alistair23-linux/net/netfilter/nf_conntrack_proto_icmpv6.c

295 lines
7.9 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
/*
* Copyright (C)2003,2004 USAGI/WIDE Project
*
* Author:
* Yasuyuki Kozakai @USAGI <yasuyuki.kozakai@toshiba.co.jp>
*/
#include <linux/types.h>
#include <linux/timer.h>
#include <linux/module.h>
#include <linux/netfilter.h>
#include <linux/in6.h>
#include <linux/icmpv6.h>
#include <linux/ipv6.h>
#include <net/ipv6.h>
#include <net/ip6_checksum.h>
#include <linux/seq_file.h>
#include <linux/netfilter_ipv6.h>
#include <net/netfilter/nf_conntrack_tuple.h>
#include <net/netfilter/nf_conntrack_l4proto.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_timeout.h>
#include <net/netfilter/nf_conntrack_zones.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
#include <net/netfilter/ipv6/nf_conntrack_icmpv6.h>
#include <net/netfilter/nf_log.h>
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
static const unsigned int nf_ct_icmpv6_timeout = 30*HZ;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
bool icmpv6_pkt_to_tuple(const struct sk_buff *skb,
unsigned int dataoff,
struct net *net,
struct nf_conntrack_tuple *tuple)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
{
const struct icmp6hdr *hp;
struct icmp6hdr _hdr;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
hp = skb_header_pointer(skb, dataoff, sizeof(_hdr), &_hdr);
if (hp == NULL)
return false;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
tuple->dst.u.icmp.type = hp->icmp6_type;
tuple->src.u.icmp.id = hp->icmp6_identifier;
tuple->dst.u.icmp.code = hp->icmp6_code;
return true;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
}
/* Add 1; spaces filled with 0. */
static const u_int8_t invmap[] = {
[ICMPV6_ECHO_REQUEST - 128] = ICMPV6_ECHO_REPLY + 1,
[ICMPV6_ECHO_REPLY - 128] = ICMPV6_ECHO_REQUEST + 1,
[ICMPV6_NI_QUERY - 128] = ICMPV6_NI_REPLY + 1,
[ICMPV6_NI_REPLY - 128] = ICMPV6_NI_QUERY + 1
};
static const u_int8_t noct_valid_new[] = {
[ICMPV6_MGM_QUERY - 130] = 1,
[ICMPV6_MGM_REPORT - 130] = 1,
[ICMPV6_MGM_REDUCTION - 130] = 1,
[NDISC_ROUTER_SOLICITATION - 130] = 1,
[NDISC_ROUTER_ADVERTISEMENT - 130] = 1,
[NDISC_NEIGHBOUR_SOLICITATION - 130] = 1,
[NDISC_NEIGHBOUR_ADVERTISEMENT - 130] = 1,
[ICMPV6_MLD2_REPORT - 130] = 1
};
bool nf_conntrack_invert_icmpv6_tuple(struct nf_conntrack_tuple *tuple,
const struct nf_conntrack_tuple *orig)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
{
int type = orig->dst.u.icmp.type - 128;
if (type < 0 || type >= sizeof(invmap) || !invmap[type])
return false;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
tuple->src.u.icmp.id = orig->src.u.icmp.id;
tuple->dst.u.icmp.type = invmap[type] - 1;
tuple->dst.u.icmp.code = orig->dst.u.icmp.code;
return true;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
}
static unsigned int *icmpv6_get_timeouts(struct net *net)
{
return &nf_icmpv6_pernet(net)->timeout;
}
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
/* Returns verdict for packet, or -1 for invalid. */
int nf_conntrack_icmpv6_packet(struct nf_conn *ct,
struct sk_buff *skb,
enum ip_conntrack_info ctinfo,
const struct nf_hook_state *state)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
{
unsigned int *timeout = nf_ct_timeout_lookup(ct);
static const u8 valid_new[] = {
[ICMPV6_ECHO_REQUEST - 128] = 1,
[ICMPV6_NI_QUERY - 128] = 1
};
if (state->pf != NFPROTO_IPV6)
return -NF_ACCEPT;
if (!nf_ct_is_confirmed(ct)) {
int type = ct->tuplehash[0].tuple.dst.u.icmp.type - 128;
if (type < 0 || type >= sizeof(valid_new) || !valid_new[type]) {
/* Can't create a new ICMPv6 `conn' with this. */
pr_debug("icmpv6: can't create new conn with type %u\n",
type + 128);
nf_ct_dump_tuple_ipv6(&ct->tuplehash[0].tuple);
return -NF_ACCEPT;
}
}
if (!timeout)
timeout = icmpv6_get_timeouts(nf_ct_net(ct));
/* Do not immediately delete the connection after the first
successful reply to avoid excessive conntrackd traffic
and also to handle correctly ICMP echo reply duplicates. */
nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
return NF_ACCEPT;
}
static void icmpv6_error_log(const struct sk_buff *skb,
const struct nf_hook_state *state,
const char *msg)
{
nf_l4proto_log_invalid(skb, state->net, state->pf,
IPPROTO_ICMPV6, "%s", msg);
}
int nf_conntrack_icmpv6_error(struct nf_conn *tmpl,
struct sk_buff *skb,
unsigned int dataoff,
const struct nf_hook_state *state)
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
{
netfilter: conntrack: don't set related state for different outer address Luca Moro says: ------ The issue lies in the filtering of ICMP and ICMPv6 errors that include an inner IP datagram. For these packets, icmp_error_message() extract the ICMP error and inner layer to search of a known state. If a state is found the packet is tagged as related (IP_CT_RELATED). The problem is that there is no correlation check between the inner and outer layer of the packet. So one can encapsulate an error with an inner layer matching a known state, while its outer layer is directed to a filtered host. In this case the whole packet will be tagged as related. This has various implications from a rule bypass (if a rule to related trafic is allow), to a known state oracle. Unfortunately, we could not find a real statement in a RFC on how this case should be filtered. The closest we found is RFC5927 (Section 4.3) but it is not very clear. A possible fix would be to check that the inner IP source is the same than the outer destination. We believed this kind of attack was not documented yet, so we started to write a blog post about it. You can find it attached to this mail (sorry for the extract quality). It contains more technical details, PoC and discussion about the identified behavior. We discovered later that https://www.gont.com.ar/papers/filtering-of-icmp-error-messages.pdf described a similar attack concept in 2004 but without the stateful filtering in mind. ----- This implements above suggested fix: In icmp(v6) error handler, take outer destination address, then pass that into the common function that does the "related" association. After obtaining the nf_conn of the matching inner-headers connection, check that the destination address of the opposite direction tuple is the same as the outer address and only set RELATED if thats the case. Reported-by: Luca Moro <luca.moro@synacktiv.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2019-03-25 16:11:54 -06:00
union nf_inet_addr outer_daddr;
const struct icmp6hdr *icmp6h;
struct icmp6hdr _ih;
int type;
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
icmp6h = skb_header_pointer(skb, dataoff, sizeof(_ih), &_ih);
if (icmp6h == NULL) {
icmpv6_error_log(skb, state, "short packet");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
return -NF_ACCEPT;
}
if (state->hook == NF_INET_PRE_ROUTING &&
state->net->ct.sysctl_checksum &&
nf_ip6_checksum(skb, state->hook, dataoff, IPPROTO_ICMPV6)) {
icmpv6_error_log(skb, state, "ICMPv6 checksum failed");
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
return -NF_ACCEPT;
}
type = icmp6h->icmp6_type - 130;
if (type >= 0 && type < sizeof(noct_valid_new) &&
noct_valid_new[type]) {
nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
return NF_ACCEPT;
}
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
/* is not error message ? */
if (icmp6h->icmp6_type >= 128)
return NF_ACCEPT;
netfilter: conntrack: don't set related state for different outer address Luca Moro says: ------ The issue lies in the filtering of ICMP and ICMPv6 errors that include an inner IP datagram. For these packets, icmp_error_message() extract the ICMP error and inner layer to search of a known state. If a state is found the packet is tagged as related (IP_CT_RELATED). The problem is that there is no correlation check between the inner and outer layer of the packet. So one can encapsulate an error with an inner layer matching a known state, while its outer layer is directed to a filtered host. In this case the whole packet will be tagged as related. This has various implications from a rule bypass (if a rule to related trafic is allow), to a known state oracle. Unfortunately, we could not find a real statement in a RFC on how this case should be filtered. The closest we found is RFC5927 (Section 4.3) but it is not very clear. A possible fix would be to check that the inner IP source is the same than the outer destination. We believed this kind of attack was not documented yet, so we started to write a blog post about it. You can find it attached to this mail (sorry for the extract quality). It contains more technical details, PoC and discussion about the identified behavior. We discovered later that https://www.gont.com.ar/papers/filtering-of-icmp-error-messages.pdf described a similar attack concept in 2004 but without the stateful filtering in mind. ----- This implements above suggested fix: In icmp(v6) error handler, take outer destination address, then pass that into the common function that does the "related" association. After obtaining the nf_conn of the matching inner-headers connection, check that the destination address of the opposite direction tuple is the same as the outer address and only set RELATED if thats the case. Reported-by: Luca Moro <luca.moro@synacktiv.com> Signed-off-by: Florian Westphal <fw@strlen.de> Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
2019-03-25 16:11:54 -06:00
memcpy(&outer_daddr.ip6, &ipv6_hdr(skb)->daddr,
sizeof(outer_daddr.ip6));
dataoff += sizeof(*icmp6h);
return nf_conntrack_inet_error(tmpl, skb, dataoff, state,
IPPROTO_ICMPV6, &outer_daddr);
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
}
#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_conntrack.h>
static int icmpv6_tuple_to_nlattr(struct sk_buff *skb,
const struct nf_conntrack_tuple *t)
{
if (nla_put_be16(skb, CTA_PROTO_ICMPV6_ID, t->src.u.icmp.id) ||
nla_put_u8(skb, CTA_PROTO_ICMPV6_TYPE, t->dst.u.icmp.type) ||
nla_put_u8(skb, CTA_PROTO_ICMPV6_CODE, t->dst.u.icmp.code))
goto nla_put_failure;
return 0;
nla_put_failure:
return -1;
}
static const struct nla_policy icmpv6_nla_policy[CTA_PROTO_MAX+1] = {
[CTA_PROTO_ICMPV6_TYPE] = { .type = NLA_U8 },
[CTA_PROTO_ICMPV6_CODE] = { .type = NLA_U8 },
[CTA_PROTO_ICMPV6_ID] = { .type = NLA_U16 },
};
static int icmpv6_nlattr_to_tuple(struct nlattr *tb[],
struct nf_conntrack_tuple *tuple)
{
if (!tb[CTA_PROTO_ICMPV6_TYPE] ||
!tb[CTA_PROTO_ICMPV6_CODE] ||
!tb[CTA_PROTO_ICMPV6_ID])
return -EINVAL;
tuple->dst.u.icmp.type = nla_get_u8(tb[CTA_PROTO_ICMPV6_TYPE]);
tuple->dst.u.icmp.code = nla_get_u8(tb[CTA_PROTO_ICMPV6_CODE]);
tuple->src.u.icmp.id = nla_get_be16(tb[CTA_PROTO_ICMPV6_ID]);
if (tuple->dst.u.icmp.type < 128 ||
tuple->dst.u.icmp.type - 128 >= sizeof(invmap) ||
!invmap[tuple->dst.u.icmp.type - 128])
return -EINVAL;
return 0;
}
static unsigned int icmpv6_nlattr_tuple_size(void)
{
static unsigned int size __read_mostly;
if (!size)
size = nla_policy_len(icmpv6_nla_policy, CTA_PROTO_MAX + 1);
return size;
}
#endif
#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_cttimeout.h>
static int icmpv6_timeout_nlattr_to_obj(struct nlattr *tb[],
struct net *net, void *data)
{
unsigned int *timeout = data;
struct nf_icmp_net *in = nf_icmpv6_pernet(net);
if (!timeout)
timeout = icmpv6_get_timeouts(net);
if (tb[CTA_TIMEOUT_ICMPV6_TIMEOUT]) {
*timeout =
ntohl(nla_get_be32(tb[CTA_TIMEOUT_ICMPV6_TIMEOUT])) * HZ;
} else {
/* Set default ICMPv6 timeout. */
*timeout = in->timeout;
}
return 0;
}
static int
icmpv6_timeout_obj_to_nlattr(struct sk_buff *skb, const void *data)
{
const unsigned int *timeout = data;
if (nla_put_be32(skb, CTA_TIMEOUT_ICMPV6_TIMEOUT, htonl(*timeout / HZ)))
goto nla_put_failure;
return 0;
nla_put_failure:
return -ENOSPC;
}
static const struct nla_policy
icmpv6_timeout_nla_policy[CTA_TIMEOUT_ICMPV6_MAX+1] = {
[CTA_TIMEOUT_ICMPV6_TIMEOUT] = { .type = NLA_U32 },
};
#endif /* CONFIG_NF_CONNTRACK_TIMEOUT */
void nf_conntrack_icmpv6_init_net(struct net *net)
{
struct nf_icmp_net *in = nf_icmpv6_pernet(net);
in->timeout = nf_ct_icmpv6_timeout;
}
const struct nf_conntrack_l4proto nf_conntrack_l4proto_icmpv6 =
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
{
.l4proto = IPPROTO_ICMPV6,
#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
.tuple_to_nlattr = icmpv6_tuple_to_nlattr,
.nlattr_tuple_size = icmpv6_nlattr_tuple_size,
.nlattr_to_tuple = icmpv6_nlattr_to_tuple,
.nla_policy = icmpv6_nla_policy,
#endif
#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
.ctnl_timeout = {
.nlattr_to_obj = icmpv6_timeout_nlattr_to_obj,
.obj_to_nlattr = icmpv6_timeout_obj_to_nlattr,
.nlattr_max = CTA_TIMEOUT_ICMP_MAX,
.obj_size = sizeof(unsigned int),
.nla_policy = icmpv6_timeout_nla_policy,
},
#endif /* CONFIG_NF_CONNTRACK_TIMEOUT */
[NETFILTER]: Add nf_conntrack subsystem. The existing connection tracking subsystem in netfilter can only handle ipv4. There were basically two choices present to add connection tracking support for ipv6. We could either duplicate all of the ipv4 connection tracking code into an ipv6 counterpart, or (the choice taken by these patches) we could design a generic layer that could handle both ipv4 and ipv6 and thus requiring only one sub-protocol (TCP, UDP, etc.) connection tracking helper module to be written. In fact nf_conntrack is capable of working with any layer 3 protocol. The existing ipv4 specific conntrack code could also not deal with the pecularities of doing connection tracking on ipv6, which is also cured here. For example, these issues include: 1) ICMPv6 handling, which is used for neighbour discovery in ipv6 thus some messages such as these should not participate in connection tracking since effectively they are like ARP messages 2) fragmentation must be handled differently in ipv6, because the simplistic "defrag, connection track and NAT, refrag" (which the existing ipv4 connection tracking does) approach simply isn't feasible in ipv6 3) ipv6 extension header parsing must occur at the correct spots before and after connection tracking decisions, and there were no provisions for this in the existing connection tracking design 4) ipv6 has no need for stateful NAT The ipv4 specific conntrack layer is kept around, until all of the ipv4 specific conntrack helpers are ported over to nf_conntrack and it is feature complete. Once that occurs, the old conntrack stuff will get placed into the feature-removal-schedule and we will fully kill it off 6 months later. Signed-off-by: Yasuyuki Kozakai <yasuyuki.kozakai@toshiba.co.jp> Signed-off-by: Harald Welte <laforge@netfilter.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@mandriva.com>
2005-11-09 17:38:16 -07:00
};