1
0
Fork 0
stockfish/src/bitboard.h

452 lines
13 KiB
C++

/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2021 The Stockfish developers (see AUTHORS file)
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Stockfish is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef BITBOARD_H_INCLUDED
#define BITBOARD_H_INCLUDED
#include <string>
#include "types.h"
namespace Stockfish {
namespace Bitbases {
void init();
bool probe(Square wksq, Square wpsq, Square bksq, Color us);
} // namespace Stockfish::Bitbases
namespace Bitboards {
void init();
std::string pretty(Bitboard b);
} // namespace Stockfish::Bitboards
constexpr Bitboard AllSquares = ~Bitboard(0);
constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL;
constexpr Bitboard FileABB = 0x0101010101010101ULL;
constexpr Bitboard FileBBB = FileABB << 1;
constexpr Bitboard FileCBB = FileABB << 2;
constexpr Bitboard FileDBB = FileABB << 3;
constexpr Bitboard FileEBB = FileABB << 4;
constexpr Bitboard FileFBB = FileABB << 5;
constexpr Bitboard FileGBB = FileABB << 6;
constexpr Bitboard FileHBB = FileABB << 7;
constexpr Bitboard Rank1BB = 0xFF;
constexpr Bitboard Rank2BB = Rank1BB << (8 * 1);
constexpr Bitboard Rank3BB = Rank1BB << (8 * 2);
constexpr Bitboard Rank4BB = Rank1BB << (8 * 3);
constexpr Bitboard Rank5BB = Rank1BB << (8 * 4);
constexpr Bitboard Rank6BB = Rank1BB << (8 * 5);
constexpr Bitboard Rank7BB = Rank1BB << (8 * 6);
constexpr Bitboard Rank8BB = Rank1BB << (8 * 7);
constexpr Bitboard QueenSide = FileABB | FileBBB | FileCBB | FileDBB;
constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB;
constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB;
constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB);
constexpr Bitboard KingFlank[FILE_NB] = {
QueenSide ^ FileDBB, QueenSide, QueenSide,
CenterFiles, CenterFiles,
KingSide, KingSide, KingSide ^ FileEBB
};
extern uint8_t PopCnt16[1 << 16];
extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB];
extern Bitboard SquareBB[SQUARE_NB];
extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
extern Bitboard LineBB[SQUARE_NB][SQUARE_NB];
extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
/// Magic holds all magic bitboards relevant data for a single square
struct Magic {
Bitboard mask;
Bitboard magic;
Bitboard* attacks;
unsigned shift;
// Compute the attack's index using the 'magic bitboards' approach
unsigned index(Bitboard occupied) const {
if (HasPext)
return unsigned(pext(occupied, mask));
if (Is64Bit)
return unsigned(((occupied & mask) * magic) >> shift);
unsigned lo = unsigned(occupied) & unsigned(mask);
unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32);
return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift;
}
};
extern Magic RookMagics[SQUARE_NB];
extern Magic BishopMagics[SQUARE_NB];
inline Bitboard square_bb(Square s) {
assert(is_ok(s));
return SquareBB[s];
}
/// Overloads of bitwise operators between a Bitboard and a Square for testing
/// whether a given bit is set in a bitboard, and for setting and clearing bits.
inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); }
inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); }
inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); }
inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); }
inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); }
inline Bitboard operator&(Square s, Bitboard b) { return b & s; }
inline Bitboard operator|(Square s, Bitboard b) { return b | s; }
inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; }
inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; }
constexpr bool more_than_one(Bitboard b) {
return b & (b - 1);
}
constexpr bool opposite_colors(Square s1, Square s2) {
return (s1 + rank_of(s1) + s2 + rank_of(s2)) & 1;
}
/// rank_bb() and file_bb() return a bitboard representing all the squares on
/// the given file or rank.
constexpr Bitboard rank_bb(Rank r) {
return Rank1BB << (8 * r);
}
constexpr Bitboard rank_bb(Square s) {
return rank_bb(rank_of(s));
}
constexpr Bitboard file_bb(File f) {
return FileABB << f;
}
constexpr Bitboard file_bb(Square s) {
return file_bb(file_of(s));
}
/// shift() moves a bitboard one or two steps as specified by the direction D
template<Direction D>
constexpr Bitboard shift(Bitboard b) {
return D == NORTH ? b << 8 : D == SOUTH ? b >> 8
: D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16
: D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1
: D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7
: D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9
: 0;
}
/// pawn_attacks_bb() returns the squares attacked by pawns of the given color
/// from the squares in the given bitboard.
template<Color C>
constexpr Bitboard pawn_attacks_bb(Bitboard b) {
return C == WHITE ? shift<NORTH_WEST>(b) | shift<NORTH_EAST>(b)
: shift<SOUTH_WEST>(b) | shift<SOUTH_EAST>(b);
}
inline Bitboard pawn_attacks_bb(Color c, Square s) {
assert(is_ok(s));
return PawnAttacks[c][s];
}
/// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the
/// given color from the squares in the given bitboard.
template<Color C>
constexpr Bitboard pawn_double_attacks_bb(Bitboard b) {
return C == WHITE ? shift<NORTH_WEST>(b) & shift<NORTH_EAST>(b)
: shift<SOUTH_WEST>(b) & shift<SOUTH_EAST>(b);
}
/// adjacent_files_bb() returns a bitboard representing all the squares on the
/// adjacent files of a given square.
constexpr Bitboard adjacent_files_bb(Square s) {
return shift<EAST>(file_bb(s)) | shift<WEST>(file_bb(s));
}
/// line_bb() returns a bitboard representing an entire line (from board edge
/// to board edge) that intersects the two given squares. If the given squares
/// are not on a same file/rank/diagonal, the function returns 0. For instance,
/// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal.
inline Bitboard line_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return LineBB[s1][s2];
}
/// between_bb(s1, s2) returns a bitboard representing the squares in the semi-open
/// segment between the squares s1 and s2 (excluding s1 but including s2). If the
/// given squares are not on a same file/rank/diagonal, it returns s2. For instance,
/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5, E6 and F7, but
/// between_bb(SQ_E6, SQ_F8) will return a bitboard with the square F8. This trick
/// allows to generate non-king evasion moves faster: the defending piece must either
/// interpose itself to cover the check or capture the checking piece.
inline Bitboard between_bb(Square s1, Square s2) {
assert(is_ok(s1) && is_ok(s2));
return BetweenBB[s1][s2];
}
/// forward_ranks_bb() returns a bitboard representing the squares on the ranks in
/// front of the given one, from the point of view of the given color. For instance,
/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2.
constexpr Bitboard forward_ranks_bb(Color c, Square s) {
return c == WHITE ? ~Rank1BB << 8 * relative_rank(WHITE, s)
: ~Rank8BB >> 8 * relative_rank(BLACK, s);
}
/// forward_file_bb() returns a bitboard representing all the squares along the
/// line in front of the given one, from the point of view of the given color.
constexpr Bitboard forward_file_bb(Color c, Square s) {
return forward_ranks_bb(c, s) & file_bb(s);
}
/// pawn_attack_span() returns a bitboard representing all the squares that can
/// be attacked by a pawn of the given color when it moves along its file, starting
/// from the given square.
constexpr Bitboard pawn_attack_span(Color c, Square s) {
return forward_ranks_bb(c, s) & adjacent_files_bb(s);
}
/// passed_pawn_span() returns a bitboard which can be used to test if a pawn of
/// the given color and on the given square is a passed pawn.
constexpr Bitboard passed_pawn_span(Color c, Square s) {
return pawn_attack_span(c, s) | forward_file_bb(c, s);
}
/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a
/// straight or on a diagonal line.
inline bool aligned(Square s1, Square s2, Square s3) {
return line_bb(s1, s2) & s3;
}
/// distance() functions return the distance between x and y, defined as the
/// number of steps for a king in x to reach y.
template<typename T1 = Square> inline int distance(Square x, Square y);
template<> inline int distance<File>(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); }
template<> inline int distance<Rank>(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); }
template<> inline int distance<Square>(Square x, Square y) { return SquareDistance[x][y]; }
inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); }
inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); }
/// attacks_bb(Square) returns the pseudo attacks of the give piece type
/// assuming an empty board.
template<PieceType Pt>
inline Bitboard attacks_bb(Square s) {
assert((Pt != PAWN) && (is_ok(s)));
return PseudoAttacks[Pt][s];
}
/// attacks_bb(Square, Bitboard) returns the attacks by the given piece
/// assuming the board is occupied according to the passed Bitboard.
/// Sliding piece attacks do not continue passed an occupied square.
template<PieceType Pt>
inline Bitboard attacks_bb(Square s, Bitboard occupied) {
assert((Pt != PAWN) && (is_ok(s)));
switch (Pt)
{
case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)];
case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)];
case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default : return PseudoAttacks[Pt][s];
}
}
inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) {
assert((pt != PAWN) && (is_ok(s)));
switch (pt)
{
case BISHOP: return attacks_bb<BISHOP>(s, occupied);
case ROOK : return attacks_bb< ROOK>(s, occupied);
case QUEEN : return attacks_bb<BISHOP>(s, occupied) | attacks_bb<ROOK>(s, occupied);
default : return PseudoAttacks[pt][s];
}
}
/// popcount() counts the number of non-zero bits in a bitboard
inline int popcount(Bitboard b) {
#ifndef USE_POPCNT
union { Bitboard bb; uint16_t u[4]; } v = { b };
return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]];
#elif defined(_MSC_VER) || defined(__INTEL_COMPILER)
return (int)_mm_popcnt_u64(b);
#else // Assumed gcc or compatible compiler
return __builtin_popcountll(b);
#endif
}
/// lsb() and msb() return the least/most significant bit in a non-zero bitboard
#if defined(__GNUC__) // GCC, Clang, ICC
inline Square lsb(Bitboard b) {
assert(b);
return Square(__builtin_ctzll(b));
}
inline Square msb(Bitboard b) {
assert(b);
return Square(63 ^ __builtin_clzll(b));
}
#elif defined(_MSC_VER) // MSVC
#ifdef _WIN64 // MSVC, WIN64
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanForward64(&idx, b);
return (Square) idx;
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
_BitScanReverse64(&idx, b);
return (Square) idx;
}
#else // MSVC, WIN32
inline Square lsb(Bitboard b) {
assert(b);
unsigned long idx;
if (b & 0xffffffff) {
_BitScanForward(&idx, int32_t(b));
return Square(idx);
} else {
_BitScanForward(&idx, int32_t(b >> 32));
return Square(idx + 32);
}
}
inline Square msb(Bitboard b) {
assert(b);
unsigned long idx;
if (b >> 32) {
_BitScanReverse(&idx, int32_t(b >> 32));
return Square(idx + 32);
} else {
_BitScanReverse(&idx, int32_t(b));
return Square(idx);
}
}
#endif
#else // Compiler is neither GCC nor MSVC compatible
#error "Compiler not supported."
#endif
/// least_significant_square_bb() returns the bitboard of the least significant
/// square of a non-zero bitboard. It is equivalent to square_bb(lsb(bb)).
inline Bitboard least_significant_square_bb(Bitboard b) {
assert(b);
return b & -b;
}
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard
inline Square pop_lsb(Bitboard& b) {
assert(b);
const Square s = lsb(b);
b &= b - 1;
return s;
}
/// frontmost_sq() returns the most advanced square for the given color,
/// requires a non-zero bitboard.
inline Square frontmost_sq(Color c, Bitboard b) {
assert(b);
return c == WHITE ? msb(b) : lsb(b);
}
} // namespace Stockfish
#endif // #ifndef BITBOARD_H_INCLUDED