1
0
Fork 0
alistair23-linux/arch/powerpc/include/asm/book3s/64/mmu-hash.h

768 lines
25 KiB
C
Raw Normal View History

#ifndef _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
#define _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_
/*
* PowerPC64 memory management structures
*
* Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
* PPC64 rework.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <asm/page.h>
#include <asm/bug.h>
#include <asm/asm-const.h>
/*
* This is necessary to get the definition of PGTABLE_RANGE which we
* need for various slices related matters. Note that this isn't the
* complete pgtable.h but only a portion of it.
*/
#include <asm/book3s/64/pgtable.h>
#include <asm/bug.h>
#include <asm/processor.h>
#include <asm/cpu_has_feature.h>
/*
* SLB
*/
#define SLB_NUM_BOLTED 3
#define SLB_CACHE_ENTRIES 8
#define SLB_MIN_SIZE 32
/* Bits in the SLB ESID word */
#define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
/* Bits in the SLB VSID word */
#define SLB_VSID_SHIFT 12
#define SLB_VSID_SHIFT_256M SLB_VSID_SHIFT
#define SLB_VSID_SHIFT_1T 24
#define SLB_VSID_SSIZE_SHIFT 62
#define SLB_VSID_B ASM_CONST(0xc000000000000000)
#define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
#define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
#define SLB_VSID_KS ASM_CONST(0x0000000000000800)
#define SLB_VSID_KP ASM_CONST(0x0000000000000400)
#define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
#define SLB_VSID_L ASM_CONST(0x0000000000000100)
#define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
#define SLB_VSID_LP ASM_CONST(0x0000000000000030)
#define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
#define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
#define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
#define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
#define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
#define SLB_VSID_KERNEL (SLB_VSID_KP)
#define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
#define SLBIE_C (0x08000000)
#define SLBIE_SSIZE_SHIFT 25
/*
* Hash table
*/
#define HPTES_PER_GROUP 8
#define HPTE_V_SSIZE_SHIFT 62
#define HPTE_V_AVPN_SHIFT 7
#define HPTE_V_COMMON_BITS ASM_CONST(0x000fffffffffffff)
#define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
#define HPTE_V_AVPN_3_0 ASM_CONST(0x000fffffffffff80)
#define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
#define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
#define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
#define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
#define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
#define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
#define HPTE_V_VALID ASM_CONST(0x0000000000000001)
/*
* ISA 3.0 has a different HPTE format.
*/
#define HPTE_R_3_0_SSIZE_SHIFT 58
#define HPTE_R_3_0_SSIZE_MASK (3ull << HPTE_R_3_0_SSIZE_SHIFT)
#define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
#define HPTE_R_TS ASM_CONST(0x4000000000000000)
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-28 18:21:34 -06:00
#define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
#define HPTE_R_KEY_BIT0 ASM_CONST(0x2000000000000000)
#define HPTE_R_KEY_BIT1 ASM_CONST(0x1000000000000000)
#define HPTE_R_RPN_SHIFT 12
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-28 18:21:34 -06:00
#define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
#define HPTE_R_RPN_3_0 ASM_CONST(0x01fffffffffff000)
#define HPTE_R_PP ASM_CONST(0x0000000000000003)
#define HPTE_R_PPP ASM_CONST(0x8000000000000003)
#define HPTE_R_N ASM_CONST(0x0000000000000004)
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-28 18:21:34 -06:00
#define HPTE_R_G ASM_CONST(0x0000000000000008)
#define HPTE_R_M ASM_CONST(0x0000000000000010)
#define HPTE_R_I ASM_CONST(0x0000000000000020)
#define HPTE_R_W ASM_CONST(0x0000000000000040)
#define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
#define HPTE_R_C ASM_CONST(0x0000000000000080)
#define HPTE_R_R ASM_CONST(0x0000000000000100)
KVM: PPC: Add support for Book3S processors in hypervisor mode This adds support for KVM running on 64-bit Book 3S processors, specifically POWER7, in hypervisor mode. Using hypervisor mode means that the guest can use the processor's supervisor mode. That means that the guest can execute privileged instructions and access privileged registers itself without trapping to the host. This gives excellent performance, but does mean that KVM cannot emulate a processor architecture other than the one that the hardware implements. This code assumes that the guest is running paravirtualized using the PAPR (Power Architecture Platform Requirements) interface, which is the interface that IBM's PowerVM hypervisor uses. That means that existing Linux distributions that run on IBM pSeries machines will also run under KVM without modification. In order to communicate the PAPR hypercalls to qemu, this adds a new KVM_EXIT_PAPR_HCALL exit code to include/linux/kvm.h. Currently the choice between book3s_hv support and book3s_pr support (i.e. the existing code, which runs the guest in user mode) has to be made at kernel configuration time, so a given kernel binary can only do one or the other. This new book3s_hv code doesn't support MMIO emulation at present. Since we are running paravirtualized guests, this isn't a serious restriction. With the guest running in supervisor mode, most exceptions go straight to the guest. We will never get data or instruction storage or segment interrupts, alignment interrupts, decrementer interrupts, program interrupts, single-step interrupts, etc., coming to the hypervisor from the guest. Therefore this introduces a new KVMTEST_NONHV macro for the exception entry path so that we don't have to do the KVM test on entry to those exception handlers. We do however get hypervisor decrementer, hypervisor data storage, hypervisor instruction storage, and hypervisor emulation assist interrupts, so we have to handle those. In hypervisor mode, real-mode accesses can access all of RAM, not just a limited amount. Therefore we put all the guest state in the vcpu.arch and use the shadow_vcpu in the PACA only for temporary scratch space. We allocate the vcpu with kzalloc rather than vzalloc, and we don't use anything in the kvmppc_vcpu_book3s struct, so we don't allocate it. We don't have a shared page with the guest, but we still need a kvm_vcpu_arch_shared struct to store the values of various registers, so we include one in the vcpu_arch struct. The POWER7 processor has a restriction that all threads in a core have to be in the same partition. MMU-on kernel code counts as a partition (partition 0), so we have to do a partition switch on every entry to and exit from the guest. At present we require the host and guest to run in single-thread mode because of this hardware restriction. This code allocates a hashed page table for the guest and initializes it with HPTEs for the guest's Virtual Real Memory Area (VRMA). We require that the guest memory is allocated using 16MB huge pages, in order to simplify the low-level memory management. This also means that we can get away without tracking paging activity in the host for now, since huge pages can't be paged or swapped. This also adds a few new exports needed by the book3s_hv code. Signed-off-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Alexander Graf <agraf@suse.de>
2011-06-28 18:21:34 -06:00
#define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
#define HPTE_R_KEY_BIT2 ASM_CONST(0x0000000000000800)
#define HPTE_R_KEY_BIT3 ASM_CONST(0x0000000000000400)
#define HPTE_R_KEY_BIT4 ASM_CONST(0x0000000000000200)
#define HPTE_R_KEY (HPTE_R_KEY_LO | HPTE_R_KEY_HI)
#define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
/* Values for PP (assumes Ks=0, Kp=1) */
#define PP_RWXX 0 /* Supervisor read/write, User none */
#define PP_RWRX 1 /* Supervisor read/write, User read */
#define PP_RWRW 2 /* Supervisor read/write, User read/write */
#define PP_RXRX 3 /* Supervisor read, User read */
#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
KVM: PPC: Book3S HV: Handle guest-caused machine checks on POWER7 without panicking Currently, if a machine check interrupt happens while we are in the guest, we exit the guest and call the host's machine check handler, which tends to cause the host to panic. Some machine checks can be triggered by the guest; for example, if the guest creates two entries in the SLB that map the same effective address, and then accesses that effective address, the CPU will take a machine check interrupt. To handle this better, when a machine check happens inside the guest, we call a new function, kvmppc_realmode_machine_check(), while still in real mode before exiting the guest. On POWER7, it handles the cases that the guest can trigger, either by flushing and reloading the SLB, or by flushing the TLB, and then it delivers the machine check interrupt directly to the guest without going back to the host. On POWER7, the OPAL firmware patches the machine check interrupt vector so that it gets control first, and it leaves behind its analysis of the situation in a structure pointed to by the opal_mc_evt field of the paca. The kvmppc_realmode_machine_check() function looks at this, and if OPAL reports that there was no error, or that it has handled the error, we also go straight back to the guest with a machine check. We have to deliver a machine check to the guest since the machine check interrupt might have trashed valid values in SRR0/1. If the machine check is one we can't handle in real mode, and one that OPAL hasn't already handled, or on PPC970, we exit the guest and call the host's machine check handler. We do this by jumping to the machine_check_fwnmi label, rather than absolute address 0x200, because we don't want to re-execute OPAL's handler on POWER7. On PPC970, the two are equivalent because address 0x200 just contains a branch. Then, if the host machine check handler decides that the system can continue executing, kvmppc_handle_exit() delivers a machine check interrupt to the guest -- once again to let the guest know that SRR0/1 have been modified. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: fix checkpatch warnings] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-23 15:37:50 -07:00
/* Fields for tlbiel instruction in architecture 2.06 */
#define TLBIEL_INVAL_SEL_MASK 0xc00 /* invalidation selector */
#define TLBIEL_INVAL_PAGE 0x000 /* invalidate a single page */
#define TLBIEL_INVAL_SET_LPID 0x800 /* invalidate a set for current LPID */
#define TLBIEL_INVAL_SET 0xc00 /* invalidate a set for all LPIDs */
#define TLBIEL_INVAL_SET_MASK 0xfff000 /* set number to inval. */
#define TLBIEL_INVAL_SET_SHIFT 12
#define POWER7_TLB_SETS 128 /* # sets in POWER7 TLB */
#define POWER8_TLB_SETS 512 /* # sets in POWER8 TLB */
#define POWER9_TLB_SETS_HASH 256 /* # sets in POWER9 TLB Hash mode */
#define POWER9_TLB_SETS_RADIX 128 /* # sets in POWER9 TLB Radix mode */
KVM: PPC: Book3S HV: Handle guest-caused machine checks on POWER7 without panicking Currently, if a machine check interrupt happens while we are in the guest, we exit the guest and call the host's machine check handler, which tends to cause the host to panic. Some machine checks can be triggered by the guest; for example, if the guest creates two entries in the SLB that map the same effective address, and then accesses that effective address, the CPU will take a machine check interrupt. To handle this better, when a machine check happens inside the guest, we call a new function, kvmppc_realmode_machine_check(), while still in real mode before exiting the guest. On POWER7, it handles the cases that the guest can trigger, either by flushing and reloading the SLB, or by flushing the TLB, and then it delivers the machine check interrupt directly to the guest without going back to the host. On POWER7, the OPAL firmware patches the machine check interrupt vector so that it gets control first, and it leaves behind its analysis of the situation in a structure pointed to by the opal_mc_evt field of the paca. The kvmppc_realmode_machine_check() function looks at this, and if OPAL reports that there was no error, or that it has handled the error, we also go straight back to the guest with a machine check. We have to deliver a machine check to the guest since the machine check interrupt might have trashed valid values in SRR0/1. If the machine check is one we can't handle in real mode, and one that OPAL hasn't already handled, or on PPC970, we exit the guest and call the host's machine check handler. We do this by jumping to the machine_check_fwnmi label, rather than absolute address 0x200, because we don't want to re-execute OPAL's handler on POWER7. On PPC970, the two are equivalent because address 0x200 just contains a branch. Then, if the host machine check handler decides that the system can continue executing, kvmppc_handle_exit() delivers a machine check interrupt to the guest -- once again to let the guest know that SRR0/1 have been modified. Signed-off-by: Paul Mackerras <paulus@samba.org> [agraf: fix checkpatch warnings] Signed-off-by: Alexander Graf <agraf@suse.de>
2012-11-23 15:37:50 -07:00
#ifndef __ASSEMBLY__
struct mmu_hash_ops {
void (*hpte_invalidate)(unsigned long slot,
unsigned long vpn,
int bpsize, int apsize,
int ssize, int local);
long (*hpte_updatepp)(unsigned long slot,
unsigned long newpp,
unsigned long vpn,
int bpsize, int apsize,
int ssize, unsigned long flags);
void (*hpte_updateboltedpp)(unsigned long newpp,
unsigned long ea,
int psize, int ssize);
long (*hpte_insert)(unsigned long hpte_group,
unsigned long vpn,
unsigned long prpn,
unsigned long rflags,
unsigned long vflags,
int psize, int apsize,
int ssize);
long (*hpte_remove)(unsigned long hpte_group);
int (*hpte_removebolted)(unsigned long ea,
int psize, int ssize);
void (*flush_hash_range)(unsigned long number, int local);
void (*hugepage_invalidate)(unsigned long vsid,
unsigned long addr,
unsigned char *hpte_slot_array,
int psize, int ssize, int local);
int (*resize_hpt)(unsigned long shift);
/*
* Special for kexec.
* To be called in real mode with interrupts disabled. No locks are
* taken as such, concurrent access on pre POWER5 hardware could result
* in a deadlock.
* The linear mapping is destroyed as well.
*/
void (*hpte_clear_all)(void);
};
extern struct mmu_hash_ops mmu_hash_ops;
struct hash_pte {
__be64 v;
__be64 r;
};
extern struct hash_pte *htab_address;
extern unsigned long htab_size_bytes;
extern unsigned long htab_hash_mask;
static inline int shift_to_mmu_psize(unsigned int shift)
{
int psize;
for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
if (mmu_psize_defs[psize].shift == shift)
return psize;
return -1;
}
static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
{
if (mmu_psize_defs[mmu_psize].shift)
return mmu_psize_defs[mmu_psize].shift;
BUG();
}
static inline unsigned long get_sllp_encoding(int psize)
{
unsigned long sllp;
sllp = ((mmu_psize_defs[psize].sllp & SLB_VSID_L) >> 6) |
((mmu_psize_defs[psize].sllp & SLB_VSID_LP) >> 4);
return sllp;
}
#endif /* __ASSEMBLY__ */
/*
* Segment sizes.
* These are the values used by hardware in the B field of
* SLB entries and the first dword of MMU hashtable entries.
* The B field is 2 bits; the values 2 and 3 are unused and reserved.
*/
#define MMU_SEGSIZE_256M 0
#define MMU_SEGSIZE_1T 1
/*
* encode page number shift.
* in order to fit the 78 bit va in a 64 bit variable we shift the va by
* 12 bits. This enable us to address upto 76 bit va.
* For hpt hash from a va we can ignore the page size bits of va and for
* hpte encoding we ignore up to 23 bits of va. So ignoring lower 12 bits ensure
* we work in all cases including 4k page size.
*/
#define VPN_SHIFT 12
/*
* HPTE Large Page (LP) details
*/
#define LP_SHIFT 12
#define LP_BITS 8
#define LP_MASK(i) ((0xFF >> (i)) << LP_SHIFT)
#ifndef __ASSEMBLY__
static inline int slb_vsid_shift(int ssize)
{
if (ssize == MMU_SEGSIZE_256M)
return SLB_VSID_SHIFT;
return SLB_VSID_SHIFT_1T;
}
static inline int segment_shift(int ssize)
{
if (ssize == MMU_SEGSIZE_256M)
return SID_SHIFT;
return SID_SHIFT_1T;
}
/*
* This array is indexed by the LP field of the HPTE second dword.
* Since this field may contain some RPN bits, some entries are
* replicated so that we get the same value irrespective of RPN.
* The top 4 bits are the page size index (MMU_PAGE_*) for the
* actual page size, the bottom 4 bits are the base page size.
*/
extern u8 hpte_page_sizes[1 << LP_BITS];
static inline unsigned long __hpte_page_size(unsigned long h, unsigned long l,
bool is_base_size)
{
unsigned int i, lp;
if (!(h & HPTE_V_LARGE))
return 1ul << 12;
/* Look at the 8 bit LP value */
lp = (l >> LP_SHIFT) & ((1 << LP_BITS) - 1);
i = hpte_page_sizes[lp];
if (!i)
return 0;
if (!is_base_size)
i >>= 4;
return 1ul << mmu_psize_defs[i & 0xf].shift;
}
static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
{
return __hpte_page_size(h, l, 0);
}
static inline unsigned long hpte_base_page_size(unsigned long h, unsigned long l)
{
return __hpte_page_size(h, l, 1);
}
/*
* The current system page and segment sizes
*/
extern int mmu_kernel_ssize;
extern int mmu_highuser_ssize;
extern u16 mmu_slb_size;
extern unsigned long tce_alloc_start, tce_alloc_end;
/*
* If the processor supports 64k normal pages but not 64k cache
* inhibited pages, we have to be prepared to switch processes
* to use 4k pages when they create cache-inhibited mappings.
* If this is the case, mmu_ci_restrictions will be set to 1.
*/
extern int mmu_ci_restrictions;
/*
* This computes the AVPN and B fields of the first dword of a HPTE,
* for use when we want to match an existing PTE. The bottom 7 bits
* of the returned value are zero.
*/
static inline unsigned long hpte_encode_avpn(unsigned long vpn, int psize,
int ssize)
{
unsigned long v;
/*
* The AVA field omits the low-order 23 bits of the 78 bits VA.
* These bits are not needed in the PTE, because the
* low-order b of these bits are part of the byte offset
* into the virtual page and, if b < 23, the high-order
* 23-b of these bits are always used in selecting the
* PTEGs to be searched
*/
v = (vpn >> (23 - VPN_SHIFT)) & ~(mmu_psize_defs[psize].avpnm);
v <<= HPTE_V_AVPN_SHIFT;
v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
return v;
}
/*
* ISA v3.0 defines a new HPTE format, which differs from the old
* format in having smaller AVPN and ARPN fields, and the B field
* in the second dword instead of the first.
*/
static inline unsigned long hpte_old_to_new_v(unsigned long v)
{
/* trim AVPN, drop B */
return v & HPTE_V_COMMON_BITS;
}
static inline unsigned long hpte_old_to_new_r(unsigned long v, unsigned long r)
{
/* move B field from 1st to 2nd dword, trim ARPN */
return (r & ~HPTE_R_3_0_SSIZE_MASK) |
(((v) >> HPTE_V_SSIZE_SHIFT) << HPTE_R_3_0_SSIZE_SHIFT);
}
static inline unsigned long hpte_new_to_old_v(unsigned long v, unsigned long r)
{
/* insert B field */
return (v & HPTE_V_COMMON_BITS) |
((r & HPTE_R_3_0_SSIZE_MASK) <<
(HPTE_V_SSIZE_SHIFT - HPTE_R_3_0_SSIZE_SHIFT));
}
static inline unsigned long hpte_new_to_old_r(unsigned long r)
{
/* clear out B field */
return r & ~HPTE_R_3_0_SSIZE_MASK;
}
static inline unsigned long hpte_get_old_v(struct hash_pte *hptep)
{
unsigned long hpte_v;
hpte_v = be64_to_cpu(hptep->v);
if (cpu_has_feature(CPU_FTR_ARCH_300))
hpte_v = hpte_new_to_old_v(hpte_v, be64_to_cpu(hptep->r));
return hpte_v;
}
/*
* This function sets the AVPN and L fields of the HPTE appropriately
* using the base page size and actual page size.
*/
static inline unsigned long hpte_encode_v(unsigned long vpn, int base_psize,
int actual_psize, int ssize)
{
unsigned long v;
v = hpte_encode_avpn(vpn, base_psize, ssize);
if (actual_psize != MMU_PAGE_4K)
v |= HPTE_V_LARGE;
return v;
}
/*
* This function sets the ARPN, and LP fields of the HPTE appropriately
* for the page size. We assume the pa is already "clean" that is properly
* aligned for the requested page size
*/
static inline unsigned long hpte_encode_r(unsigned long pa, int base_psize,
int actual_psize)
{
/* A 4K page needs no special encoding */
if (actual_psize == MMU_PAGE_4K)
return pa & HPTE_R_RPN;
else {
unsigned int penc = mmu_psize_defs[base_psize].penc[actual_psize];
unsigned int shift = mmu_psize_defs[actual_psize].shift;
return (pa & ~((1ul << shift) - 1)) | (penc << LP_SHIFT);
}
}
/*
* Build a VPN_SHIFT bit shifted va given VSID, EA and segment size.
*/
static inline unsigned long hpt_vpn(unsigned long ea,
unsigned long vsid, int ssize)
{
unsigned long mask;
int s_shift = segment_shift(ssize);
mask = (1ul << (s_shift - VPN_SHIFT)) - 1;
return (vsid << (s_shift - VPN_SHIFT)) | ((ea >> VPN_SHIFT) & mask);
}
/*
* This hashes a virtual address
*/
static inline unsigned long hpt_hash(unsigned long vpn,
unsigned int shift, int ssize)
{
unsigned long mask;
unsigned long hash, vsid;
/* VPN_SHIFT can be atmost 12 */
if (ssize == MMU_SEGSIZE_256M) {
mask = (1ul << (SID_SHIFT - VPN_SHIFT)) - 1;
hash = (vpn >> (SID_SHIFT - VPN_SHIFT)) ^
((vpn & mask) >> (shift - VPN_SHIFT));
} else {
mask = (1ul << (SID_SHIFT_1T - VPN_SHIFT)) - 1;
vsid = vpn >> (SID_SHIFT_1T - VPN_SHIFT);
hash = vsid ^ (vsid << 25) ^
((vpn & mask) >> (shift - VPN_SHIFT)) ;
}
return hash & 0x7fffffffffUL;
}
powerpc/mm: don't do tlbie for updatepp request with NO HPTE fault upatepp can get called for a nohpte fault when we find from the linux page table that the translation was hashed before. In that case we are sure that there is no existing translation, hence we could avoid doing tlbie. We could possibly race with a parallel fault filling the TLB. But that should be ok because updatepp is only ever relaxing permissions. We also look at linux pte permission bits when filling hash pte permission bits. We also hold the linux pte busy bits while inserting/updating a hashpte entry, hence a paralle update of linux pte is not possible. On the other hand mprotect involves ptep_modify_prot_start which cause a hpte invalidate and not updatepp. Performance number: We use randbox_access_bench written by Anton. Kernel with THP disabled and smaller hash page table size. 86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp 2.10% random_access_b random_access_bench [.] doit 1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock 1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range 1.18% random_access_b [kernel.kallsyms] [k] .__delay 0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page 0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return 0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm With Fix: 27.54% random_access_b random_access_bench [.] doit 22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return 5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm 3.31% random_access_b [kernel.kallsyms] [k] data_access_common 1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-03 22:30:14 -07:00
#define HPTE_LOCAL_UPDATE 0x1
#define HPTE_NOHPTE_UPDATE 0x2
extern int __hash_page_4K(unsigned long ea, unsigned long access,
unsigned long vsid, pte_t *ptep, unsigned long trap,
powerpc/mm: don't do tlbie for updatepp request with NO HPTE fault upatepp can get called for a nohpte fault when we find from the linux page table that the translation was hashed before. In that case we are sure that there is no existing translation, hence we could avoid doing tlbie. We could possibly race with a parallel fault filling the TLB. But that should be ok because updatepp is only ever relaxing permissions. We also look at linux pte permission bits when filling hash pte permission bits. We also hold the linux pte busy bits while inserting/updating a hashpte entry, hence a paralle update of linux pte is not possible. On the other hand mprotect involves ptep_modify_prot_start which cause a hpte invalidate and not updatepp. Performance number: We use randbox_access_bench written by Anton. Kernel with THP disabled and smaller hash page table size. 86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp 2.10% random_access_b random_access_bench [.] doit 1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock 1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range 1.18% random_access_b [kernel.kallsyms] [k] .__delay 0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page 0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return 0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm With Fix: 27.54% random_access_b random_access_bench [.] doit 22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return 5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm 3.31% random_access_b [kernel.kallsyms] [k] data_access_common 1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-03 22:30:14 -07:00
unsigned long flags, int ssize, int subpage_prot);
extern int __hash_page_64K(unsigned long ea, unsigned long access,
unsigned long vsid, pte_t *ptep, unsigned long trap,
powerpc/mm: don't do tlbie for updatepp request with NO HPTE fault upatepp can get called for a nohpte fault when we find from the linux page table that the translation was hashed before. In that case we are sure that there is no existing translation, hence we could avoid doing tlbie. We could possibly race with a parallel fault filling the TLB. But that should be ok because updatepp is only ever relaxing permissions. We also look at linux pte permission bits when filling hash pte permission bits. We also hold the linux pte busy bits while inserting/updating a hashpte entry, hence a paralle update of linux pte is not possible. On the other hand mprotect involves ptep_modify_prot_start which cause a hpte invalidate and not updatepp. Performance number: We use randbox_access_bench written by Anton. Kernel with THP disabled and smaller hash page table size. 86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp 2.10% random_access_b random_access_bench [.] doit 1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock 1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range 1.18% random_access_b [kernel.kallsyms] [k] .__delay 0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page 0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return 0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm With Fix: 27.54% random_access_b random_access_bench [.] doit 22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return 5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm 3.31% random_access_b [kernel.kallsyms] [k] data_access_common 1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-03 22:30:14 -07:00
unsigned long flags, int ssize);
struct mm_struct;
unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
powerpc/mm: don't do tlbie for updatepp request with NO HPTE fault upatepp can get called for a nohpte fault when we find from the linux page table that the translation was hashed before. In that case we are sure that there is no existing translation, hence we could avoid doing tlbie. We could possibly race with a parallel fault filling the TLB. But that should be ok because updatepp is only ever relaxing permissions. We also look at linux pte permission bits when filling hash pte permission bits. We also hold the linux pte busy bits while inserting/updating a hashpte entry, hence a paralle update of linux pte is not possible. On the other hand mprotect involves ptep_modify_prot_start which cause a hpte invalidate and not updatepp. Performance number: We use randbox_access_bench written by Anton. Kernel with THP disabled and smaller hash page table size. 86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp 2.10% random_access_b random_access_bench [.] doit 1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock 1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range 1.18% random_access_b [kernel.kallsyms] [k] .__delay 0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page 0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return 0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm With Fix: 27.54% random_access_b random_access_bench [.] doit 22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return 5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm 3.31% random_access_b [kernel.kallsyms] [k] data_access_common 1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-03 22:30:14 -07:00
extern int hash_page_mm(struct mm_struct *mm, unsigned long ea,
unsigned long access, unsigned long trap,
unsigned long flags);
extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap,
unsigned long dsisr);
powerpc/mm: Allow more flexible layouts for hugepage pagetables Currently each available hugepage size uses a slightly different pagetable layout: that is, the bottem level table of pointers to hugepages is a different size, and may branch off from the normal page tables at a different level. Every hugepage aware path that needs to walk the pagetables must therefore look up the hugepage size from the slice info first, and work out the correct way to walk the pagetables accordingly. Future hardware is likely to add more possible hugepage sizes, more layout options and more mess. This patch, therefore reworks the handling of hugepage pagetables to reduce this complexity. In the new scheme, instead of having to consult the slice mask, pagetable walking code can check a flag in the PGD/PUD/PMD entries to see where to branch off to hugepage pagetables, and the entry also contains the information (eseentially hugepage shift) necessary to then interpret that table without recourse to the slice mask. This scheme can be extended neatly to handle multiple levels of self-describing "special" hugepage pagetables, although for now we assume only one level exists. This approach means that only the pagetable allocation path needs to know how the pagetables should be set out. All other (hugepage) pagetable walking paths can just interpret the structure as they go. There already was a flag bit in PGD/PUD/PMD entries for hugepage directory pointers, but it was only used for debug. We alter that flag bit to instead be a 0 in the MSB to indicate a hugepage pagetable pointer (normally it would be 1 since the pointer lies in the linear mapping). This means that asm pagetable walking can test for (and punt on) hugepage pointers with the same test that checks for unpopulated page directory entries (beq becomes bge), since hugepage pointers will always be positive, and normal pointers always negative. While we're at it, we get rid of the confusing (and grep defeating) #defining of hugepte_shift to be the same thing as mmu_huge_psizes. Signed-off-by: David Gibson <dwg@au1.ibm.com> Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
2009-10-26 13:24:31 -06:00
int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
powerpc/mm: don't do tlbie for updatepp request with NO HPTE fault upatepp can get called for a nohpte fault when we find from the linux page table that the translation was hashed before. In that case we are sure that there is no existing translation, hence we could avoid doing tlbie. We could possibly race with a parallel fault filling the TLB. But that should be ok because updatepp is only ever relaxing permissions. We also look at linux pte permission bits when filling hash pte permission bits. We also hold the linux pte busy bits while inserting/updating a hashpte entry, hence a paralle update of linux pte is not possible. On the other hand mprotect involves ptep_modify_prot_start which cause a hpte invalidate and not updatepp. Performance number: We use randbox_access_bench written by Anton. Kernel with THP disabled and smaller hash page table size. 86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp 2.10% random_access_b random_access_bench [.] doit 1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock 1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range 1.18% random_access_b [kernel.kallsyms] [k] .__delay 0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page 0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return 0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm With Fix: 27.54% random_access_b random_access_bench [.] doit 22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return 5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm 3.31% random_access_b [kernel.kallsyms] [k] data_access_common 1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-03 22:30:14 -07:00
pte_t *ptep, unsigned long trap, unsigned long flags,
int ssize, unsigned int shift, unsigned int mmu_psize);
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern int __hash_page_thp(unsigned long ea, unsigned long access,
unsigned long vsid, pmd_t *pmdp, unsigned long trap,
powerpc/mm: don't do tlbie for updatepp request with NO HPTE fault upatepp can get called for a nohpte fault when we find from the linux page table that the translation was hashed before. In that case we are sure that there is no existing translation, hence we could avoid doing tlbie. We could possibly race with a parallel fault filling the TLB. But that should be ok because updatepp is only ever relaxing permissions. We also look at linux pte permission bits when filling hash pte permission bits. We also hold the linux pte busy bits while inserting/updating a hashpte entry, hence a paralle update of linux pte is not possible. On the other hand mprotect involves ptep_modify_prot_start which cause a hpte invalidate and not updatepp. Performance number: We use randbox_access_bench written by Anton. Kernel with THP disabled and smaller hash page table size. 86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp 2.10% random_access_b random_access_bench [.] doit 1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock 1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range 1.18% random_access_b [kernel.kallsyms] [k] .__delay 0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page 0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return 0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm With Fix: 27.54% random_access_b random_access_bench [.] doit 22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return 5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm 3.31% random_access_b [kernel.kallsyms] [k] data_access_common 1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-03 22:30:14 -07:00
unsigned long flags, int ssize, unsigned int psize);
#else
static inline int __hash_page_thp(unsigned long ea, unsigned long access,
unsigned long vsid, pmd_t *pmdp,
powerpc/mm: don't do tlbie for updatepp request with NO HPTE fault upatepp can get called for a nohpte fault when we find from the linux page table that the translation was hashed before. In that case we are sure that there is no existing translation, hence we could avoid doing tlbie. We could possibly race with a parallel fault filling the TLB. But that should be ok because updatepp is only ever relaxing permissions. We also look at linux pte permission bits when filling hash pte permission bits. We also hold the linux pte busy bits while inserting/updating a hashpte entry, hence a paralle update of linux pte is not possible. On the other hand mprotect involves ptep_modify_prot_start which cause a hpte invalidate and not updatepp. Performance number: We use randbox_access_bench written by Anton. Kernel with THP disabled and smaller hash page table size. 86.60% random_access_b [kernel.kallsyms] [k] .native_hpte_updatepp 2.10% random_access_b random_access_bench [.] doit 1.99% random_access_b [kernel.kallsyms] [k] .do_raw_spin_lock 1.85% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 1.26% random_access_b [kernel.kallsyms] [k] .native_flush_hash_range 1.18% random_access_b [kernel.kallsyms] [k] .__delay 0.69% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 0.37% random_access_b [kernel.kallsyms] [k] .clear_user_page 0.34% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 0.32% random_access_b [kernel.kallsyms] [k] fast_exception_return 0.30% random_access_b [kernel.kallsyms] [k] .hash_page_mm With Fix: 27.54% random_access_b random_access_bench [.] doit 22.90% random_access_b [kernel.kallsyms] [k] .native_hpte_insert 5.76% random_access_b [kernel.kallsyms] [k] .native_hpte_remove 5.20% random_access_b [kernel.kallsyms] [k] fast_exception_return 5.12% random_access_b [kernel.kallsyms] [k] .__hash_page_64K 4.80% random_access_b [kernel.kallsyms] [k] .hash_page_mm 3.31% random_access_b [kernel.kallsyms] [k] data_access_common 1.84% random_access_b [kernel.kallsyms] [k] .trace_hardirqs_on_caller Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-12-03 22:30:14 -07:00
unsigned long trap, unsigned long flags,
int ssize, unsigned int psize)
{
BUG();
return -1;
}
#endif
extern void hash_failure_debug(unsigned long ea, unsigned long access,
unsigned long vsid, unsigned long trap,
int ssize, int psize, int lpsize,
unsigned long pte);
extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
unsigned long pstart, unsigned long prot,
int psize, int ssize);
int htab_remove_mapping(unsigned long vstart, unsigned long vend,
int psize, int ssize);
extern void pseries_add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages);
[POWERPC] Provide a way to protect 4k subpages when using 64k pages Using 64k pages on 64-bit PowerPC systems makes life difficult for emulators that are trying to emulate an ISA, such as x86, which use a smaller page size, since the emulator can no longer use the MMU and the normal system calls for controlling page protections. Of course, the emulator can emulate the MMU by checking and possibly remapping the address for each memory access in software, but that is pretty slow. This provides a facility for such programs to control the access permissions on individual 4k sub-pages of 64k pages. The idea is that the emulator supplies an array of protection masks to apply to a specified range of virtual addresses. These masks are applied at the level where hardware PTEs are inserted into the hardware page table based on the Linux PTEs, so the Linux PTEs are not affected. Note that this new mechanism does not allow any access that would otherwise be prohibited; it can only prohibit accesses that would otherwise be allowed. This new facility is only available on 64-bit PowerPC and only when the kernel is configured for 64k pages. The masks are supplied using a new subpage_prot system call, which takes a starting virtual address and length, and a pointer to an array of protection masks in memory. The array has a 32-bit word per 64k page to be protected; each 32-bit word consists of 16 2-bit fields, for which 0 allows any access (that is otherwise allowed), 1 prevents write accesses, and 2 or 3 prevent any access. Implicit in this is that the regions of the address space that are protected are switched to use 4k hardware pages rather than 64k hardware pages (on machines with hardware 64k page support). In fact the whole process is switched to use 4k hardware pages when the subpage_prot system call is used, but this could be improved in future to switch only the affected segments. The subpage protection bits are stored in a 3 level tree akin to the page table tree. The top level of this tree is stored in a structure that is appended to the top level of the page table tree, i.e., the pgd array. Since it will often only be 32-bit addresses (below 4GB) that are protected, the pointers to the first four bottom level pages are also stored in this structure (each bottom level page contains the protection bits for 1GB of address space), so the protection bits for addresses below 4GB can be accessed with one fewer loads than those for higher addresses. Signed-off-by: Paul Mackerras <paulus@samba.org>
2008-01-23 14:35:13 -07:00
extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
#ifdef CONFIG_PPC_PSERIES
void hpte_init_pseries(void);
#else
static inline void hpte_init_pseries(void) { }
#endif
extern void hpte_init_native(void);
extern void slb_initialize(void);
extern void slb_flush_and_rebolt(void);
void slb_flush_all_realmode(void);
void __slb_restore_bolted_realmode(void);
void slb_restore_bolted_realmode(void);
extern void slb_vmalloc_update(void);
extern void slb_set_size(u16 size);
#endif /* __ASSEMBLY__ */
/*
* VSID allocation (256MB segment)
*
* We first generate a 37-bit "proto-VSID". Proto-VSIDs are generated
* from mmu context id and effective segment id of the address.
*
* For user processes max context id is limited to MAX_USER_CONTEXT.
* For kernel space, we use context ids 1-4 to map addresses as below:
* NOTE: each context only support 64TB now.
* 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
* 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
* 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
* 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
*
* The proto-VSIDs are then scrambled into real VSIDs with the
* multiplicative hash:
*
* VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
*
* VSID_MULTIPLIER is prime, so in particular it is
* co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
* Because the modulus is 2^n-1 we can compute it efficiently without
* a divide or extra multiply (see below). The scramble function gives
* robust scattering in the hash table (at least based on some initial
* results).
*
* We use VSID 0 to indicate an invalid VSID. The means we can't use context id
* 0, because a context id of 0 and an EA of 0 gives a proto-VSID of 0, which
* will produce a VSID of 0.
*
* We also need to avoid the last segment of the last context, because that
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
* because of the modulo operation in vsid scramble.
*/
/*
* Max Va bits we support as of now is 68 bits. We want 19 bit
* context ID.
* Restrictions:
* GPU has restrictions of not able to access beyond 128TB
* (47 bit effective address). We also cannot do more than 20bit PID.
* For p4 and p5 which can only do 65 bit VA, we restrict our CONTEXT_BITS
* to 16 bits (ie, we can only have 2^16 pids at the same time).
*/
#define VA_BITS 68
#define CONTEXT_BITS 19
#define ESID_BITS (VA_BITS - (SID_SHIFT + CONTEXT_BITS))
#define ESID_BITS_1T (VA_BITS - (SID_SHIFT_1T + CONTEXT_BITS))
#define ESID_BITS_MASK ((1 << ESID_BITS) - 1)
#define ESID_BITS_1T_MASK ((1 << ESID_BITS_1T) - 1)
/*
* 256MB segment
* The proto-VSID space has 2^(CONTEX_BITS + ESID_BITS) - 1 segments
* available for user + kernel mapping. VSID 0 is reserved as invalid, contexts
* 1-4 are used for kernel mapping. Each segment contains 2^28 bytes. Each
* context maps 2^49 bytes (512TB).
*
* We also need to avoid the last segment of the last context, because that
* would give a protovsid of 0x1fffffffff. That will result in a VSID 0
* because of the modulo operation in vsid scramble.
*/
#define MAX_USER_CONTEXT ((ASM_CONST(1) << CONTEXT_BITS) - 2)
#define MIN_USER_CONTEXT (5)
/* Would be nice to use KERNEL_REGION_ID here */
#define KERNEL_REGION_CONTEXT_OFFSET (0xc - 1)
/*
* For platforms that support on 65bit VA we limit the context bits
*/
#define MAX_USER_CONTEXT_65BIT_VA ((ASM_CONST(1) << (65 - (SID_SHIFT + ESID_BITS))) - 2)
/*
* This should be computed such that protovosid * vsid_mulitplier
* doesn't overflow 64 bits. The vsid_mutliplier should also be
* co-prime to vsid_modulus. We also need to make sure that number
* of bits in multiplied result (dividend) is less than twice the number of
* protovsid bits for our modulus optmization to work.
*
* The below table shows the current values used.
* |-------+------------+----------------------+------------+-------------------|
* | | Prime Bits | proto VSID_BITS_65VA | Total Bits | 2* prot VSID_BITS |
* |-------+------------+----------------------+------------+-------------------|
* | 1T | 24 | 25 | 49 | 50 |
* |-------+------------+----------------------+------------+-------------------|
* | 256MB | 24 | 37 | 61 | 74 |
* |-------+------------+----------------------+------------+-------------------|
*
* |-------+------------+----------------------+------------+--------------------|
* | | Prime Bits | proto VSID_BITS_68VA | Total Bits | 2* proto VSID_BITS |
* |-------+------------+----------------------+------------+--------------------|
* | 1T | 24 | 28 | 52 | 56 |
* |-------+------------+----------------------+------------+--------------------|
* | 256MB | 24 | 40 | 64 | 80 |
* |-------+------------+----------------------+------------+--------------------|
*
*/
#define VSID_MULTIPLIER_256M ASM_CONST(12538073) /* 24-bit prime */
#define VSID_BITS_256M (VA_BITS - SID_SHIFT)
#define VSID_BITS_65_256M (65 - SID_SHIFT)
/*
* Modular multiplicative inverse of VSID_MULTIPLIER under modulo VSID_MODULUS
*/
#define VSID_MULINV_256M ASM_CONST(665548017062)
#define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
#define VSID_BITS_1T (VA_BITS - SID_SHIFT_1T)
#define VSID_BITS_65_1T (65 - SID_SHIFT_1T)
#define VSID_MULINV_1T ASM_CONST(209034062)
/* 1TB VSID reserved for VRMA */
#define VRMA_VSID 0x1ffffffUL
#define USER_VSID_RANGE (1UL << (ESID_BITS + SID_SHIFT))
/* 4 bits per slice and we have one slice per 1TB */
#define SLICE_ARRAY_SIZE (H_PGTABLE_RANGE >> 41)
#define TASK_SLICE_ARRAY_SZ(x) ((x)->context.slb_addr_limit >> 41)
#ifndef __ASSEMBLY__
#ifdef CONFIG_PPC_SUBPAGE_PROT
/*
* For the sub-page protection option, we extend the PGD with one of
* these. Basically we have a 3-level tree, with the top level being
* the protptrs array. To optimize speed and memory consumption when
* only addresses < 4GB are being protected, pointers to the first
* four pages of sub-page protection words are stored in the low_prot
* array.
* Each page of sub-page protection words protects 1GB (4 bytes
* protects 64k). For the 3-level tree, each page of pointers then
* protects 8TB.
*/
struct subpage_prot_table {
unsigned long maxaddr; /* only addresses < this are protected */
unsigned int **protptrs[(TASK_SIZE_USER64 >> 43)];
unsigned int *low_prot[4];
};
#define SBP_L1_BITS (PAGE_SHIFT - 2)
#define SBP_L2_BITS (PAGE_SHIFT - 3)
#define SBP_L1_COUNT (1 << SBP_L1_BITS)
#define SBP_L2_COUNT (1 << SBP_L2_BITS)
#define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
#define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
extern void subpage_prot_free(struct mm_struct *mm);
extern void subpage_prot_init_new_context(struct mm_struct *mm);
#else
static inline void subpage_prot_free(struct mm_struct *mm) {}
static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
#endif /* CONFIG_PPC_SUBPAGE_PROT */
#if 0
/*
* The code below is equivalent to this function for arguments
* < 2^VSID_BITS, which is all this should ever be called
* with. However gcc is not clever enough to compute the
* modulus (2^n-1) without a second multiply.
*/
#define vsid_scramble(protovsid, size) \
((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
/* simplified form avoiding mod operation */
#define vsid_scramble(protovsid, size) \
({ \
unsigned long x; \
x = (protovsid) * VSID_MULTIPLIER_##size; \
x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
(x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
})
#else /* 1 */
static inline unsigned long vsid_scramble(unsigned long protovsid,
unsigned long vsid_multiplier, int vsid_bits)
{
unsigned long vsid;
unsigned long vsid_modulus = ((1UL << vsid_bits) - 1);
/*
* We have same multipler for both 256 and 1T segements now
*/
vsid = protovsid * vsid_multiplier;
vsid = (vsid >> vsid_bits) + (vsid & vsid_modulus);
return (vsid + ((vsid + 1) >> vsid_bits)) & vsid_modulus;
}
#endif /* 1 */
/* Returns the segment size indicator for a user address */
static inline int user_segment_size(unsigned long addr)
{
/* Use 1T segments if possible for addresses >= 1T */
if (addr >= (1UL << SID_SHIFT_1T))
return mmu_highuser_ssize;
return MMU_SEGSIZE_256M;
}
static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
int ssize)
{
unsigned long va_bits = VA_BITS;
unsigned long vsid_bits;
unsigned long protovsid;
/*
* Bad address. We return VSID 0 for that
*/
if ((ea & ~REGION_MASK) >= H_PGTABLE_RANGE)
return 0;
if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
va_bits = 65;
if (ssize == MMU_SEGSIZE_256M) {
vsid_bits = va_bits - SID_SHIFT;
protovsid = (context << ESID_BITS) |
((ea >> SID_SHIFT) & ESID_BITS_MASK);
return vsid_scramble(protovsid, VSID_MULTIPLIER_256M, vsid_bits);
}
/* 1T segment */
vsid_bits = va_bits - SID_SHIFT_1T;
protovsid = (context << ESID_BITS_1T) |
((ea >> SID_SHIFT_1T) & ESID_BITS_1T_MASK);
return vsid_scramble(protovsid, VSID_MULTIPLIER_1T, vsid_bits);
}
/*
* This is only valid for addresses >= PAGE_OFFSET
*/
static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
{
unsigned long context;
if (!is_kernel_addr(ea))
return 0;
/*
* For kernel space, we use context ids 1-4 to map the address space as
* below:
*
* 0x00001 - [ 0xc000000000000000 - 0xc0003fffffffffff ]
* 0x00002 - [ 0xd000000000000000 - 0xd0003fffffffffff ]
* 0x00003 - [ 0xe000000000000000 - 0xe0003fffffffffff ]
* 0x00004 - [ 0xf000000000000000 - 0xf0003fffffffffff ]
*
* So we can compute the context from the region (top nibble) by
* subtracting 11, or 0xc - 1.
*/
context = (ea >> 60) - KERNEL_REGION_CONTEXT_OFFSET;
return get_vsid(context, ea, ssize);
}
unsigned htab_shift_for_mem_size(unsigned long mem_size);
#endif /* __ASSEMBLY__ */
#endif /* _ASM_POWERPC_BOOK3S_64_MMU_HASH_H_ */