& abs(values[iteration]) >= abs(VALUE_MATE) - 100
&& abs(values[iteration-1]) >= abs(VALUE_MATE) - 100)
noMoreTime = true;
// Stop search early if one move seems to be much better than the others
if ( Iteration >= 8
if ( iteration >= 8
&& EasyMove == rml[0].pv[0]
&& ( ( rml[0].nodes > (pos.nodes_searched() * 85) / 100
&& current_search_time() > TimeMgr.available_time() / 16)
||( rml[0].nodes > (pos.nodes_searched() * 98) / 100
&& current_search_time() > TimeMgr.available_time() / 32)))
stopSearch = true;
noMoreTime = true;
// Add some extra time if the best move has changed during the last two iterations
if (Iteration > 5 && Iteration <= 50)
TimeMgr.pv_instability(BestMoveChangesByIteration[Iteration],
BestMoveChangesByIteration[Iteration-1]);
if (iteration > 5 && iteration <= 50)
TimeMgr.pv_instability(bestMoveChanges[iteration], bestMoveChanges[iteration-1]);
// Stop search if most of MaxSearchTime is consumed at the end of the
// iteration. We probably don't have enough time to search the first
// move at the next iteration anyway.
if (current_search_time() > (TimeMgr.available_time() * 80) / 128)
stopSearch = true;
noMoreTime = true;
if (stopSearch)
if (noMoreTime)
{
if (Pondering)
StopOnPonderhit = true;
@ -763,7 +760,7 @@ namespace {
}
}
if (MaxDepth && Iteration >= MaxDepth)
if (MaxDepth && iteration >= MaxDepth)
break;
}
@ -1278,14 +1275,14 @@ split_point_start: // At split points actual search starts from here
// iteration. This information is used for time managment: When
// the best move changes frequently, we allocate some more time.
if (!isPvMove && MultiPV == 1)
BestMoveChangesByIteration[Iteration]++;
Rml->bestMoveChanges++;
// Inform GUI that PV has changed, in case of multi-pv UCI protocol
// requires we send all the PV lines properly sorted.
Rml->sort_multipv(moveCount);
for (int j = 0; j < Min(MultiPV, (int)Rml->size()); j++)
cout << (*Rml)[j].pv_info_to_uci(pos, alpha, beta, j) << endl;
cout << (*Rml)[j].pv_info_to_uci(pos, depth, alpha, beta, j) << endl;
// Update alpha. In multi-pv we don't use aspiration window
if (MultiPV == 1)
@ -1308,8 +1305,7 @@ split_point_start: // At split points actual search starts from here
&& bestValue < beta
&& ThreadsMgr.available_thread_exists(threadID)
&& !StopRequest
&& !ThreadsMgr.cutoff_at_splitpoint(threadID)
&& Iteration <= 99)
&& !ThreadsMgr.cutoff_at_splitpoint(threadID))
ThreadsMgr.split<FakeSplit>(pos, ss, ply, &alpha, beta, &bestValue, depth,
threatMove, mateThreat, moveCount, (MovePicker*)&mp, PvNode);
}
@ -2564,7 +2560,7 @@ split_point_start: // At split points actual search starts from here
// formatted according to UCI specification and eventually writes the info
// to a log file. It is called at each iteration or after a new pv is found.
std::string RootMove::pv_info_to_uci(Position& pos, Value alpha, Value beta, int pvLine) {
std::string RootMove::pv_info_to_uci(Position& pos, Depth depth, Value alpha, Value beta, int pvLine) {
std::stringstream s, l;
Move* m = pv;
@ -2572,7 +2568,7 @@ split_point_start: // At split points actual search starts from here
while (*m != MOVE_NONE)
l << *m++ << " ";
s << "info depth " << Iteration // FIXME
s << "info depth " << depth / ONE_PLY
<< " seldepth " << int(m - pv)
<< " multipv " << pvLine + 1
<< " score " << value_to_uci(pv_score)
@ -2587,7 +2583,7 @@ split_point_start: // At split points actual search starts from here
ValueType t = pv_score >= beta ? VALUE_TYPE_LOWER :
pv_score <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT;
LogFile << pretty_pv(pos, current_search_time(), Iteration, pv_score, t, pv) << endl;
LogFile << pretty_pv(pos, current_search_time(), depth, pv_score, t, pv) << endl;
}
return s.str();
}
@ -2603,6 +2599,7 @@ split_point_start: // At split points actual search starts from here
// Initialize search stack
init_ss_array(ss, PLY_MAX_PLUS_2);
ss[0].eval = ss[0].evalMargin = VALUE_NONE;
bestMoveChanges = 0;
// Generate all legal moves
MoveStack* last = generate<MV_LEGAL>(pos, mlist);