1
0
Fork 0
alistair23-linux/arch/mips/mm/c-r3k.c

325 lines
7.5 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 08:07:57 -06:00
// SPDX-License-Identifier: GPL-2.0
/*
* r2300.c: R2000 and R3000 specific mmu/cache code.
*
* Copyright (C) 1996 David S. Miller (davem@davemloft.net)
*
* with a lot of changes to make this thing work for R3000s
* Tx39XX R4k style caches added. HK
* Copyright (C) 1998, 1999, 2000 Harald Koerfgen
* Copyright (C) 1998 Gleb Raiko & Vladimir Roganov
* Copyright (C) 2001, 2004, 2007 Maciej W. Rozycki
*/
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/mm.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/mmu_context.h>
#include <asm/isadep.h>
#include <asm/io.h>
#include <asm/bootinfo.h>
#include <asm/cpu.h>
static unsigned long icache_size, dcache_size; /* Size in bytes */
static unsigned long icache_lsize, dcache_lsize; /* Size in bytes */
MIPS: Delete __cpuinit/__CPUINIT usage from MIPS code commit 3747069b25e419f6b51395f48127e9812abc3596 upstream. The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) and are flagged as __cpuinit -- so if we remove the __cpuinit from the arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit related content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. Here, we remove all the MIPS __cpuinit from C code and __CPUINIT from asm files. MIPS is interesting in this respect, because there are also uasm users hiding behind their own renamed versions of the __cpuinit macros. [1] https://lkml.org/lkml/2013/5/20/589 [ralf@linux-mips.org: Folded in Paul's followup fix.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/5494/ Patchwork: https://patchwork.linux-mips.org/patch/5495/ Patchwork: https://patchwork.linux-mips.org/patch/5509/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-06-18 07:38:59 -06:00
unsigned long r3k_cache_size(unsigned long ca_flags)
{
unsigned long flags, status, dummy, size;
volatile unsigned long *p;
p = (volatile unsigned long *) KSEG0;
flags = read_c0_status();
/* isolate cache space */
write_c0_status((ca_flags|flags)&~ST0_IEC);
*p = 0xa5a55a5a;
dummy = *p;
status = read_c0_status();
if (dummy != 0xa5a55a5a || (status & ST0_CM)) {
size = 0;
} else {
for (size = 128; size <= 0x40000; size <<= 1)
*(p + size) = 0;
*p = -1;
for (size = 128;
(size <= 0x40000) && (*(p + size) == 0);
size <<= 1)
;
if (size > 0x40000)
size = 0;
}
write_c0_status(flags);
return size * sizeof(*p);
}
MIPS: Delete __cpuinit/__CPUINIT usage from MIPS code commit 3747069b25e419f6b51395f48127e9812abc3596 upstream. The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) and are flagged as __cpuinit -- so if we remove the __cpuinit from the arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit related content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. Here, we remove all the MIPS __cpuinit from C code and __CPUINIT from asm files. MIPS is interesting in this respect, because there are also uasm users hiding behind their own renamed versions of the __cpuinit macros. [1] https://lkml.org/lkml/2013/5/20/589 [ralf@linux-mips.org: Folded in Paul's followup fix.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/5494/ Patchwork: https://patchwork.linux-mips.org/patch/5495/ Patchwork: https://patchwork.linux-mips.org/patch/5509/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-06-18 07:38:59 -06:00
unsigned long r3k_cache_lsize(unsigned long ca_flags)
{
unsigned long flags, status, lsize, i;
volatile unsigned long *p;
p = (volatile unsigned long *) KSEG0;
flags = read_c0_status();
/* isolate cache space */
write_c0_status((ca_flags|flags)&~ST0_IEC);
for (i = 0; i < 128; i++)
*(p + i) = 0;
*(volatile unsigned char *)p = 0;
for (lsize = 1; lsize < 128; lsize <<= 1) {
*(p + lsize);
status = read_c0_status();
if (!(status & ST0_CM))
break;
}
for (i = 0; i < 128; i += lsize)
*(volatile unsigned char *)(p + i) = 0;
write_c0_status(flags);
return lsize * sizeof(*p);
}
MIPS: Delete __cpuinit/__CPUINIT usage from MIPS code commit 3747069b25e419f6b51395f48127e9812abc3596 upstream. The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) and are flagged as __cpuinit -- so if we remove the __cpuinit from the arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit related content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. Here, we remove all the MIPS __cpuinit from C code and __CPUINIT from asm files. MIPS is interesting in this respect, because there are also uasm users hiding behind their own renamed versions of the __cpuinit macros. [1] https://lkml.org/lkml/2013/5/20/589 [ralf@linux-mips.org: Folded in Paul's followup fix.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/5494/ Patchwork: https://patchwork.linux-mips.org/patch/5495/ Patchwork: https://patchwork.linux-mips.org/patch/5509/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-06-18 07:38:59 -06:00
static void r3k_probe_cache(void)
{
dcache_size = r3k_cache_size(ST0_ISC);
if (dcache_size)
dcache_lsize = r3k_cache_lsize(ST0_ISC);
icache_size = r3k_cache_size(ST0_ISC|ST0_SWC);
if (icache_size)
icache_lsize = r3k_cache_lsize(ST0_ISC|ST0_SWC);
}
static void r3k_flush_icache_range(unsigned long start, unsigned long end)
{
unsigned long size, i, flags;
volatile unsigned char *p;
size = end - start;
if (size > icache_size || KSEGX(start) != KSEG0) {
start = KSEG0;
size = icache_size;
}
p = (char *)start;
flags = read_c0_status();
/* isolate cache space */
write_c0_status((ST0_ISC|ST0_SWC|flags)&~ST0_IEC);
for (i = 0; i < size; i += 0x080) {
asm( "sb\t$0, 0x000(%0)\n\t"
"sb\t$0, 0x004(%0)\n\t"
"sb\t$0, 0x008(%0)\n\t"
"sb\t$0, 0x00c(%0)\n\t"
"sb\t$0, 0x010(%0)\n\t"
"sb\t$0, 0x014(%0)\n\t"
"sb\t$0, 0x018(%0)\n\t"
"sb\t$0, 0x01c(%0)\n\t"
"sb\t$0, 0x020(%0)\n\t"
"sb\t$0, 0x024(%0)\n\t"
"sb\t$0, 0x028(%0)\n\t"
"sb\t$0, 0x02c(%0)\n\t"
"sb\t$0, 0x030(%0)\n\t"
"sb\t$0, 0x034(%0)\n\t"
"sb\t$0, 0x038(%0)\n\t"
"sb\t$0, 0x03c(%0)\n\t"
"sb\t$0, 0x040(%0)\n\t"
"sb\t$0, 0x044(%0)\n\t"
"sb\t$0, 0x048(%0)\n\t"
"sb\t$0, 0x04c(%0)\n\t"
"sb\t$0, 0x050(%0)\n\t"
"sb\t$0, 0x054(%0)\n\t"
"sb\t$0, 0x058(%0)\n\t"
"sb\t$0, 0x05c(%0)\n\t"
"sb\t$0, 0x060(%0)\n\t"
"sb\t$0, 0x064(%0)\n\t"
"sb\t$0, 0x068(%0)\n\t"
"sb\t$0, 0x06c(%0)\n\t"
"sb\t$0, 0x070(%0)\n\t"
"sb\t$0, 0x074(%0)\n\t"
"sb\t$0, 0x078(%0)\n\t"
"sb\t$0, 0x07c(%0)\n\t"
: : "r" (p) );
p += 0x080;
}
write_c0_status(flags);
}
static void r3k_flush_dcache_range(unsigned long start, unsigned long end)
{
unsigned long size, i, flags;
volatile unsigned char *p;
size = end - start;
if (size > dcache_size || KSEGX(start) != KSEG0) {
start = KSEG0;
size = dcache_size;
}
p = (char *)start;
flags = read_c0_status();
/* isolate cache space */
write_c0_status((ST0_ISC|flags)&~ST0_IEC);
for (i = 0; i < size; i += 0x080) {
asm( "sb\t$0, 0x000(%0)\n\t"
"sb\t$0, 0x004(%0)\n\t"
"sb\t$0, 0x008(%0)\n\t"
"sb\t$0, 0x00c(%0)\n\t"
"sb\t$0, 0x010(%0)\n\t"
"sb\t$0, 0x014(%0)\n\t"
"sb\t$0, 0x018(%0)\n\t"
"sb\t$0, 0x01c(%0)\n\t"
"sb\t$0, 0x020(%0)\n\t"
"sb\t$0, 0x024(%0)\n\t"
"sb\t$0, 0x028(%0)\n\t"
"sb\t$0, 0x02c(%0)\n\t"
"sb\t$0, 0x030(%0)\n\t"
"sb\t$0, 0x034(%0)\n\t"
"sb\t$0, 0x038(%0)\n\t"
"sb\t$0, 0x03c(%0)\n\t"
"sb\t$0, 0x040(%0)\n\t"
"sb\t$0, 0x044(%0)\n\t"
"sb\t$0, 0x048(%0)\n\t"
"sb\t$0, 0x04c(%0)\n\t"
"sb\t$0, 0x050(%0)\n\t"
"sb\t$0, 0x054(%0)\n\t"
"sb\t$0, 0x058(%0)\n\t"
"sb\t$0, 0x05c(%0)\n\t"
"sb\t$0, 0x060(%0)\n\t"
"sb\t$0, 0x064(%0)\n\t"
"sb\t$0, 0x068(%0)\n\t"
"sb\t$0, 0x06c(%0)\n\t"
"sb\t$0, 0x070(%0)\n\t"
"sb\t$0, 0x074(%0)\n\t"
"sb\t$0, 0x078(%0)\n\t"
"sb\t$0, 0x07c(%0)\n\t"
: : "r" (p) );
p += 0x080;
}
write_c0_status(flags);
}
static inline void r3k_flush_cache_all(void)
{
}
static inline void r3k___flush_cache_all(void)
{
r3k_flush_dcache_range(KSEG0, KSEG0 + dcache_size);
r3k_flush_icache_range(KSEG0, KSEG0 + icache_size);
}
static void r3k_flush_cache_mm(struct mm_struct *mm)
{
}
static void r3k_flush_cache_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end)
{
}
static void r3k_flush_cache_page(struct vm_area_struct *vma,
unsigned long addr, unsigned long pfn)
{
unsigned long kaddr = KSEG0ADDR(pfn << PAGE_SHIFT);
int exec = vma->vm_flags & VM_EXEC;
struct mm_struct *mm = vma->vm_mm;
pgd_t *pgdp;
pud_t *pudp;
pmd_t *pmdp;
pte_t *ptep;
MIPS: Expand MIPS32 ASIDs to 64 bits ASIDs have always been stored as unsigned longs, ie. 32 bits on MIPS32 kernels. This is problematic because it is feasible for the ASID version to overflow & wrap around to zero. We currently attempt to handle this overflow by simply setting the ASID version to 1, using asid_first_version(), but we make no attempt to account for the fact that there may be mm_structs with stale ASIDs that have versions which we now reuse due to the overflow & wrap around. Encountering this requires that: 1) A struct mm_struct X is active on CPU A using ASID (V,n). 2) That mm is not used on CPU A for the length of time that it takes for CPU A's asid_cache to overflow & wrap around to the same version V that the mm had in step 1. During this time tasks using the mm could either be sleeping or only scheduled on other CPUs. 3) Some other mm Y becomes active on CPU A and is allocated the same ASID (V,n). 4) mm X now becomes active on CPU A again, and now incorrectly has the same ASID as mm Y. Where struct mm_struct ASIDs are represented above in the format (version, EntryHi.ASID), and on a typical MIPS32 system version will be 24 bits wide & EntryHi.ASID will be 8 bits wide. The length of time required in step 2 is highly dependent upon the CPU & workload, but for a hypothetical 2GHz CPU running a workload which generates a new ASID every 10000 cycles this period is around 248 days. Due to this long period of time & the fact that tasks need to be scheduled in just the right (or wrong, depending upon your inclination) way, this is obviously a difficult bug to encounter but it's entirely possible as evidenced by reports. In order to fix this, simply extend ASIDs to 64 bits even on MIPS32 builds. This will extend the period of time required for the hypothetical system above to encounter the problem from 28 days to around 3 trillion years, which feels safely outside of the realms of possibility. The cost of this is slightly more generated code in some commonly executed paths, but this is pretty minimal: | Code Size Gain | Percentage -----------------------|----------------|------------- decstation_defconfig | +270 | +0.00% 32r2el_defconfig | +652 | +0.01% 32r6el_defconfig | +1000 | +0.01% I have been unable to measure any change in performance of the LMbench lat_ctx or lat_proc tests resulting from the 64b ASIDs on either 32r2el_defconfig+interAptiv or 32r6el_defconfig+I6500 systems. Signed-off-by: Paul Burton <paul.burton@mips.com> Suggested-by: James Hogan <jhogan@kernel.org> References: https://lore.kernel.org/linux-mips/80B78A8B8FEE6145A87579E8435D78C30205D5F3@fzex.ruijie.com.cn/ References: https://lore.kernel.org/linux-mips/1488684260-18867-1-git-send-email-jiwei.sun@windriver.com/ Cc: Jiwei Sun <jiwei.sun@windriver.com> Cc: Yu Huabing <yhb@ruijie.com.cn> Cc: stable@vger.kernel.org # 2.6.12+ Cc: linux-mips@vger.kernel.org
2018-12-04 16:44:12 -07:00
pr_debug("cpage[%08llx,%08lx]\n",
cpu_context(smp_processor_id(), mm), addr);
/* No ASID => no such page in the cache. */
if (cpu_context(smp_processor_id(), mm) == 0)
return;
pgdp = pgd_offset(mm, addr);
pudp = pud_offset(pgdp, addr);
pmdp = pmd_offset(pudp, addr);
ptep = pte_offset(pmdp, addr);
/* Invalid => no such page in the cache. */
if (!(pte_val(*ptep) & _PAGE_PRESENT))
return;
r3k_flush_dcache_range(kaddr, kaddr + PAGE_SIZE);
if (exec)
r3k_flush_icache_range(kaddr, kaddr + PAGE_SIZE);
}
static void local_r3k_flush_data_cache_page(void *addr)
{
}
static void r3k_flush_data_cache_page(unsigned long addr)
{
}
static void r3k_flush_kernel_vmap_range(unsigned long vaddr, int size)
{
BUG();
}
static void r3k_dma_cache_wback_inv(unsigned long start, unsigned long size)
{
/* Catch bad driver code */
BUG_ON(size == 0);
iob();
r3k_flush_dcache_range(start, start + size);
}
MIPS: Delete __cpuinit/__CPUINIT usage from MIPS code commit 3747069b25e419f6b51395f48127e9812abc3596 upstream. The __cpuinit type of throwaway sections might have made sense some time ago when RAM was more constrained, but now the savings do not offset the cost and complications. For example, the fix in commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time") is a good example of the nasty type of bugs that can be created with improper use of the various __init prefixes. After a discussion on LKML[1] it was decided that cpuinit should go the way of devinit and be phased out. Once all the users are gone, we can then finally remove the macros themselves from linux/init.h. Note that some harmless section mismatch warnings may result, since notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c) and are flagged as __cpuinit -- so if we remove the __cpuinit from the arch specific callers, we will also get section mismatch warnings. As an intermediate step, we intend to turn the linux/init.h cpuinit related content into no-ops as early as possible, since that will get rid of these warnings. In any case, they are temporary and harmless. Here, we remove all the MIPS __cpuinit from C code and __CPUINIT from asm files. MIPS is interesting in this respect, because there are also uasm users hiding behind their own renamed versions of the __cpuinit macros. [1] https://lkml.org/lkml/2013/5/20/589 [ralf@linux-mips.org: Folded in Paul's followup fix.] Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: linux-mips@linux-mips.org Patchwork: https://patchwork.linux-mips.org/patch/5494/ Patchwork: https://patchwork.linux-mips.org/patch/5495/ Patchwork: https://patchwork.linux-mips.org/patch/5509/ Signed-off-by: Ralf Baechle <ralf@linux-mips.org>
2013-06-18 07:38:59 -06:00
void r3k_cache_init(void)
{
extern void build_clear_page(void);
extern void build_copy_page(void);
r3k_probe_cache();
flush_cache_all = r3k_flush_cache_all;
__flush_cache_all = r3k___flush_cache_all;
flush_cache_mm = r3k_flush_cache_mm;
flush_cache_range = r3k_flush_cache_range;
flush_cache_page = r3k_flush_cache_page;
flush_icache_range = r3k_flush_icache_range;
local_flush_icache_range = r3k_flush_icache_range;
__flush_icache_user_range = r3k_flush_icache_range;
__local_flush_icache_user_range = r3k_flush_icache_range;
__flush_kernel_vmap_range = r3k_flush_kernel_vmap_range;
local_flush_data_cache_page = local_r3k_flush_data_cache_page;
flush_data_cache_page = r3k_flush_data_cache_page;
_dma_cache_wback_inv = r3k_dma_cache_wback_inv;
_dma_cache_wback = r3k_dma_cache_wback_inv;
_dma_cache_inv = r3k_dma_cache_wback_inv;
printk("Primary instruction cache %ldkB, linesize %ld bytes.\n",
icache_size >> 10, icache_lsize);
printk("Primary data cache %ldkB, linesize %ld bytes.\n",
dcache_size >> 10, dcache_lsize);
build_clear_page();
build_copy_page();
}