1
0
Fork 0
alistair23-linux/drivers/gpu/drm/i915/intel_lrc.c

2576 lines
78 KiB
C
Raw Normal View History

/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Ben Widawsky <ben@bwidawsk.net>
* Michel Thierry <michel.thierry@intel.com>
* Thomas Daniel <thomas.daniel@intel.com>
* Oscar Mateo <oscar.mateo@intel.com>
*
*/
/**
* DOC: Logical Rings, Logical Ring Contexts and Execlists
*
* Motivation:
* GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
* These expanded contexts enable a number of new abilities, especially
* "Execlists" (also implemented in this file).
*
* One of the main differences with the legacy HW contexts is that logical
* ring contexts incorporate many more things to the context's state, like
* PDPs or ringbuffer control registers:
*
* The reason why PDPs are included in the context is straightforward: as
* PPGTTs (per-process GTTs) are actually per-context, having the PDPs
* contained there mean you don't need to do a ppgtt->switch_mm yourself,
* instead, the GPU will do it for you on the context switch.
*
* But, what about the ringbuffer control registers (head, tail, etc..)?
* shouldn't we just need a set of those per engine command streamer? This is
* where the name "Logical Rings" starts to make sense: by virtualizing the
* rings, the engine cs shifts to a new "ring buffer" with every context
* switch. When you want to submit a workload to the GPU you: A) choose your
* context, B) find its appropriate virtualized ring, C) write commands to it
* and then, finally, D) tell the GPU to switch to that context.
*
* Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
* to a contexts is via a context execution list, ergo "Execlists".
*
* LRC implementation:
* Regarding the creation of contexts, we have:
*
* - One global default context.
* - One local default context for each opened fd.
* - One local extra context for each context create ioctl call.
*
* Now that ringbuffers belong per-context (and not per-engine, like before)
* and that contexts are uniquely tied to a given engine (and not reusable,
* like before) we need:
*
* - One ringbuffer per-engine inside each context.
* - One backing object per-engine inside each context.
*
* The global default context starts its life with these new objects fully
* allocated and populated. The local default context for each opened fd is
* more complex, because we don't know at creation time which engine is going
* to use them. To handle this, we have implemented a deferred creation of LR
* contexts:
*
* The local context starts its life as a hollow or blank holder, that only
* gets populated for a given engine once we receive an execbuffer. If later
* on we receive another execbuffer ioctl for the same context but a different
* engine, we allocate/populate a new ringbuffer and context backing object and
* so on.
*
* Finally, regarding local contexts created using the ioctl call: as they are
* only allowed with the render ring, we can allocate & populate them right
* away (no need to defer anything, at least for now).
*
* Execlists implementation:
* Execlists are the new method by which, on gen8+ hardware, workloads are
* submitted for execution (as opposed to the legacy, ringbuffer-based, method).
* This method works as follows:
*
* When a request is committed, its commands (the BB start and any leading or
* trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
* for the appropriate context. The tail pointer in the hardware context is not
* updated at this time, but instead, kept by the driver in the ringbuffer
* structure. A structure representing this request is added to a request queue
* for the appropriate engine: this structure contains a copy of the context's
* tail after the request was written to the ring buffer and a pointer to the
* context itself.
*
* If the engine's request queue was empty before the request was added, the
* queue is processed immediately. Otherwise the queue will be processed during
* a context switch interrupt. In any case, elements on the queue will get sent
* (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
* globally unique 20-bits submission ID.
*
* When execution of a request completes, the GPU updates the context status
* buffer with a context complete event and generates a context switch interrupt.
* During the interrupt handling, the driver examines the events in the buffer:
* for each context complete event, if the announced ID matches that on the head
* of the request queue, then that request is retired and removed from the queue.
*
* After processing, if any requests were retired and the queue is not empty
* then a new execution list can be submitted. The two requests at the front of
* the queue are next to be submitted but since a context may not occur twice in
* an execution list, if subsequent requests have the same ID as the first then
* the two requests must be combined. This is done simply by discarding requests
* at the head of the queue until either only one requests is left (in which case
* we use a NULL second context) or the first two requests have unique IDs.
*
* By always executing the first two requests in the queue the driver ensures
* that the GPU is kept as busy as possible. In the case where a single context
* completes but a second context is still executing, the request for this second
* context will be at the head of the queue when we remove the first one. This
* request will then be resubmitted along with a new request for a different context,
* which will cause the hardware to continue executing the second request and queue
* the new request (the GPU detects the condition of a context getting preempted
* with the same context and optimizes the context switch flow by not doing
* preemption, but just sampling the new tail pointer).
*
*/
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
#include <linux/interrupt.h>
#include <drm/drmP.h>
#include <drm/i915_drm.h>
#include "i915_drv.h"
drm/i915: Added Programming of the MOCS This change adds the programming of the MOCS registers to the gen 9+ platforms. The set of MOCS configuration entries introduced by this patch is intended to be minimal but sufficient to cover the needs of current userspace - i.e. a good set of defaults. It is expected to be extended in the future to provide further default values or to allow userspace to redefine its private MOCS tables based on its demand for additional caching configurations. In this setup, userspace should only utilize the first N entries, higher entries are reserved for future use. It creates a fixed register set that is programmed across the different engines so that all engines have the same table. This is done as the main RCS context only holds the registers for itself and the shared L3 values. By trying to keep the registers consistent across the different engines it should make the programming for the registers consistent. v2: -'static const' for private data structures and style changes.(Matt Turner) v3: - Make the tables "slightly" more readable. (Damien Lespiau) - Updated tables fix performance regression. v4: - Code formatting. (Chris Wilson) - re-privatised mocs code. (Daniel Vetter) v5: - Changed the name of a function. (Chris Wilson) v6: - re-based - Added Mesa table entry (skylake & broxton) (Francisco Jerez) - Tidied up the readability defines (Francisco Jerez) - NUMBER of entries defines wrong. (Jim Bish) - Added comments to clear up the meaning of the tables (Jim Bish) Signed-off-by: Peter Antoine <peter.antoine@intel.com> v7 (Francisco Jerez): - Don't write L3-specific MOCS_ESC/SCC values into the e/LLC control tables. Prefix L3-specific defines consistently with L3_ and e/LLC-specific defines with LE_ to avoid this kind of confusion in the future. - Change L3CC WT define back to RESERVED (matches my hardware documentation and the original patch, probably a misunderstanding of my own previous comment). - Drop Android tables, define new minimal tables more suitable for the open source stack. - Add comment that the MOCS tables are part of the kernel ABI. - Move intel_logical_ring_begin() and _advance() calls one level down (Chris Wilson). - Minor formatting and style fixes. v8 (Francisco Jerez): - Add table size sanity check to emit_mocs_control/l3cc_table() (Chris Wilson). - Add comment about undefined entries being implicitly set to uncached for forwards compatibility. v9 (Francisco Jerez): - Minor style fixes. Signed-off-by: Francisco Jerez <currojerez@riseup.net> Acked-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-10 11:13:11 -06:00
#include "intel_mocs.h"
#define GEN9_LR_CONTEXT_RENDER_SIZE (22 * PAGE_SIZE)
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
#define GEN8_LR_CONTEXT_RENDER_SIZE (20 * PAGE_SIZE)
#define GEN8_LR_CONTEXT_OTHER_SIZE (2 * PAGE_SIZE)
2014-07-24 10:04:39 -06:00
#define RING_EXECLIST_QFULL (1 << 0x2)
#define RING_EXECLIST1_VALID (1 << 0x3)
#define RING_EXECLIST0_VALID (1 << 0x4)
#define RING_EXECLIST_ACTIVE_STATUS (3 << 0xE)
#define RING_EXECLIST1_ACTIVE (1 << 0x11)
#define RING_EXECLIST0_ACTIVE (1 << 0x12)
#define GEN8_CTX_STATUS_IDLE_ACTIVE (1 << 0)
#define GEN8_CTX_STATUS_PREEMPTED (1 << 1)
#define GEN8_CTX_STATUS_ELEMENT_SWITCH (1 << 2)
#define GEN8_CTX_STATUS_ACTIVE_IDLE (1 << 3)
#define GEN8_CTX_STATUS_COMPLETE (1 << 4)
#define GEN8_CTX_STATUS_LITE_RESTORE (1 << 15)
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
#define CTX_LRI_HEADER_0 0x01
#define CTX_CONTEXT_CONTROL 0x02
#define CTX_RING_HEAD 0x04
#define CTX_RING_TAIL 0x06
#define CTX_RING_BUFFER_START 0x08
#define CTX_RING_BUFFER_CONTROL 0x0a
#define CTX_BB_HEAD_U 0x0c
#define CTX_BB_HEAD_L 0x0e
#define CTX_BB_STATE 0x10
#define CTX_SECOND_BB_HEAD_U 0x12
#define CTX_SECOND_BB_HEAD_L 0x14
#define CTX_SECOND_BB_STATE 0x16
#define CTX_BB_PER_CTX_PTR 0x18
#define CTX_RCS_INDIRECT_CTX 0x1a
#define CTX_RCS_INDIRECT_CTX_OFFSET 0x1c
#define CTX_LRI_HEADER_1 0x21
#define CTX_CTX_TIMESTAMP 0x22
#define CTX_PDP3_UDW 0x24
#define CTX_PDP3_LDW 0x26
#define CTX_PDP2_UDW 0x28
#define CTX_PDP2_LDW 0x2a
#define CTX_PDP1_UDW 0x2c
#define CTX_PDP1_LDW 0x2e
#define CTX_PDP0_UDW 0x30
#define CTX_PDP0_LDW 0x32
#define CTX_LRI_HEADER_2 0x41
#define CTX_R_PWR_CLK_STATE 0x42
#define CTX_GPGPU_CSR_BASE_ADDRESS 0x44
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
#define GEN8_CTX_VALID (1<<0)
#define GEN8_CTX_FORCE_PD_RESTORE (1<<1)
#define GEN8_CTX_FORCE_RESTORE (1<<2)
#define GEN8_CTX_L3LLC_COHERENT (1<<5)
#define GEN8_CTX_PRIVILEGE (1<<8)
#define ASSIGN_CTX_REG(reg_state, pos, reg, val) do { \
drm/i915: Type safe register read/write Make I915_READ and I915_WRITE more type safe by wrapping the register offset in a struct. This should eliminate most of the fumbles we've had with misplaced parens. This only takes care of normal mmio registers. We could extend the idea to other register types and define each with its own struct. That way you wouldn't be able to accidentally pass the wrong thing to a specific register access function. The gpio_reg setup is probably the ugliest thing left. But I figure I'd just leave it for now, and wait for some divine inspiration to strike before making it nice. As for the generated code, it's actually a bit better sometimes. Eg. looking at i915_irq_handler(), we can see the following change: lea 0x70024(%rdx,%rax,1),%r9d mov $0x1,%edx - movslq %r9d,%r9 - mov %r9,%rsi - mov %r9,-0x58(%rbp) - callq *0xd8(%rbx) + mov %r9d,%esi + mov %r9d,-0x48(%rbp) callq *0xd8(%rbx) So previously gcc thought the register offset might be signed and decided to sign extend it, just in case. The rest appears to be mostly just minor shuffling of instructions. v2: i915_mmio_reg_{offset,equal,valid}() helpers added s/_REG/_MMIO/ in the register defines mo more switch statements left to worry about ring_emit stuff got sorted in a prep patch cmd parser, lrc context and w/a batch buildup also in prep patch vgpu stuff cleaned up and moved to a prep patch all other unrelated changes split out v3: Rebased due to BXT DSI/BLC, MOCS, etc. v4: Rebased due to churn, s/i915_mmio_reg_t/i915_reg_t/ Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1447853606-2751-1-git-send-email-ville.syrjala@linux.intel.com
2015-11-18 06:33:26 -07:00
(reg_state)[(pos)+0] = i915_mmio_reg_offset(reg); \
(reg_state)[(pos)+1] = (val); \
} while (0)
#define ASSIGN_CTX_PDP(ppgtt, reg_state, n) do { \
const u64 _addr = i915_page_dir_dma_addr((ppgtt), (n)); \
reg_state[CTX_PDP ## n ## _UDW+1] = upper_32_bits(_addr); \
reg_state[CTX_PDP ## n ## _LDW+1] = lower_32_bits(_addr); \
} while (0)
#define ASSIGN_CTX_PML4(ppgtt, reg_state) do { \
2015-07-30 04:06:23 -06:00
reg_state[CTX_PDP0_UDW + 1] = upper_32_bits(px_dma(&ppgtt->pml4)); \
reg_state[CTX_PDP0_LDW + 1] = lower_32_bits(px_dma(&ppgtt->pml4)); \
} while (0)
2015-07-30 04:06:23 -06:00
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
enum {
ADVANCED_CONTEXT = 0,
2015-07-30 04:06:23 -06:00
LEGACY_32B_CONTEXT,
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
ADVANCED_AD_CONTEXT,
LEGACY_64B_CONTEXT
};
2015-07-30 04:06:23 -06:00
#define GEN8_CTX_ADDRESSING_MODE_SHIFT 3
#define GEN8_CTX_ADDRESSING_MODE(dev) (USES_FULL_48BIT_PPGTT(dev) ?\
LEGACY_64B_CONTEXT :\
LEGACY_32B_CONTEXT)
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
enum {
FAULT_AND_HANG = 0,
FAULT_AND_HALT, /* Debug only */
FAULT_AND_STREAM,
FAULT_AND_CONTINUE /* Unsupported */
};
#define GEN8_CTX_ID_SHIFT 32
#define GEN8_CTX_ID_WIDTH 21
#define GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x17
#define GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT 0x26
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
/* Typical size of the average request (2 pipecontrols and a MI_BB) */
#define EXECLISTS_REQUEST_SIZE 64 /* bytes */
static int execlists_context_deferred_alloc(struct intel_context *ctx,
struct intel_engine_cs *engine);
static int intel_lr_context_pin(struct intel_context *ctx,
struct intel_engine_cs *engine);
drm/i915/bdw: Pin the ringbuffer backing object to GGTT on-demand Same as with the context, pinning to GGTT regardless is harmful (it badly fragments the GGTT and can even exhaust it). Unfortunately, this case is also more complex than the previous one because we need to map and access the ringbuffer in several places along the execbuffer path (and we cannot make do by leaving the default ringbuffer pinned, as before). Also, the context object itself contains a pointer to the ringbuffer address that we have to keep updated if we are going to allow the ringbuffer to move around. v2: Same as with the context pinning, we cannot really do it during an interrupt. Also, pin the default ringbuffers objects regardless (makes error capture a lot easier). v3: Rebased. Take a pin reference of the ringbuffer for each item in the execlist request queue because the hardware may still be using the ringbuffer after the MI_USER_INTERRUPT to notify the seqno update is executed. The ringbuffer must remain pinned until the context save is complete. No longer pin and unpin ringbuffer in populate_lr_context() - this transient address is meaningless and the pinning can cause a sleep while atomic. v4: Moved ringbuffer pin and unpin into the lr_context_pin functions. Downgraded pinning check BUG_ONs to WARN_ONs. v5: Reinstated WARN_ONs for unexpected execlist states. Removed unused variable. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:56 -07:00
/**
* intel_sanitize_enable_execlists() - sanitize i915.enable_execlists
* @dev: DRM device.
* @enable_execlists: value of i915.enable_execlists module parameter.
*
* Only certain platforms support Execlists (the prerequisites being
* support for Logical Ring Contexts and Aliasing PPGTT or better).
*
* Return: 1 if Execlists is supported and has to be enabled.
*/
int intel_sanitize_enable_execlists(struct drm_device *dev, int enable_execlists)
{
/* On platforms with execlist available, vGPU will only
* support execlist mode, no ring buffer mode.
*/
if (HAS_LOGICAL_RING_CONTEXTS(dev) && intel_vgpu_active(dev))
return 1;
if (INTEL_INFO(dev)->gen >= 9)
return 1;
if (enable_execlists == 0)
return 0;
if (HAS_LOGICAL_RING_CONTEXTS(dev) && USES_PPGTT(dev) &&
i915.use_mmio_flip >= 0)
return 1;
return 0;
}
static void
logical_ring_init_platform_invariants(struct intel_engine_cs *engine)
{
struct drm_device *dev = engine->dev;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
if (IS_GEN8(dev) || IS_GEN9(dev))
engine->idle_lite_restore_wa = ~0;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
engine->disable_lite_restore_wa = (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
IS_BXT_REVID(dev, 0, BXT_REVID_A1)) &&
(engine->id == VCS || engine->id == VCS2);
engine->ctx_desc_template = GEN8_CTX_VALID;
engine->ctx_desc_template |= GEN8_CTX_ADDRESSING_MODE(dev) <<
GEN8_CTX_ADDRESSING_MODE_SHIFT;
if (IS_GEN8(dev))
engine->ctx_desc_template |= GEN8_CTX_L3LLC_COHERENT;
engine->ctx_desc_template |= GEN8_CTX_PRIVILEGE;
/* TODO: WaDisableLiteRestore when we start using semaphore
* signalling between Command Streamers */
/* ring->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE; */
/* WaEnableForceRestoreInCtxtDescForVCS:skl */
/* WaEnableForceRestoreInCtxtDescForVCS:bxt */
if (engine->disable_lite_restore_wa)
engine->ctx_desc_template |= GEN8_CTX_FORCE_RESTORE;
}
/**
* intel_lr_context_descriptor_update() - calculate & cache the descriptor
* descriptor for a pinned context
*
* @ctx: Context to work on
* @ring: Engine the descriptor will be used with
*
* The context descriptor encodes various attributes of a context,
* including its GTT address and some flags. Because it's fairly
* expensive to calculate, we'll just do it once and cache the result,
* which remains valid until the context is unpinned.
*
* This is what a descriptor looks like, from LSB to MSB:
* bits 0-11: flags, GEN8_CTX_* (cached in ctx_desc_template)
* bits 12-31: LRCA, GTT address of (the HWSP of) this context
* bits 32-52: ctx ID, a globally unique tag
* bits 53-54: mbz, reserved for use by hardware
* bits 55-63: group ID, currently unused and set to 0
*/
static void
intel_lr_context_descriptor_update(struct intel_context *ctx,
struct intel_engine_cs *engine)
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
{
u64 desc;
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (1<<GEN8_CTX_ID_WIDTH));
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
desc = engine->ctx_desc_template; /* bits 0-11 */
desc |= ctx->engine[engine->id].lrc_vma->node.start + /* bits 12-31 */
LRC_PPHWSP_PN * PAGE_SIZE;
desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT; /* bits 32-52 */
ctx->engine[engine->id].lrc_desc = desc;
}
drm/i915: Expose one LRC function for GuC submission mode GuC submission is basically execlist submission, but with the GuC handling the actual writes to the ELSP and the resulting context switch interrupts. So to describe a context for submission via the GuC, we need one of the same functions used in execlist mode. This commit exposes one such function, changing its name to better describe what it does (it's related to logical ring contexts rather than to execlists per se). v2: Replaces previous "drm/i915: Move execlists defines from .c to .h" v3: Incorporates a change to one of the functions exposed here that was previously part of an internal patch, but which was omitted from the version recently committed to drm-intel-nightly: 7a01a0a drm/i915/lrc: Update PDPx registers with lri commands So we reinstate this change here. v4: Drop v3 change, update function parameters due to collision with 8ee3615 drm/i915: Convert execlists_ctx_descriptor() for requests v5: Don't expose execlists_update_context() after all. The current version is no longer compatible with GuC submission; trying to share the execlist version of this function results in both GuC and CPU updating TAIL in the context image, with bad results when they get out of step. The GuC submission path now has its own private version that just updates the ringbuffer start address, and not TAIL or PDPx. v6: Rebased Issue: VIZ-4884 Signed-off-by: Dave Gordon <david.s.gordon@intel.com> Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 08:43:38 -06:00
uint64_t intel_lr_context_descriptor(struct intel_context *ctx,
struct intel_engine_cs *engine)
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
{
return ctx->engine[engine->id].lrc_desc;
}
static void execlists_elsp_write(struct drm_i915_gem_request *rq0,
struct drm_i915_gem_request *rq1)
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
{
struct intel_engine_cs *engine = rq0->engine;
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint64_t desc[2];
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
if (rq1) {
desc[1] = intel_lr_context_descriptor(rq1->ctx, rq1->engine);
rq1->elsp_submitted++;
} else {
desc[1] = 0;
}
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
desc[0] = intel_lr_context_descriptor(rq0->ctx, rq0->engine);
rq0->elsp_submitted++;
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
/* You must always write both descriptors in the order below. */
I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[1]));
I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[1]));
I915_WRITE_FW(RING_ELSP(engine), upper_32_bits(desc[0]));
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
/* The context is automatically loaded after the following */
I915_WRITE_FW(RING_ELSP(engine), lower_32_bits(desc[0]));
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
/* ELSP is a wo register, use another nearby reg for posting */
POSTING_READ_FW(RING_EXECLIST_STATUS_LO(engine));
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
}
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
static void
execlists_update_context_pdps(struct i915_hw_ppgtt *ppgtt, u32 *reg_state)
{
ASSIGN_CTX_PDP(ppgtt, reg_state, 3);
ASSIGN_CTX_PDP(ppgtt, reg_state, 2);
ASSIGN_CTX_PDP(ppgtt, reg_state, 1);
ASSIGN_CTX_PDP(ppgtt, reg_state, 0);
}
static void execlists_update_context(struct drm_i915_gem_request *rq)
{
struct intel_engine_cs *engine = rq->engine;
struct i915_hw_ppgtt *ppgtt = rq->ctx->ppgtt;
uint32_t *reg_state = rq->ctx->engine[engine->id].lrc_reg_state;
reg_state[CTX_RING_TAIL+1] = rq->tail;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
/* True 32b PPGTT with dynamic page allocation: update PDP
* registers and point the unallocated PDPs to scratch page.
* PML4 is allocated during ppgtt init, so this is not needed
* in 48-bit mode.
*/
if (ppgtt && !USES_FULL_48BIT_PPGTT(ppgtt->base.dev))
execlists_update_context_pdps(ppgtt, reg_state);
}
static void execlists_submit_requests(struct drm_i915_gem_request *rq0,
struct drm_i915_gem_request *rq1)
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
{
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
struct drm_i915_private *dev_priv = rq0->i915;
unsigned int fw_domains = rq0->engine->fw_domains;
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
execlists_update_context(rq0);
if (rq1)
execlists_update_context(rq1);
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
spin_lock_irq(&dev_priv->uncore.lock);
intel_uncore_forcewake_get__locked(dev_priv, fw_domains);
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
execlists_elsp_write(rq0, rq1);
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
intel_uncore_forcewake_put__locked(dev_priv, fw_domains);
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
spin_unlock_irq(&dev_priv->uncore.lock);
drm/i915/bdw: Implement context switching (somewhat) A context switch occurs by submitting a context descriptor to the ExecList Submission Port. Given that we can now initialize a context, it's possible to begin implementing the context switch by creating the descriptor and submitting it to ELSP (actually two, since the ELSP has two ports). The context object must be mapped in the GGTT, which means it must exist in the 0-4GB graphics VA range. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> v2: This code has changed quite a lot in various rebases. Of particular importance is that now we use the globally unique Submission ID to send to the hardware. Also, context pages are now pinned unconditionally to GGTT, so there is no need to bind them. v3: Use LRCA[31:12] as hwCtxId[19:0]. This guarantees that the HW context ID we submit to the ELSP is globally unique and != 0 (Bspec requirements of the software use-only bits of the Context ID in the Context Descriptor Format) without the hassle of the previous submission Id construction. Also, re-add the ELSP porting read (it was dropped somewhere during the rebases). v4: - Squash with "drm/i915/bdw: Add forcewake lock around ELSP writes" (BSPEC says: "SW must set Force Wakeup bit to prevent GT from entering C6 while ELSP writes are in progress") as noted by Thomas Daniel (thomas.daniel@intel.com). - Rename functions and use an execlists/intel_execlists_ namespace. - The BUG_ON only checked that the LRCA was <32 bits, but it didn't make sure that it was properly aligned. Spotted by Alistair Mcaulay <alistair.mcaulay@intel.com>. v5: - Improved source code comments as suggested by Chris Wilson. - No need to abstract submit_ctx away, as pointed by Brad Volkin. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Checkpatch. Sigh.] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:36 -06:00
}
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
static void execlists_context_unqueue(struct intel_engine_cs *engine)
{
struct drm_i915_gem_request *req0 = NULL, *req1 = NULL;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
struct drm_i915_gem_request *cursor, *tmp;
2014-07-24 10:04:39 -06:00
assert_spin_locked(&engine->execlist_lock);
/*
* If irqs are not active generate a warning as batches that finish
* without the irqs may get lost and a GPU Hang may occur.
*/
WARN_ON(!intel_irqs_enabled(engine->dev->dev_private));
/* Try to read in pairs */
list_for_each_entry_safe(cursor, tmp, &engine->execlist_queue,
execlist_link) {
if (!req0) {
req0 = cursor;
} else if (req0->ctx == cursor->ctx) {
/* Same ctx: ignore first request, as second request
* will update tail past first request's workload */
drm/i915/bdw: Avoid non-lite-restore preemptions In the current Execlists feeding mechanism, full preemption is not supported yet: only lite-restores are allowed (this is: the GPU simply samples a new tail pointer for the context currently in execution). But we have identified an scenario in which a full preemption occurs: 1) We submit two contexts for execution (A & B). 2) The GPU finishes with the first one (A), switches to the second one (B) and informs us. 3) We submit B again (hoping to cause a lite restore) together with C, but in the time we spend writing to the ELSP, the GPU finishes B. 4) The GPU start executing B again (since we told it so). 5) We receive a B finished interrupt and, mistakenly, we submit C (again) and D, causing a full preemption of B. The race is avoided by keeping track of how many times a context has been submitted to the hardware and by better discriminating the received context switch interrupts: in the example, when we have submitted B twice, we won´t submit C and D as soon as we receive the notification that B is completed because we were expecting to get a LITE_RESTORE and we didn´t, so we know a second completion will be received shortly. Without this explicit checking, somehow, the batch buffer execution order gets messed with. This can be verified with the IGT test I sent together with the series. I don´t know the exact mechanism by which the pre-emption messes with the execution order but, since other people is working on the Scheduler + Preemption on Execlists, I didn´t try to fix it. In these series, only Lite Restores are supported (other kind of preemptions WARN). v2: elsp_submitted belongs in the new intel_ctx_submit_request. Several rebase changes. v3: Clarify how the race is avoided, as requested by Daniel. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Align function parameters ...] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:40 -06:00
cursor->elsp_submitted = req0->elsp_submitted;
list_del(&req0->execlist_link);
i915_gem_request_unreference(req0);
req0 = cursor;
} else {
req1 = cursor;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
WARN_ON(req1->elsp_submitted);
break;
}
}
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
if (unlikely(!req0))
return;
if (req0->elsp_submitted & engine->idle_lite_restore_wa) {
/*
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
* WaIdleLiteRestore: make sure we never cause a lite restore
* with HEAD==TAIL.
*
* Apply the wa NOOPS to prevent ring:HEAD == req:TAIL as we
* resubmit the request. See gen8_emit_request() for where we
* prepare the padding after the end of the request.
*/
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
struct intel_ringbuffer *ringbuf;
ringbuf = req0->ctx->engine[engine->id].ringbuf;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
req0->tail += 8;
req0->tail &= ringbuf->size - 1;
}
execlists_submit_requests(req0, req1);
}
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
static unsigned int
execlists_check_remove_request(struct intel_engine_cs *engine, u32 ctx_id)
2014-07-24 10:04:39 -06:00
{
struct drm_i915_gem_request *head_req;
2014-07-24 10:04:39 -06:00
assert_spin_locked(&engine->execlist_lock);
2014-07-24 10:04:39 -06:00
head_req = list_first_entry_or_null(&engine->execlist_queue,
struct drm_i915_gem_request,
2014-07-24 10:04:39 -06:00
execlist_link);
if (WARN_ON(!head_req || (head_req->ctx_hw_id != ctx_id)))
return 0;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
WARN(head_req->elsp_submitted == 0, "Never submitted head request\n");
if (--head_req->elsp_submitted > 0)
return 0;
list_del(&head_req->execlist_link);
i915_gem_request_unreference(head_req);
2014-07-24 10:04:39 -06:00
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
return 1;
2014-07-24 10:04:39 -06:00
}
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
static u32
get_context_status(struct intel_engine_cs *engine, unsigned int read_pointer,
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
u32 *context_id)
{
struct drm_i915_private *dev_priv = engine->dev->dev_private;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
u32 status;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
read_pointer %= GEN8_CSB_ENTRIES;
status = I915_READ_FW(RING_CONTEXT_STATUS_BUF_LO(engine, read_pointer));
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
if (status & GEN8_CTX_STATUS_IDLE_ACTIVE)
return 0;
*context_id = I915_READ_FW(RING_CONTEXT_STATUS_BUF_HI(engine,
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
read_pointer));
return status;
}
/**
* intel_lrc_irq_handler() - handle Context Switch interrupts
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
* @engine: Engine Command Streamer to handle.
*
* Check the unread Context Status Buffers and manage the submission of new
* contexts to the ELSP accordingly.
*/
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
static void intel_lrc_irq_handler(unsigned long data)
2014-07-24 10:04:39 -06:00
{
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
struct intel_engine_cs *engine = (struct intel_engine_cs *)data;
struct drm_i915_private *dev_priv = engine->dev->dev_private;
2014-07-24 10:04:39 -06:00
u32 status_pointer;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
unsigned int read_pointer, write_pointer;
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
u32 csb[GEN8_CSB_ENTRIES][2];
unsigned int csb_read = 0, i;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
unsigned int submit_contexts = 0;
intel_uncore_forcewake_get(dev_priv, engine->fw_domains);
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
status_pointer = I915_READ_FW(RING_CONTEXT_STATUS_PTR(engine));
2014-07-24 10:04:39 -06:00
read_pointer = engine->next_context_status_buffer;
write_pointer = GEN8_CSB_WRITE_PTR(status_pointer);
2014-07-24 10:04:39 -06:00
if (read_pointer > write_pointer)
write_pointer += GEN8_CSB_ENTRIES;
2014-07-24 10:04:39 -06:00
while (read_pointer < write_pointer) {
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
if (WARN_ON_ONCE(csb_read == GEN8_CSB_ENTRIES))
break;
csb[csb_read][0] = get_context_status(engine, ++read_pointer,
&csb[csb_read][1]);
csb_read++;
}
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
engine->next_context_status_buffer = write_pointer % GEN8_CSB_ENTRIES;
/* Update the read pointer to the old write pointer. Manual ringbuffer
* management ftw </sarcasm> */
I915_WRITE_FW(RING_CONTEXT_STATUS_PTR(engine),
_MASKED_FIELD(GEN8_CSB_READ_PTR_MASK,
engine->next_context_status_buffer << 8));
intel_uncore_forcewake_put(dev_priv, engine->fw_domains);
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
spin_lock(&engine->execlist_lock);
for (i = 0; i < csb_read; i++) {
if (unlikely(csb[i][0] & GEN8_CTX_STATUS_PREEMPTED)) {
if (csb[i][0] & GEN8_CTX_STATUS_LITE_RESTORE) {
if (execlists_check_remove_request(engine, csb[i][1]))
drm/i915/bdw: Avoid non-lite-restore preemptions In the current Execlists feeding mechanism, full preemption is not supported yet: only lite-restores are allowed (this is: the GPU simply samples a new tail pointer for the context currently in execution). But we have identified an scenario in which a full preemption occurs: 1) We submit two contexts for execution (A & B). 2) The GPU finishes with the first one (A), switches to the second one (B) and informs us. 3) We submit B again (hoping to cause a lite restore) together with C, but in the time we spend writing to the ELSP, the GPU finishes B. 4) The GPU start executing B again (since we told it so). 5) We receive a B finished interrupt and, mistakenly, we submit C (again) and D, causing a full preemption of B. The race is avoided by keeping track of how many times a context has been submitted to the hardware and by better discriminating the received context switch interrupts: in the example, when we have submitted B twice, we won´t submit C and D as soon as we receive the notification that B is completed because we were expecting to get a LITE_RESTORE and we didn´t, so we know a second completion will be received shortly. Without this explicit checking, somehow, the batch buffer execution order gets messed with. This can be verified with the IGT test I sent together with the series. I don´t know the exact mechanism by which the pre-emption messes with the execution order but, since other people is working on the Scheduler + Preemption on Execlists, I didn´t try to fix it. In these series, only Lite Restores are supported (other kind of preemptions WARN). v2: elsp_submitted belongs in the new intel_ctx_submit_request. Several rebase changes. v3: Clarify how the race is avoided, as requested by Daniel. Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> [danvet: Align function parameters ...] Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:40 -06:00
WARN(1, "Lite Restored request removed from queue\n");
} else
WARN(1, "Preemption without Lite Restore\n");
}
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
if (csb[i][0] & (GEN8_CTX_STATUS_ACTIVE_IDLE |
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
GEN8_CTX_STATUS_ELEMENT_SWITCH))
submit_contexts +=
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
execlists_check_remove_request(engine, csb[i][1]);
2014-07-24 10:04:39 -06:00
}
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
if (submit_contexts) {
if (!engine->disable_lite_restore_wa ||
drm/i915: Move CSB MMIO reads out of the execlists lock By reading the CSB (slow MMIO accesses) into a temporary local buffer we can decrease the duration of holding the execlist lock. Main advantage is that during heavy batch buffer submission we reduce the execlist lock contention, which should decrease the latency and CPU usage between the submitting userspace process and interrupt handling. Downside is that we need to grab and relase the forcewake twice, but as the below numbers will show this is completely hidden by the primary gains. Testing with "gem_latency -n 100" (submit batch buffers with a hundred nops each) shows more than doubling of the throughput and more than halving of the dispatch latency, overall latency and CPU time spend in the submitting process. Submitting empty batches ("gem_latency -n 0") does not seem significantly affected by this change with throughput and CPU time improving by half a percent, and overall latency worsening by the same amount. Above tests were done in a hundred runs on a big core Broadwell. v2: * Overflow protection to local CSB buffer. * Use closer dev_priv in execlists_submit_requests. (Chris Wilson) v3: Rebase. v4: Added commend about irq needed to be disabled in execlists_submit_request. (Chris Wilson) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilsno <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1458219586-20452-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-03-17 06:59:46 -06:00
(csb[i][0] & GEN8_CTX_STATUS_ACTIVE_IDLE))
execlists_context_unqueue(engine);
}
2014-07-24 10:04:39 -06:00
spin_unlock(&engine->execlist_lock);
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
if (unlikely(submit_contexts > 2))
DRM_ERROR("More than two context complete events?\n");
2014-07-24 10:04:39 -06:00
}
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
static void execlists_context_queue(struct drm_i915_gem_request *request)
{
struct intel_engine_cs *engine = request->engine;
struct drm_i915_gem_request *cursor;
int num_elements = 0;
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
spin_lock_bh(&engine->execlist_lock);
list_for_each_entry(cursor, &engine->execlist_queue, execlist_link)
if (++num_elements > 2)
break;
if (num_elements > 2) {
struct drm_i915_gem_request *tail_req;
tail_req = list_last_entry(&engine->execlist_queue,
struct drm_i915_gem_request,
execlist_link);
if (request->ctx == tail_req->ctx) {
WARN(tail_req->elsp_submitted != 0,
drm/i915/bdw: Pin the ringbuffer backing object to GGTT on-demand Same as with the context, pinning to GGTT regardless is harmful (it badly fragments the GGTT and can even exhaust it). Unfortunately, this case is also more complex than the previous one because we need to map and access the ringbuffer in several places along the execbuffer path (and we cannot make do by leaving the default ringbuffer pinned, as before). Also, the context object itself contains a pointer to the ringbuffer address that we have to keep updated if we are going to allow the ringbuffer to move around. v2: Same as with the context pinning, we cannot really do it during an interrupt. Also, pin the default ringbuffers objects regardless (makes error capture a lot easier). v3: Rebased. Take a pin reference of the ringbuffer for each item in the execlist request queue because the hardware may still be using the ringbuffer after the MI_USER_INTERRUPT to notify the seqno update is executed. The ringbuffer must remain pinned until the context save is complete. No longer pin and unpin ringbuffer in populate_lr_context() - this transient address is meaningless and the pinning can cause a sleep while atomic. v4: Moved ringbuffer pin and unpin into the lr_context_pin functions. Downgraded pinning check BUG_ONs to WARN_ONs. v5: Reinstated WARN_ONs for unexpected execlist states. Removed unused variable. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:56 -07:00
"More than 2 already-submitted reqs queued\n");
list_del(&tail_req->execlist_link);
i915_gem_request_unreference(tail_req);
}
}
i915_gem_request_reference(request);
list_add_tail(&request->execlist_link, &engine->execlist_queue);
request->ctx_hw_id = request->ctx->hw_id;
if (num_elements == 0)
execlists_context_unqueue(engine);
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
spin_unlock_bh(&engine->execlist_lock);
}
static int logical_ring_invalidate_all_caches(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *engine = req->engine;
uint32_t flush_domains;
int ret;
flush_domains = 0;
if (engine->gpu_caches_dirty)
flush_domains = I915_GEM_GPU_DOMAINS;
ret = engine->emit_flush(req, I915_GEM_GPU_DOMAINS, flush_domains);
if (ret)
return ret;
engine->gpu_caches_dirty = false;
return 0;
}
static int execlists_move_to_gpu(struct drm_i915_gem_request *req,
struct list_head *vmas)
{
const unsigned other_rings = ~intel_engine_flag(req->engine);
struct i915_vma *vma;
uint32_t flush_domains = 0;
bool flush_chipset = false;
int ret;
list_for_each_entry(vma, vmas, exec_list) {
struct drm_i915_gem_object *obj = vma->obj;
if (obj->active & other_rings) {
ret = i915_gem_object_sync(obj, req->engine, &req);
if (ret)
return ret;
}
if (obj->base.write_domain & I915_GEM_DOMAIN_CPU)
flush_chipset |= i915_gem_clflush_object(obj, false);
flush_domains |= obj->base.write_domain;
}
if (flush_domains & I915_GEM_DOMAIN_GTT)
wmb();
/* Unconditionally invalidate gpu caches and ensure that we do flush
* any residual writes from the previous batch.
*/
return logical_ring_invalidate_all_caches(req);
}
int intel_logical_ring_alloc_request_extras(struct drm_i915_gem_request *request)
{
struct intel_engine_cs *engine = request->engine;
int ret;
/* Flush enough space to reduce the likelihood of waiting after
* we start building the request - in which case we will just
* have to repeat work.
*/
request->reserved_space += EXECLISTS_REQUEST_SIZE;
if (request->ctx->engine[engine->id].state == NULL) {
ret = execlists_context_deferred_alloc(request->ctx, engine);
if (ret)
return ret;
}
request->ringbuf = request->ctx->engine[engine->id].ringbuf;
if (i915.enable_guc_submission) {
/*
* Check that the GuC has space for the request before
* going any further, as the i915_add_request() call
* later on mustn't fail ...
*/
struct intel_guc *guc = &request->i915->guc;
ret = i915_guc_wq_check_space(guc->execbuf_client);
if (ret)
return ret;
}
ret = intel_lr_context_pin(request->ctx, engine);
if (ret)
return ret;
ret = intel_ring_begin(request, 0);
if (ret)
goto err_unpin;
if (!request->ctx->engine[engine->id].initialised) {
ret = engine->init_context(request);
if (ret)
goto err_unpin;
request->ctx->engine[engine->id].initialised = true;
}
/* Note that after this point, we have committed to using
* this request as it is being used to both track the
* state of engine initialisation and liveness of the
* golden renderstate above. Think twice before you try
* to cancel/unwind this request now.
*/
request->reserved_space -= EXECLISTS_REQUEST_SIZE;
return 0;
err_unpin:
intel_lr_context_unpin(request->ctx, engine);
return ret;
}
/*
* intel_logical_ring_advance_and_submit() - advance the tail and submit the workload
* @request: Request to advance the logical ringbuffer of.
*
* The tail is updated in our logical ringbuffer struct, not in the actual context. What
* really happens during submission is that the context and current tail will be placed
* on a queue waiting for the ELSP to be ready to accept a new context submission. At that
* point, the tail *inside* the context is updated and the ELSP written to.
*/
static int
intel_logical_ring_advance_and_submit(struct drm_i915_gem_request *request)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
drm/i915: Integrate GuC-based command submission GuC-based submission is mostly the same as execlist mode, up to intel_logical_ring_advance_and_submit(), where the context being dispatched would be added to the execlist queue; at this point we submit the context to the GuC backend instead. There are, however, a few other changes also required, notably: 1. Contexts must be pinned at GGTT addresses accessible by the GuC i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls. 2. The GuC's TLB must be invalidated after a context is pinned at a new GGTT address. 3. GuC firmware uses the one page before Ring Context as shared data. Therefore, whenever driver wants to get base address of LRC, we will offset one page for it. LRC_PPHWSP_PN is defined as the page number of LRCA. 4. In the work queue used to pass requests to the GuC, the GuC firmware requires the ring-tail-offset to be represented as an 11-bit value, expressed in QWords. Therefore, the ringbuffer size must be reduced to the representable range (4 pages). v2: Defer adding #defines until needed [Chris Wilson] Rationalise type declarations [Chris Wilson] v4: Squashed kerneldoc patch into here [Daniel Vetter] v5: Update request->tail in code common to both GuC and execlist modes. Add a private version of lr_context_update(), as sharing the execlist version leads to race conditions when the CPU and the GuC both update TAIL in the context image. Conversion of error-captured HWS page to string must account for offset from start of object to actual HWS (LRC_PPHWSP_PN). Issue: VIZ-4884 Signed-off-by: Alex Dai <yu.dai@intel.com> Signed-off-by: Dave Gordon <david.s.gordon@intel.com> Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 08:43:43 -06:00
struct drm_i915_private *dev_priv = request->i915;
struct intel_engine_cs *engine = request->engine;
intel_logical_ring_advance(ringbuf);
request->tail = ringbuf->tail;
/*
* Here we add two extra NOOPs as padding to avoid
* lite restore of a context with HEAD==TAIL.
*
* Caller must reserve WA_TAIL_DWORDS for us!
*/
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
drm/i915: Integrate GuC-based command submission GuC-based submission is mostly the same as execlist mode, up to intel_logical_ring_advance_and_submit(), where the context being dispatched would be added to the execlist queue; at this point we submit the context to the GuC backend instead. There are, however, a few other changes also required, notably: 1. Contexts must be pinned at GGTT addresses accessible by the GuC i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls. 2. The GuC's TLB must be invalidated after a context is pinned at a new GGTT address. 3. GuC firmware uses the one page before Ring Context as shared data. Therefore, whenever driver wants to get base address of LRC, we will offset one page for it. LRC_PPHWSP_PN is defined as the page number of LRCA. 4. In the work queue used to pass requests to the GuC, the GuC firmware requires the ring-tail-offset to be represented as an 11-bit value, expressed in QWords. Therefore, the ringbuffer size must be reduced to the representable range (4 pages). v2: Defer adding #defines until needed [Chris Wilson] Rationalise type declarations [Chris Wilson] v4: Squashed kerneldoc patch into here [Daniel Vetter] v5: Update request->tail in code common to both GuC and execlist modes. Add a private version of lr_context_update(), as sharing the execlist version leads to race conditions when the CPU and the GuC both update TAIL in the context image. Conversion of error-captured HWS page to string must account for offset from start of object to actual HWS (LRC_PPHWSP_PN). Issue: VIZ-4884 Signed-off-by: Alex Dai <yu.dai@intel.com> Signed-off-by: Dave Gordon <david.s.gordon@intel.com> Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 08:43:43 -06:00
if (intel_engine_stopped(engine))
return 0;
/* We keep the previous context alive until we retire the following
* request. This ensures that any the context object is still pinned
* for any residual writes the HW makes into it on the context switch
* into the next object following the breadcrumb. Otherwise, we may
* retire the context too early.
*/
request->previous_context = engine->last_context;
engine->last_context = request->ctx;
drm/i915: Fix premature LRC unpin in GuC mode In GuC mode LRC pinning lifetime depends exclusively on the request liftime. Since that is terminated by the seqno update that opens up a race condition between GPU finishing writing out the context image and the driver unpinning the LRC. To extend the LRC lifetime we will employ a similar approach to what legacy ringbuffer submission does. We will start tracking the last submitted context per engine and keep it pinned until it is replaced by another one. Note that the driver unload path is a bit fragile and could benefit greatly from efforts to unify the legacy and exec list submission code paths. At the moment i915_gem_context_fini has special casing for the two which are potentialy not needed, and also depends on i915_gem_cleanup_ringbuffer running before itself. v2: * Move pinning into engine->emit_request and actually fix the reference/unreference logic. (Chris Wilson) * ring->dev can be NULL on driver unload so use a different route towards it. v3: * Rebase. * Handle the reset path. (Chris Wilson) * Exclude default context from the pinning - it is impossible to get it right before default context special casing in general is eliminated. v4: * Rebased & moved context tracking to intel_logical_ring_advance_and_submit. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Issue: VIZ-4277 Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Nick Hoath <nicholas.hoath@intel.com> Link: http://patchwork.freedesktop.org/patch/msgid/1453976997-25424-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-01-28 03:29:57 -07:00
drm/i915: Integrate GuC-based command submission GuC-based submission is mostly the same as execlist mode, up to intel_logical_ring_advance_and_submit(), where the context being dispatched would be added to the execlist queue; at this point we submit the context to the GuC backend instead. There are, however, a few other changes also required, notably: 1. Contexts must be pinned at GGTT addresses accessible by the GuC i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls. 2. The GuC's TLB must be invalidated after a context is pinned at a new GGTT address. 3. GuC firmware uses the one page before Ring Context as shared data. Therefore, whenever driver wants to get base address of LRC, we will offset one page for it. LRC_PPHWSP_PN is defined as the page number of LRCA. 4. In the work queue used to pass requests to the GuC, the GuC firmware requires the ring-tail-offset to be represented as an 11-bit value, expressed in QWords. Therefore, the ringbuffer size must be reduced to the representable range (4 pages). v2: Defer adding #defines until needed [Chris Wilson] Rationalise type declarations [Chris Wilson] v4: Squashed kerneldoc patch into here [Daniel Vetter] v5: Update request->tail in code common to both GuC and execlist modes. Add a private version of lr_context_update(), as sharing the execlist version leads to race conditions when the CPU and the GuC both update TAIL in the context image. Conversion of error-captured HWS page to string must account for offset from start of object to actual HWS (LRC_PPHWSP_PN). Issue: VIZ-4884 Signed-off-by: Alex Dai <yu.dai@intel.com> Signed-off-by: Dave Gordon <david.s.gordon@intel.com> Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 08:43:43 -06:00
if (dev_priv->guc.execbuf_client)
i915_guc_submit(dev_priv->guc.execbuf_client, request);
else
execlists_context_queue(request);
return 0;
}
/**
* execlists_submission() - submit a batchbuffer for execution, Execlists style
* @dev: DRM device.
* @file: DRM file.
* @ring: Engine Command Streamer to submit to.
* @ctx: Context to employ for this submission.
* @args: execbuffer call arguments.
* @vmas: list of vmas.
* @batch_obj: the batchbuffer to submit.
* @exec_start: batchbuffer start virtual address pointer.
* @dispatch_flags: translated execbuffer call flags.
*
* This is the evil twin version of i915_gem_ringbuffer_submission. It abstracts
* away the submission details of the execbuffer ioctl call.
*
* Return: non-zero if the submission fails.
*/
drm/i915: Merged the many do_execbuf() parameters into a structure The do_execbuf() function takes quite a few parameters. The actual set of parameters is going to change with the conversion to passing requests around. Further, it is due to grow massively with the arrival of the GPU scheduler. This patch simplifies the prototype by passing a parameter structure instead. Changing the parameter set in the future is then simply a matter of adding/removing items to the structure. Note that the structure does not contain absolutely everything that is passed in. This is because the intention is to use this structure more extensively later in this patch series and more especially in the GPU scheduler that is coming soon. The latter requires hanging on to the structure as the final hardware submission can be delayed until long after the execbuf IOCTL has returned to user land. Thus it is unsafe to put anything in the structure that is local to the IOCTL call itself - such as the 'args' parameter. All entries must be copies of data or pointers to structures that are reference counted in some way and guaranteed to exist for the duration of the batch buffer's life. v2: Rebased to newer tree and updated for changes to the command parser. Specifically, a code shuffle has required saving the batch start address in the params structure. For: VIZ-5115 Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Reviewed-by: Tomas Elf <tomas.elf@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-29 10:43:27 -06:00
int intel_execlists_submission(struct i915_execbuffer_params *params,
struct drm_i915_gem_execbuffer2 *args,
drm/i915: Merged the many do_execbuf() parameters into a structure The do_execbuf() function takes quite a few parameters. The actual set of parameters is going to change with the conversion to passing requests around. Further, it is due to grow massively with the arrival of the GPU scheduler. This patch simplifies the prototype by passing a parameter structure instead. Changing the parameter set in the future is then simply a matter of adding/removing items to the structure. Note that the structure does not contain absolutely everything that is passed in. This is because the intention is to use this structure more extensively later in this patch series and more especially in the GPU scheduler that is coming soon. The latter requires hanging on to the structure as the final hardware submission can be delayed until long after the execbuf IOCTL has returned to user land. Thus it is unsafe to put anything in the structure that is local to the IOCTL call itself - such as the 'args' parameter. All entries must be copies of data or pointers to structures that are reference counted in some way and guaranteed to exist for the duration of the batch buffer's life. v2: Rebased to newer tree and updated for changes to the command parser. Specifically, a code shuffle has required saving the batch start address in the params structure. For: VIZ-5115 Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Reviewed-by: Tomas Elf <tomas.elf@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-29 10:43:27 -06:00
struct list_head *vmas)
{
drm/i915: Merged the many do_execbuf() parameters into a structure The do_execbuf() function takes quite a few parameters. The actual set of parameters is going to change with the conversion to passing requests around. Further, it is due to grow massively with the arrival of the GPU scheduler. This patch simplifies the prototype by passing a parameter structure instead. Changing the parameter set in the future is then simply a matter of adding/removing items to the structure. Note that the structure does not contain absolutely everything that is passed in. This is because the intention is to use this structure more extensively later in this patch series and more especially in the GPU scheduler that is coming soon. The latter requires hanging on to the structure as the final hardware submission can be delayed until long after the execbuf IOCTL has returned to user land. Thus it is unsafe to put anything in the structure that is local to the IOCTL call itself - such as the 'args' parameter. All entries must be copies of data or pointers to structures that are reference counted in some way and guaranteed to exist for the duration of the batch buffer's life. v2: Rebased to newer tree and updated for changes to the command parser. Specifically, a code shuffle has required saving the batch start address in the params structure. For: VIZ-5115 Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Reviewed-by: Tomas Elf <tomas.elf@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-29 10:43:27 -06:00
struct drm_device *dev = params->dev;
struct intel_engine_cs *engine = params->engine;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_ringbuffer *ringbuf = params->ctx->engine[engine->id].ringbuf;
drm/i915: Merged the many do_execbuf() parameters into a structure The do_execbuf() function takes quite a few parameters. The actual set of parameters is going to change with the conversion to passing requests around. Further, it is due to grow massively with the arrival of the GPU scheduler. This patch simplifies the prototype by passing a parameter structure instead. Changing the parameter set in the future is then simply a matter of adding/removing items to the structure. Note that the structure does not contain absolutely everything that is passed in. This is because the intention is to use this structure more extensively later in this patch series and more especially in the GPU scheduler that is coming soon. The latter requires hanging on to the structure as the final hardware submission can be delayed until long after the execbuf IOCTL has returned to user land. Thus it is unsafe to put anything in the structure that is local to the IOCTL call itself - such as the 'args' parameter. All entries must be copies of data or pointers to structures that are reference counted in some way and guaranteed to exist for the duration of the batch buffer's life. v2: Rebased to newer tree and updated for changes to the command parser. Specifically, a code shuffle has required saving the batch start address in the params structure. For: VIZ-5115 Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Reviewed-by: Tomas Elf <tomas.elf@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-29 10:43:27 -06:00
u64 exec_start;
int instp_mode;
u32 instp_mask;
int ret;
instp_mode = args->flags & I915_EXEC_CONSTANTS_MASK;
instp_mask = I915_EXEC_CONSTANTS_MASK;
switch (instp_mode) {
case I915_EXEC_CONSTANTS_REL_GENERAL:
case I915_EXEC_CONSTANTS_ABSOLUTE:
case I915_EXEC_CONSTANTS_REL_SURFACE:
if (instp_mode != 0 && engine != &dev_priv->engine[RCS]) {
DRM_DEBUG("non-0 rel constants mode on non-RCS\n");
return -EINVAL;
}
if (instp_mode != dev_priv->relative_constants_mode) {
if (instp_mode == I915_EXEC_CONSTANTS_REL_SURFACE) {
DRM_DEBUG("rel surface constants mode invalid on gen5+\n");
return -EINVAL;
}
/* The HW changed the meaning on this bit on gen6 */
instp_mask &= ~I915_EXEC_CONSTANTS_REL_SURFACE;
}
break;
default:
DRM_DEBUG("execbuf with unknown constants: %d\n", instp_mode);
return -EINVAL;
}
if (args->flags & I915_EXEC_GEN7_SOL_RESET) {
DRM_DEBUG("sol reset is gen7 only\n");
return -EINVAL;
}
ret = execlists_move_to_gpu(params->request, vmas);
if (ret)
return ret;
if (engine == &dev_priv->engine[RCS] &&
instp_mode != dev_priv->relative_constants_mode) {
ret = intel_ring_begin(params->request, 4);
if (ret)
return ret;
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(1));
intel_logical_ring_emit_reg(ringbuf, INSTPM);
intel_logical_ring_emit(ringbuf, instp_mask << 16 | instp_mode);
intel_logical_ring_advance(ringbuf);
dev_priv->relative_constants_mode = instp_mode;
}
drm/i915: Merged the many do_execbuf() parameters into a structure The do_execbuf() function takes quite a few parameters. The actual set of parameters is going to change with the conversion to passing requests around. Further, it is due to grow massively with the arrival of the GPU scheduler. This patch simplifies the prototype by passing a parameter structure instead. Changing the parameter set in the future is then simply a matter of adding/removing items to the structure. Note that the structure does not contain absolutely everything that is passed in. This is because the intention is to use this structure more extensively later in this patch series and more especially in the GPU scheduler that is coming soon. The latter requires hanging on to the structure as the final hardware submission can be delayed until long after the execbuf IOCTL has returned to user land. Thus it is unsafe to put anything in the structure that is local to the IOCTL call itself - such as the 'args' parameter. All entries must be copies of data or pointers to structures that are reference counted in some way and guaranteed to exist for the duration of the batch buffer's life. v2: Rebased to newer tree and updated for changes to the command parser. Specifically, a code shuffle has required saving the batch start address in the params structure. For: VIZ-5115 Signed-off-by: John Harrison <John.C.Harrison@Intel.com> Reviewed-by: Tomas Elf <tomas.elf@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-05-29 10:43:27 -06:00
exec_start = params->batch_obj_vm_offset +
args->batch_start_offset;
ret = engine->emit_bb_start(params->request, exec_start, params->dispatch_flags);
if (ret)
return ret;
trace_i915_gem_ring_dispatch(params->request, params->dispatch_flags);
i915_gem_execbuffer_move_to_active(vmas, params->request);
return 0;
}
void intel_execlists_cancel_requests(struct intel_engine_cs *engine)
{
struct drm_i915_gem_request *req, *tmp;
LIST_HEAD(cancel_list);
WARN_ON(!mutex_is_locked(&engine->dev->struct_mutex));
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
spin_lock_bh(&engine->execlist_lock);
list_replace_init(&engine->execlist_queue, &cancel_list);
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
spin_unlock_bh(&engine->execlist_lock);
list_for_each_entry_safe(req, tmp, &cancel_list, execlist_link) {
list_del(&req->execlist_link);
i915_gem_request_unreference(req);
}
}
void intel_logical_ring_stop(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->dev->dev_private;
int ret;
if (!intel_engine_initialized(engine))
return;
ret = intel_engine_idle(engine);
drm/i915: Prevent leaking of -EIO from i915_wait_request() Reporting -EIO from i915_wait_request() has proven very troublematic over the years, with numerous hard-to-reproduce bugs cropping up in the corner case of where a reset occurs and the code wasn't expecting such an error. If the we reset the GPU or have detected a hang and wish to reset the GPU, the request is forcibly complete and the wait broken. Currently, we report either -EAGAIN or -EIO in order for the caller to retreat and restart the wait (if appropriate) after dropping and then reacquiring the struct_mutex (essential to allow the GPU reset to proceed). However, if we take the view that the request is complete (no further work will be done on it by the GPU because it is dead and soon to be reset), then we can proceed with the task at hand and then drop the struct_mutex allowing the reset to occur. This transfers the burden of checking whether it is safe to proceed to the caller, which in all but one instance it is safe - completely eliminating the source of all spurious -EIO. Of note, we only have two API entry points where we expect that userspace can observe an EIO. First is when submitting an execbuf, if the GPU is terminally wedged, then the operation cannot succeed and an -EIO is reported. Secondly, existing userspace uses the throttle ioctl to detect an already wedged GPU before starting using HW acceleration (or to confirm that the GPU is wedged after an error condition). So if the GPU is wedged when the user calls throttle, also report -EIO. v2: Split more carefully the change to i915_wait_request() and assorted ABI from the reset handling. v3: Add a couple of WARN_ON(EIO) to the interruptible modesetting code so that we don't start to leak EIO there in future (and break our hang resistant modesetting). Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Reviewed-by: Daniel Vetter <daniel.vetter@ffwll.ch> Link: http://patchwork.freedesktop.org/patch/msgid/1460565315-7748-9-git-send-email-chris@chris-wilson.co.uk Link: http://patchwork.freedesktop.org/patch/msgid/1460565315-7748-1-git-send-email-chris@chris-wilson.co.uk
2016-04-13 10:35:08 -06:00
if (ret)
DRM_ERROR("failed to quiesce %s whilst cleaning up: %d\n",
engine->name, ret);
/* TODO: Is this correct with Execlists enabled? */
I915_WRITE_MODE(engine, _MASKED_BIT_ENABLE(STOP_RING));
if (wait_for((I915_READ_MODE(engine) & MODE_IDLE) != 0, 1000)) {
DRM_ERROR("%s :timed out trying to stop ring\n", engine->name);
return;
}
I915_WRITE_MODE(engine, _MASKED_BIT_DISABLE(STOP_RING));
}
int logical_ring_flush_all_caches(struct drm_i915_gem_request *req)
{
struct intel_engine_cs *engine = req->engine;
int ret;
if (!engine->gpu_caches_dirty)
return 0;
ret = engine->emit_flush(req, 0, I915_GEM_GPU_DOMAINS);
if (ret)
return ret;
engine->gpu_caches_dirty = false;
return 0;
}
static int intel_lr_context_pin(struct intel_context *ctx,
struct intel_engine_cs *engine)
drm/i915/bdw: Pin the context backing objects to GGTT on-demand Up until now, we have pinned every logical ring context backing object during creation, and left it pinned until destruction. This made my life easier, but it's a harmful thing to do, because we cause fragmentation of the GGTT (and, eventually, we would run out of space). This patch makes the pinning on-demand: the backing objects of the two contexts that are written to the ELSP are pinned right before submission and unpinned once the hardware is done with them. The only context that is still pinned regardless is the global default one, so that the HWS can still be accessed in the same way (ring->status_page). v2: In the early version of this patch, we were pinning the context as we put it into the ELSP: on the one hand, this is very efficient because only a maximum two contexts are pinned at any given time, but on the other hand, we cannot really pin in interrupt time :( v3: Use a mutex rather than atomic_t to protect pin count to avoid races. Do not unpin default context in free_request. v4: Break out pin and unpin into functions. Fix style problems reported by checkpatch v5: Remove unpin_lock as all pinning and unpinning is done with the struct mutex already locked. Add WARN_ONs to make sure this is the case in future. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:10 -07:00
{
struct drm_i915_private *dev_priv = ctx->i915;
struct drm_i915_gem_object *ctx_obj;
struct intel_ringbuffer *ringbuf;
void *vaddr;
u32 *lrc_reg_state;
int ret;
drm/i915/bdw: Pin the context backing objects to GGTT on-demand Up until now, we have pinned every logical ring context backing object during creation, and left it pinned until destruction. This made my life easier, but it's a harmful thing to do, because we cause fragmentation of the GGTT (and, eventually, we would run out of space). This patch makes the pinning on-demand: the backing objects of the two contexts that are written to the ELSP are pinned right before submission and unpinned once the hardware is done with them. The only context that is still pinned regardless is the global default one, so that the HWS can still be accessed in the same way (ring->status_page). v2: In the early version of this patch, we were pinning the context as we put it into the ELSP: on the one hand, this is very efficient because only a maximum two contexts are pinned at any given time, but on the other hand, we cannot really pin in interrupt time :( v3: Use a mutex rather than atomic_t to protect pin count to avoid races. Do not unpin default context in free_request. v4: Break out pin and unpin into functions. Fix style problems reported by checkpatch v5: Remove unpin_lock as all pinning and unpinning is done with the struct mutex already locked. Add WARN_ONs to make sure this is the case in future. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:10 -07:00
lockdep_assert_held(&ctx->i915->dev->struct_mutex);
if (ctx->engine[engine->id].pin_count++)
return 0;
ctx_obj = ctx->engine[engine->id].state;
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
ret = i915_gem_obj_ggtt_pin(ctx_obj, GEN8_LR_CONTEXT_ALIGN,
PIN_OFFSET_BIAS | GUC_WOPCM_TOP);
if (ret)
goto err;
drm/i915/bdw: Pin the ringbuffer backing object to GGTT on-demand Same as with the context, pinning to GGTT regardless is harmful (it badly fragments the GGTT and can even exhaust it). Unfortunately, this case is also more complex than the previous one because we need to map and access the ringbuffer in several places along the execbuffer path (and we cannot make do by leaving the default ringbuffer pinned, as before). Also, the context object itself contains a pointer to the ringbuffer address that we have to keep updated if we are going to allow the ringbuffer to move around. v2: Same as with the context pinning, we cannot really do it during an interrupt. Also, pin the default ringbuffers objects regardless (makes error capture a lot easier). v3: Rebased. Take a pin reference of the ringbuffer for each item in the execlist request queue because the hardware may still be using the ringbuffer after the MI_USER_INTERRUPT to notify the seqno update is executed. The ringbuffer must remain pinned until the context save is complete. No longer pin and unpin ringbuffer in populate_lr_context() - this transient address is meaningless and the pinning can cause a sleep while atomic. v4: Moved ringbuffer pin and unpin into the lr_context_pin functions. Downgraded pinning check BUG_ONs to WARN_ONs. v5: Reinstated WARN_ONs for unexpected execlist states. Removed unused variable. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:56 -07:00
vaddr = i915_gem_object_pin_map(ctx_obj);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
goto unpin_ctx_obj;
}
lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
ringbuf = ctx->engine[engine->id].ringbuf;
ret = intel_pin_and_map_ringbuffer_obj(engine->dev, ringbuf);
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
if (ret)
goto unpin_map;
drm/i915: Integrate GuC-based command submission GuC-based submission is mostly the same as execlist mode, up to intel_logical_ring_advance_and_submit(), where the context being dispatched would be added to the execlist queue; at this point we submit the context to the GuC backend instead. There are, however, a few other changes also required, notably: 1. Contexts must be pinned at GGTT addresses accessible by the GuC i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls. 2. The GuC's TLB must be invalidated after a context is pinned at a new GGTT address. 3. GuC firmware uses the one page before Ring Context as shared data. Therefore, whenever driver wants to get base address of LRC, we will offset one page for it. LRC_PPHWSP_PN is defined as the page number of LRCA. 4. In the work queue used to pass requests to the GuC, the GuC firmware requires the ring-tail-offset to be represented as an 11-bit value, expressed in QWords. Therefore, the ringbuffer size must be reduced to the representable range (4 pages). v2: Defer adding #defines until needed [Chris Wilson] Rationalise type declarations [Chris Wilson] v4: Squashed kerneldoc patch into here [Daniel Vetter] v5: Update request->tail in code common to both GuC and execlist modes. Add a private version of lr_context_update(), as sharing the execlist version leads to race conditions when the CPU and the GuC both update TAIL in the context image. Conversion of error-captured HWS page to string must account for offset from start of object to actual HWS (LRC_PPHWSP_PN). Issue: VIZ-4884 Signed-off-by: Alex Dai <yu.dai@intel.com> Signed-off-by: Dave Gordon <david.s.gordon@intel.com> Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 08:43:43 -06:00
i915_gem_context_reference(ctx);
ctx->engine[engine->id].lrc_vma = i915_gem_obj_to_ggtt(ctx_obj);
intel_lr_context_descriptor_update(ctx, engine);
lrc_reg_state[CTX_RING_BUFFER_START+1] = ringbuf->vma->node.start;
ctx->engine[engine->id].lrc_reg_state = lrc_reg_state;
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
ctx_obj->dirty = true;
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
/* Invalidate GuC TLB. */
if (i915.enable_guc_submission)
I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE);
drm/i915/bdw: Pin the context backing objects to GGTT on-demand Up until now, we have pinned every logical ring context backing object during creation, and left it pinned until destruction. This made my life easier, but it's a harmful thing to do, because we cause fragmentation of the GGTT (and, eventually, we would run out of space). This patch makes the pinning on-demand: the backing objects of the two contexts that are written to the ELSP are pinned right before submission and unpinned once the hardware is done with them. The only context that is still pinned regardless is the global default one, so that the HWS can still be accessed in the same way (ring->status_page). v2: In the early version of this patch, we were pinning the context as we put it into the ELSP: on the one hand, this is very efficient because only a maximum two contexts are pinned at any given time, but on the other hand, we cannot really pin in interrupt time :( v3: Use a mutex rather than atomic_t to protect pin count to avoid races. Do not unpin default context in free_request. v4: Break out pin and unpin into functions. Fix style problems reported by checkpatch v5: Remove unpin_lock as all pinning and unpinning is done with the struct mutex already locked. Add WARN_ONs to make sure this is the case in future. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:10 -07:00
return 0;
drm/i915/bdw: Pin the ringbuffer backing object to GGTT on-demand Same as with the context, pinning to GGTT regardless is harmful (it badly fragments the GGTT and can even exhaust it). Unfortunately, this case is also more complex than the previous one because we need to map and access the ringbuffer in several places along the execbuffer path (and we cannot make do by leaving the default ringbuffer pinned, as before). Also, the context object itself contains a pointer to the ringbuffer address that we have to keep updated if we are going to allow the ringbuffer to move around. v2: Same as with the context pinning, we cannot really do it during an interrupt. Also, pin the default ringbuffers objects regardless (makes error capture a lot easier). v3: Rebased. Take a pin reference of the ringbuffer for each item in the execlist request queue because the hardware may still be using the ringbuffer after the MI_USER_INTERRUPT to notify the seqno update is executed. The ringbuffer must remain pinned until the context save is complete. No longer pin and unpin ringbuffer in populate_lr_context() - this transient address is meaningless and the pinning can cause a sleep while atomic. v4: Moved ringbuffer pin and unpin into the lr_context_pin functions. Downgraded pinning check BUG_ONs to WARN_ONs. v5: Reinstated WARN_ONs for unexpected execlist states. Removed unused variable. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:56 -07:00
unpin_map:
i915_gem_object_unpin_map(ctx_obj);
drm/i915/bdw: Pin the ringbuffer backing object to GGTT on-demand Same as with the context, pinning to GGTT regardless is harmful (it badly fragments the GGTT and can even exhaust it). Unfortunately, this case is also more complex than the previous one because we need to map and access the ringbuffer in several places along the execbuffer path (and we cannot make do by leaving the default ringbuffer pinned, as before). Also, the context object itself contains a pointer to the ringbuffer address that we have to keep updated if we are going to allow the ringbuffer to move around. v2: Same as with the context pinning, we cannot really do it during an interrupt. Also, pin the default ringbuffers objects regardless (makes error capture a lot easier). v3: Rebased. Take a pin reference of the ringbuffer for each item in the execlist request queue because the hardware may still be using the ringbuffer after the MI_USER_INTERRUPT to notify the seqno update is executed. The ringbuffer must remain pinned until the context save is complete. No longer pin and unpin ringbuffer in populate_lr_context() - this transient address is meaningless and the pinning can cause a sleep while atomic. v4: Moved ringbuffer pin and unpin into the lr_context_pin functions. Downgraded pinning check BUG_ONs to WARN_ONs. v5: Reinstated WARN_ONs for unexpected execlist states. Removed unused variable. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:56 -07:00
unpin_ctx_obj:
i915_gem_object_ggtt_unpin(ctx_obj);
err:
ctx->engine[engine->id].pin_count = 0;
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
return ret;
}
void intel_lr_context_unpin(struct intel_context *ctx,
struct intel_engine_cs *engine)
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
{
struct drm_i915_gem_object *ctx_obj;
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
lockdep_assert_held(&ctx->i915->dev->struct_mutex);
GEM_BUG_ON(ctx->engine[engine->id].pin_count == 0);
if (--ctx->engine[engine->id].pin_count)
return;
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
intel_unpin_ringbuffer_obj(ctx->engine[engine->id].ringbuf);
drm/i915/bdw: Pin the context backing objects to GGTT on-demand Up until now, we have pinned every logical ring context backing object during creation, and left it pinned until destruction. This made my life easier, but it's a harmful thing to do, because we cause fragmentation of the GGTT (and, eventually, we would run out of space). This patch makes the pinning on-demand: the backing objects of the two contexts that are written to the ELSP are pinned right before submission and unpinned once the hardware is done with them. The only context that is still pinned regardless is the global default one, so that the HWS can still be accessed in the same way (ring->status_page). v2: In the early version of this patch, we were pinning the context as we put it into the ELSP: on the one hand, this is very efficient because only a maximum two contexts are pinned at any given time, but on the other hand, we cannot really pin in interrupt time :( v3: Use a mutex rather than atomic_t to protect pin count to avoid races. Do not unpin default context in free_request. v4: Break out pin and unpin into functions. Fix style problems reported by checkpatch v5: Remove unpin_lock as all pinning and unpinning is done with the struct mutex already locked. Add WARN_ONs to make sure this is the case in future. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:10 -07:00
ctx_obj = ctx->engine[engine->id].state;
i915_gem_object_unpin_map(ctx_obj);
i915_gem_object_ggtt_unpin(ctx_obj);
ctx->engine[engine->id].lrc_vma = NULL;
ctx->engine[engine->id].lrc_desc = 0;
ctx->engine[engine->id].lrc_reg_state = NULL;
i915_gem_context_unreference(ctx);
drm/i915/bdw: Pin the context backing objects to GGTT on-demand Up until now, we have pinned every logical ring context backing object during creation, and left it pinned until destruction. This made my life easier, but it's a harmful thing to do, because we cause fragmentation of the GGTT (and, eventually, we would run out of space). This patch makes the pinning on-demand: the backing objects of the two contexts that are written to the ELSP are pinned right before submission and unpinned once the hardware is done with them. The only context that is still pinned regardless is the global default one, so that the HWS can still be accessed in the same way (ring->status_page). v2: In the early version of this patch, we were pinning the context as we put it into the ELSP: on the one hand, this is very efficient because only a maximum two contexts are pinned at any given time, but on the other hand, we cannot really pin in interrupt time :( v3: Use a mutex rather than atomic_t to protect pin count to avoid races. Do not unpin default context in free_request. v4: Break out pin and unpin into functions. Fix style problems reported by checkpatch v5: Remove unpin_lock as all pinning and unpinning is done with the struct mutex already locked. Add WARN_ONs to make sure this is the case in future. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:10 -07:00
}
static int intel_logical_ring_workarounds_emit(struct drm_i915_gem_request *req)
{
int ret, i;
struct intel_engine_cs *engine = req->engine;
struct intel_ringbuffer *ringbuf = req->ringbuf;
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_workarounds *w = &dev_priv->workarounds;
if (w->count == 0)
return 0;
engine->gpu_caches_dirty = true;
ret = logical_ring_flush_all_caches(req);
if (ret)
return ret;
ret = intel_ring_begin(req, w->count * 2 + 2);
if (ret)
return ret;
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(w->count));
for (i = 0; i < w->count; i++) {
intel_logical_ring_emit_reg(ringbuf, w->reg[i].addr);
intel_logical_ring_emit(ringbuf, w->reg[i].value);
}
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
engine->gpu_caches_dirty = true;
ret = logical_ring_flush_all_caches(req);
if (ret)
return ret;
return 0;
}
#define wa_ctx_emit(batch, index, cmd) \
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
do { \
int __index = (index)++; \
if (WARN_ON(__index >= (PAGE_SIZE / sizeof(uint32_t)))) { \
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
return -ENOSPC; \
} \
batch[__index] = (cmd); \
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
} while (0)
#define wa_ctx_emit_reg(batch, index, reg) \
drm/i915: Type safe register read/write Make I915_READ and I915_WRITE more type safe by wrapping the register offset in a struct. This should eliminate most of the fumbles we've had with misplaced parens. This only takes care of normal mmio registers. We could extend the idea to other register types and define each with its own struct. That way you wouldn't be able to accidentally pass the wrong thing to a specific register access function. The gpio_reg setup is probably the ugliest thing left. But I figure I'd just leave it for now, and wait for some divine inspiration to strike before making it nice. As for the generated code, it's actually a bit better sometimes. Eg. looking at i915_irq_handler(), we can see the following change: lea 0x70024(%rdx,%rax,1),%r9d mov $0x1,%edx - movslq %r9d,%r9 - mov %r9,%rsi - mov %r9,-0x58(%rbp) - callq *0xd8(%rbx) + mov %r9d,%esi + mov %r9d,-0x48(%rbp) callq *0xd8(%rbx) So previously gcc thought the register offset might be signed and decided to sign extend it, just in case. The rest appears to be mostly just minor shuffling of instructions. v2: i915_mmio_reg_{offset,equal,valid}() helpers added s/_REG/_MMIO/ in the register defines mo more switch statements left to worry about ring_emit stuff got sorted in a prep patch cmd parser, lrc context and w/a batch buildup also in prep patch vgpu stuff cleaned up and moved to a prep patch all other unrelated changes split out v3: Rebased due to BXT DSI/BLC, MOCS, etc. v4: Rebased due to churn, s/i915_mmio_reg_t/i915_reg_t/ Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1447853606-2751-1-git-send-email-ville.syrjala@linux.intel.com
2015-11-18 06:33:26 -07:00
wa_ctx_emit((batch), (index), i915_mmio_reg_offset(reg))
/*
* In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
* PIPE_CONTROL instruction. This is required for the flush to happen correctly
* but there is a slight complication as this is applied in WA batch where the
* values are only initialized once so we cannot take register value at the
* beginning and reuse it further; hence we save its value to memory, upload a
* constant value with bit21 set and then we restore it back with the saved value.
* To simplify the WA, a constant value is formed by using the default value
* of this register. This shouldn't be a problem because we are only modifying
* it for a short period and this batch in non-premptible. We can ofcourse
* use additional instructions that read the actual value of the register
* at that time and set our bit of interest but it makes the WA complicated.
*
* This WA is also required for Gen9 so extracting as a function avoids
* code duplication.
*/
static inline int gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine,
uint32_t *const batch,
uint32_t index)
{
uint32_t l3sqc4_flush = (0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES);
/*
* WaDisableLSQCROPERFforOCL:skl
* This WA is implemented in skl_init_clock_gating() but since
* this batch updates GEN8_L3SQCREG4 with default value we need to
* set this bit here to retain the WA during flush.
*/
if (IS_SKL_REVID(engine->dev, 0, SKL_REVID_E0))
l3sqc4_flush |= GEN8_LQSC_RO_PERF_DIS;
wa_ctx_emit(batch, index, (MI_STORE_REGISTER_MEM_GEN8 |
MI_SRM_LRM_GLOBAL_GTT));
wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
wa_ctx_emit(batch, index, l3sqc4_flush);
wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
wa_ctx_emit(batch, index, (PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_DC_FLUSH_ENABLE));
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, (MI_LOAD_REGISTER_MEM_GEN8 |
MI_SRM_LRM_GLOBAL_GTT));
wa_ctx_emit_reg(batch, index, GEN8_L3SQCREG4);
wa_ctx_emit(batch, index, engine->scratch.gtt_offset + 256);
wa_ctx_emit(batch, index, 0);
return index;
}
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
static inline uint32_t wa_ctx_start(struct i915_wa_ctx_bb *wa_ctx,
uint32_t offset,
uint32_t start_alignment)
{
return wa_ctx->offset = ALIGN(offset, start_alignment);
}
static inline int wa_ctx_end(struct i915_wa_ctx_bb *wa_ctx,
uint32_t offset,
uint32_t size_alignment)
{
wa_ctx->size = offset - wa_ctx->offset;
WARN(wa_ctx->size % size_alignment,
"wa_ctx_bb failed sanity checks: size %d is not aligned to %d\n",
wa_ctx->size, size_alignment);
return 0;
}
/**
* gen8_init_indirectctx_bb() - initialize indirect ctx batch with WA
*
* @ring: only applicable for RCS
* @wa_ctx: structure representing wa_ctx
* offset: specifies start of the batch, should be cache-aligned. This is updated
* with the offset value received as input.
* size: size of the batch in DWORDS but HW expects in terms of cachelines
* @batch: page in which WA are loaded
* @offset: This field specifies the start of the batch, it should be
* cache-aligned otherwise it is adjusted accordingly.
* Typically we only have one indirect_ctx and per_ctx batch buffer which are
* initialized at the beginning and shared across all contexts but this field
* helps us to have multiple batches at different offsets and select them based
* on a criteria. At the moment this batch always start at the beginning of the page
* and at this point we don't have multiple wa_ctx batch buffers.
*
* The number of WA applied are not known at the beginning; we use this field
* to return the no of DWORDS written.
*
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
* It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
* so it adds NOOPs as padding to make it cacheline aligned.
* MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
* makes a complete batch buffer.
*
* Return: non-zero if we exceed the PAGE_SIZE limit.
*/
static int gen8_init_indirectctx_bb(struct intel_engine_cs *engine,
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
struct i915_wa_ctx_bb *wa_ctx,
uint32_t *const batch,
uint32_t *offset)
{
uint32_t scratch_addr;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
/* WaDisableCtxRestoreArbitration:bdw,chv */
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
/* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
if (IS_BROADWELL(engine->dev)) {
int rc = gen8_emit_flush_coherentl3_wa(engine, batch, index);
if (rc < 0)
return rc;
index = rc;
}
/* WaClearSlmSpaceAtContextSwitch:bdw,chv */
/* Actual scratch location is at 128 bytes offset */
scratch_addr = engine->scratch.gtt_offset + 2*CACHELINE_BYTES;
wa_ctx_emit(batch, index, GFX_OP_PIPE_CONTROL(6));
wa_ctx_emit(batch, index, (PIPE_CONTROL_FLUSH_L3 |
PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE));
wa_ctx_emit(batch, index, scratch_addr);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
wa_ctx_emit(batch, index, 0);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
/* Pad to end of cacheline */
while (index % CACHELINE_DWORDS)
wa_ctx_emit(batch, index, MI_NOOP);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
/*
* MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
* execution depends on the length specified in terms of cache lines
* in the register CTX_RCS_INDIRECT_CTX
*/
return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}
/**
* gen8_init_perctx_bb() - initialize per ctx batch with WA
*
* @ring: only applicable for RCS
* @wa_ctx: structure representing wa_ctx
* offset: specifies start of the batch, should be cache-aligned.
* size: size of the batch in DWORDS but HW expects in terms of cachelines
* @batch: page in which WA are loaded
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
* @offset: This field specifies the start of this batch.
* This batch is started immediately after indirect_ctx batch. Since we ensure
* that indirect_ctx ends on a cacheline this batch is aligned automatically.
*
* The number of DWORDS written are returned using this field.
*
* This batch is terminated with MI_BATCH_BUFFER_END and so we need not add padding
* to align it with cacheline as padding after MI_BATCH_BUFFER_END is redundant.
*/
static int gen8_init_perctx_bb(struct intel_engine_cs *engine,
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
struct i915_wa_ctx_bb *wa_ctx,
uint32_t *const batch,
uint32_t *offset)
{
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
/* WaDisableCtxRestoreArbitration:bdw,chv */
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
return wa_ctx_end(wa_ctx, *offset = index, 1);
}
static int gen9_init_indirectctx_bb(struct intel_engine_cs *engine,
struct i915_wa_ctx_bb *wa_ctx,
uint32_t *const batch,
uint32_t *offset)
{
int ret;
struct drm_device *dev = engine->dev;
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
/* WaDisableCtxRestoreArbitration:skl,bxt */
if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
IS_BXT_REVID(dev, 0, BXT_REVID_A1))
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_DISABLE);
/* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt */
ret = gen8_emit_flush_coherentl3_wa(engine, batch, index);
if (ret < 0)
return ret;
index = ret;
/* Pad to end of cacheline */
while (index % CACHELINE_DWORDS)
wa_ctx_emit(batch, index, MI_NOOP);
return wa_ctx_end(wa_ctx, *offset = index, CACHELINE_DWORDS);
}
static int gen9_init_perctx_bb(struct intel_engine_cs *engine,
struct i915_wa_ctx_bb *wa_ctx,
uint32_t *const batch,
uint32_t *offset)
{
struct drm_device *dev = engine->dev;
uint32_t index = wa_ctx_start(wa_ctx, *offset, CACHELINE_DWORDS);
/* WaSetDisablePixMaskCammingAndRhwoInCommonSliceChicken:skl,bxt */
if (IS_SKL_REVID(dev, 0, SKL_REVID_B0) ||
IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(1));
wa_ctx_emit_reg(batch, index, GEN9_SLICE_COMMON_ECO_CHICKEN0);
wa_ctx_emit(batch, index,
_MASKED_BIT_ENABLE(DISABLE_PIXEL_MASK_CAMMING));
wa_ctx_emit(batch, index, MI_NOOP);
}
/* WaClearTdlStateAckDirtyBits:bxt */
if (IS_BXT_REVID(dev, 0, BXT_REVID_B0)) {
wa_ctx_emit(batch, index, MI_LOAD_REGISTER_IMM(4));
wa_ctx_emit_reg(batch, index, GEN8_STATE_ACK);
wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE1);
wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
wa_ctx_emit_reg(batch, index, GEN9_STATE_ACK_SLICE2);
wa_ctx_emit(batch, index, _MASKED_BIT_DISABLE(GEN9_SUBSLICE_TDL_ACK_BITS));
wa_ctx_emit_reg(batch, index, GEN7_ROW_CHICKEN2);
/* dummy write to CS, mask bits are 0 to ensure the register is not modified */
wa_ctx_emit(batch, index, 0x0);
wa_ctx_emit(batch, index, MI_NOOP);
}
/* WaDisableCtxRestoreArbitration:skl,bxt */
if (IS_SKL_REVID(dev, 0, SKL_REVID_D0) ||
IS_BXT_REVID(dev, 0, BXT_REVID_A1))
wa_ctx_emit(batch, index, MI_ARB_ON_OFF | MI_ARB_ENABLE);
wa_ctx_emit(batch, index, MI_BATCH_BUFFER_END);
return wa_ctx_end(wa_ctx, *offset = index, 1);
}
static int lrc_setup_wa_ctx_obj(struct intel_engine_cs *engine, u32 size)
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
{
int ret;
engine->wa_ctx.obj = i915_gem_object_create(engine->dev,
PAGE_ALIGN(size));
if (IS_ERR(engine->wa_ctx.obj)) {
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
DRM_DEBUG_DRIVER("alloc LRC WA ctx backing obj failed.\n");
ret = PTR_ERR(engine->wa_ctx.obj);
engine->wa_ctx.obj = NULL;
return ret;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
}
ret = i915_gem_obj_ggtt_pin(engine->wa_ctx.obj, PAGE_SIZE, 0);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
if (ret) {
DRM_DEBUG_DRIVER("pin LRC WA ctx backing obj failed: %d\n",
ret);
drm_gem_object_unreference(&engine->wa_ctx.obj->base);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
return ret;
}
return 0;
}
static void lrc_destroy_wa_ctx_obj(struct intel_engine_cs *engine)
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
{
if (engine->wa_ctx.obj) {
i915_gem_object_ggtt_unpin(engine->wa_ctx.obj);
drm_gem_object_unreference(&engine->wa_ctx.obj->base);
engine->wa_ctx.obj = NULL;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
}
}
static int intel_init_workaround_bb(struct intel_engine_cs *engine)
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
{
int ret;
uint32_t *batch;
uint32_t offset;
struct page *page;
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
WARN_ON(engine->id != RCS);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
/* update this when WA for higher Gen are added */
if (INTEL_INFO(engine->dev)->gen > 9) {
DRM_ERROR("WA batch buffer is not initialized for Gen%d\n",
INTEL_INFO(engine->dev)->gen);
return 0;
}
/* some WA perform writes to scratch page, ensure it is valid */
if (engine->scratch.obj == NULL) {
DRM_ERROR("scratch page not allocated for %s\n", engine->name);
return -EINVAL;
}
ret = lrc_setup_wa_ctx_obj(engine, PAGE_SIZE);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
if (ret) {
DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
return ret;
}
drm/i915: mark GEM object pages dirty when mapped & written by the CPU In various places, a single page of a (regular) GEM object is mapped into CPU address space and updated. In each such case, either the page or the the object should be marked dirty, to ensure that the modifications are not discarded if the object is evicted under memory pressure. The typical sequence is: va = kmap_atomic(i915_gem_object_get_page(obj, pageno)); *(va+offset) = ... kunmap_atomic(va); Here we introduce i915_gem_object_get_dirty_page(), which performs the same operation as i915_gem_object_get_page() but with the side-effect of marking the returned page dirty in the pagecache. This will ensure that if the object is subsequently evicted (due to memory pressure), the changes are written to backing store rather than discarded. Note that it works only for regular (shmfs-backed) GEM objects, but (at least for now) those are the only ones that are updated in this way -- the objects in question are contexts and batchbuffers, which are always shmfs-backed. Separate patches deal with the cases where whole objects are (or may be) dirtied. v3: Mark two more pages dirty in the page-boundary-crossing cases of the execbuffer relocation code [Chris Wilson] Signed-off-by: Dave Gordon <david.s.gordon@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1449773486-30822-2-git-send-email-david.s.gordon@intel.com Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-12-10 11:51:23 -07:00
page = i915_gem_object_get_dirty_page(wa_ctx->obj, 0);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
batch = kmap_atomic(page);
offset = 0;
if (INTEL_INFO(engine->dev)->gen == 8) {
ret = gen8_init_indirectctx_bb(engine,
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
&wa_ctx->indirect_ctx,
batch,
&offset);
if (ret)
goto out;
ret = gen8_init_perctx_bb(engine,
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
&wa_ctx->per_ctx,
batch,
&offset);
if (ret)
goto out;
} else if (INTEL_INFO(engine->dev)->gen == 9) {
ret = gen9_init_indirectctx_bb(engine,
&wa_ctx->indirect_ctx,
batch,
&offset);
if (ret)
goto out;
ret = gen9_init_perctx_bb(engine,
&wa_ctx->per_ctx,
batch,
&offset);
if (ret)
goto out;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
}
out:
kunmap_atomic(batch);
if (ret)
lrc_destroy_wa_ctx_obj(engine);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
return ret;
}
static void lrc_init_hws(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = engine->dev->dev_private;
I915_WRITE(RING_HWS_PGA(engine->mmio_base),
(u32)engine->status_page.gfx_addr);
POSTING_READ(RING_HWS_PGA(engine->mmio_base));
}
static int gen8_init_common_ring(struct intel_engine_cs *engine)
{
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
unsigned int next_context_status_buffer_hw;
lrc_init_hws(engine);
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
I915_WRITE_IMR(engine,
~(engine->irq_enable_mask | engine->irq_keep_mask));
I915_WRITE(RING_HWSTAM(engine->mmio_base), 0xffffffff);
I915_WRITE(RING_MODE_GEN7(engine),
_MASKED_BIT_DISABLE(GFX_REPLAY_MODE) |
_MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
POSTING_READ(RING_MODE_GEN7(engine));
/*
* Instead of resetting the Context Status Buffer (CSB) read pointer to
* zero, we need to read the write pointer from hardware and use its
* value because "this register is power context save restored".
* Effectively, these states have been observed:
*
* | Suspend-to-idle (freeze) | Suspend-to-RAM (mem) |
* BDW | CSB regs not reset | CSB regs reset |
* CHT | CSB regs not reset | CSB regs not reset |
* SKL | ? | ? |
* BXT | ? | ? |
*/
next_context_status_buffer_hw =
GEN8_CSB_WRITE_PTR(I915_READ(RING_CONTEXT_STATUS_PTR(engine)));
/*
* When the CSB registers are reset (also after power-up / gpu reset),
* CSB write pointer is set to all 1's, which is not valid, use '5' in
* this special case, so the first element read is CSB[0].
*/
if (next_context_status_buffer_hw == GEN8_CSB_PTR_MASK)
next_context_status_buffer_hw = (GEN8_CSB_ENTRIES - 1);
engine->next_context_status_buffer = next_context_status_buffer_hw;
DRM_DEBUG_DRIVER("Execlists enabled for %s\n", engine->name);
intel_engine_init_hangcheck(engine);
return intel_mocs_init_engine(engine);
}
static int gen8_init_render_ring(struct intel_engine_cs *engine)
{
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = gen8_init_common_ring(engine);
if (ret)
return ret;
/* We need to disable the AsyncFlip performance optimisations in order
* to use MI_WAIT_FOR_EVENT within the CS. It should already be
* programmed to '1' on all products.
*
* WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv,bdw,chv
*/
I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
return init_workarounds_ring(engine);
}
static int gen9_init_render_ring(struct intel_engine_cs *engine)
{
int ret;
ret = gen8_init_common_ring(engine);
if (ret)
return ret;
return init_workarounds_ring(engine);
}
static int intel_logical_ring_emit_pdps(struct drm_i915_gem_request *req)
{
struct i915_hw_ppgtt *ppgtt = req->ctx->ppgtt;
struct intel_engine_cs *engine = req->engine;
struct intel_ringbuffer *ringbuf = req->ringbuf;
const int num_lri_cmds = GEN8_LEGACY_PDPES * 2;
int i, ret;
ret = intel_ring_begin(req, num_lri_cmds * 2 + 2);
if (ret)
return ret;
intel_logical_ring_emit(ringbuf, MI_LOAD_REGISTER_IMM(num_lri_cmds));
for (i = GEN8_LEGACY_PDPES - 1; i >= 0; i--) {
const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
intel_logical_ring_emit_reg(ringbuf,
GEN8_RING_PDP_UDW(engine, i));
intel_logical_ring_emit(ringbuf, upper_32_bits(pd_daddr));
intel_logical_ring_emit_reg(ringbuf,
GEN8_RING_PDP_LDW(engine, i));
intel_logical_ring_emit(ringbuf, lower_32_bits(pd_daddr));
}
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
return 0;
}
static int gen8_emit_bb_start(struct drm_i915_gem_request *req,
u64 offset, unsigned dispatch_flags)
{
struct intel_ringbuffer *ringbuf = req->ringbuf;
bool ppgtt = !(dispatch_flags & I915_DISPATCH_SECURE);
int ret;
/* Don't rely in hw updating PDPs, specially in lite-restore.
* Ideally, we should set Force PD Restore in ctx descriptor,
* but we can't. Force Restore would be a second option, but
* it is unsafe in case of lite-restore (because the ctx is
2015-07-30 04:06:23 -06:00
* not idle). PML4 is allocated during ppgtt init so this is
* not needed in 48-bit.*/
if (req->ctx->ppgtt &&
(intel_engine_flag(req->engine) & req->ctx->ppgtt->pd_dirty_rings)) {
if (!USES_FULL_48BIT_PPGTT(req->i915) &&
!intel_vgpu_active(req->i915->dev)) {
2015-07-30 04:06:23 -06:00
ret = intel_logical_ring_emit_pdps(req);
if (ret)
return ret;
}
req->ctx->ppgtt->pd_dirty_rings &= ~intel_engine_flag(req->engine);
}
ret = intel_ring_begin(req, 4);
if (ret)
return ret;
/* FIXME(BDW): Address space and security selectors. */
intel_logical_ring_emit(ringbuf, MI_BATCH_BUFFER_START_GEN8 |
(ppgtt<<8) |
(dispatch_flags & I915_DISPATCH_RS ?
MI_BATCH_RESOURCE_STREAMER : 0));
intel_logical_ring_emit(ringbuf, lower_32_bits(offset));
intel_logical_ring_emit(ringbuf, upper_32_bits(offset));
intel_logical_ring_emit(ringbuf, MI_NOOP);
intel_logical_ring_advance(ringbuf);
return 0;
}
static bool gen8_logical_ring_get_irq(struct intel_engine_cs *engine)
{
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
if (WARN_ON(!intel_irqs_enabled(dev_priv)))
return false;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (engine->irq_refcount++ == 0) {
I915_WRITE_IMR(engine,
~(engine->irq_enable_mask | engine->irq_keep_mask));
POSTING_READ(RING_IMR(engine->mmio_base));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
return true;
}
static void gen8_logical_ring_put_irq(struct intel_engine_cs *engine)
{
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
unsigned long flags;
spin_lock_irqsave(&dev_priv->irq_lock, flags);
if (--engine->irq_refcount == 0) {
I915_WRITE_IMR(engine, ~engine->irq_keep_mask);
POSTING_READ(RING_IMR(engine->mmio_base));
}
spin_unlock_irqrestore(&dev_priv->irq_lock, flags);
}
static int gen8_emit_flush(struct drm_i915_gem_request *request,
u32 invalidate_domains,
u32 unused)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
struct intel_engine_cs *engine = ringbuf->engine;
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t cmd;
int ret;
ret = intel_ring_begin(request, 4);
if (ret)
return ret;
cmd = MI_FLUSH_DW + 1;
/* We always require a command barrier so that subsequent
* commands, such as breadcrumb interrupts, are strictly ordered
* wrt the contents of the write cache being flushed to memory
* (and thus being coherent from the CPU).
*/
cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
if (invalidate_domains & I915_GEM_GPU_DOMAINS) {
cmd |= MI_INVALIDATE_TLB;
if (engine == &dev_priv->engine[VCS])
cmd |= MI_INVALIDATE_BSD;
}
intel_logical_ring_emit(ringbuf, cmd);
intel_logical_ring_emit(ringbuf,
I915_GEM_HWS_SCRATCH_ADDR |
MI_FLUSH_DW_USE_GTT);
intel_logical_ring_emit(ringbuf, 0); /* upper addr */
intel_logical_ring_emit(ringbuf, 0); /* value */
intel_logical_ring_advance(ringbuf);
return 0;
}
static int gen8_emit_flush_render(struct drm_i915_gem_request *request,
u32 invalidate_domains,
u32 flush_domains)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
struct intel_engine_cs *engine = ringbuf->engine;
u32 scratch_addr = engine->scratch.gtt_offset + 2 * CACHELINE_BYTES;
bool vf_flush_wa = false;
u32 flags = 0;
int ret;
flags |= PIPE_CONTROL_CS_STALL;
if (flush_domains) {
flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
flags |= PIPE_CONTROL_FLUSH_ENABLE;
}
if (invalidate_domains) {
flags |= PIPE_CONTROL_TLB_INVALIDATE;
flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
flags |= PIPE_CONTROL_QW_WRITE;
flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
/*
* On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
* pipe control.
*/
if (IS_GEN9(engine->dev))
vf_flush_wa = true;
}
ret = intel_ring_begin(request, vf_flush_wa ? 12 : 6);
if (ret)
return ret;
if (vf_flush_wa) {
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
}
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
intel_logical_ring_emit(ringbuf, flags);
intel_logical_ring_emit(ringbuf, scratch_addr);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_advance(ringbuf);
return 0;
}
static u32 gen8_get_seqno(struct intel_engine_cs *engine)
{
return intel_read_status_page(engine, I915_GEM_HWS_INDEX);
}
static void gen8_set_seqno(struct intel_engine_cs *engine, u32 seqno)
{
intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
}
static void bxt_a_seqno_barrier(struct intel_engine_cs *engine)
{
/*
* On BXT A steppings there is a HW coherency issue whereby the
* MI_STORE_DATA_IMM storing the completed request's seqno
* occasionally doesn't invalidate the CPU cache. Work around this by
* clflushing the corresponding cacheline whenever the caller wants
* the coherency to be guaranteed. Note that this cacheline is known
* to be clean at this point, since we only write it in
* bxt_a_set_seqno(), where we also do a clflush after the write. So
* this clflush in practice becomes an invalidate operation.
*/
intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
}
static void bxt_a_set_seqno(struct intel_engine_cs *engine, u32 seqno)
{
intel_write_status_page(engine, I915_GEM_HWS_INDEX, seqno);
/* See bxt_a_get_seqno() explaining the reason for the clflush. */
intel_flush_status_page(engine, I915_GEM_HWS_INDEX);
}
/*
* Reserve space for 2 NOOPs at the end of each request to be
* used as a workaround for not being allowed to do lite
* restore with HEAD==TAIL (WaIdleLiteRestore).
*/
#define WA_TAIL_DWORDS 2
static int gen8_emit_request(struct drm_i915_gem_request *request)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
int ret;
ret = intel_ring_begin(request, 6 + WA_TAIL_DWORDS);
if (ret)
return ret;
/* w/a: bit 5 needs to be zero for MI_FLUSH_DW address. */
BUILD_BUG_ON(I915_GEM_HWS_INDEX_ADDR & (1 << 5));
intel_logical_ring_emit(ringbuf,
(MI_FLUSH_DW + 1) | MI_FLUSH_DW_OP_STOREDW);
intel_logical_ring_emit(ringbuf,
intel_hws_seqno_address(request->engine) |
MI_FLUSH_DW_USE_GTT);
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
intel_logical_ring_emit(ringbuf, MI_NOOP);
return intel_logical_ring_advance_and_submit(request);
}
static int gen8_emit_request_render(struct drm_i915_gem_request *request)
{
struct intel_ringbuffer *ringbuf = request->ringbuf;
int ret;
ret = intel_ring_begin(request, 8 + WA_TAIL_DWORDS);
if (ret)
return ret;
/* We're using qword write, seqno should be aligned to 8 bytes. */
BUILD_BUG_ON(I915_GEM_HWS_INDEX & 1);
/* w/a for post sync ops following a GPGPU operation we
* need a prior CS_STALL, which is emitted by the flush
* following the batch.
*/
intel_logical_ring_emit(ringbuf, GFX_OP_PIPE_CONTROL(6));
intel_logical_ring_emit(ringbuf,
(PIPE_CONTROL_GLOBAL_GTT_IVB |
PIPE_CONTROL_CS_STALL |
PIPE_CONTROL_QW_WRITE));
intel_logical_ring_emit(ringbuf,
intel_hws_seqno_address(request->engine));
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, i915_gem_request_get_seqno(request));
/* We're thrashing one dword of HWS. */
intel_logical_ring_emit(ringbuf, 0);
intel_logical_ring_emit(ringbuf, MI_USER_INTERRUPT);
intel_logical_ring_emit(ringbuf, MI_NOOP);
return intel_logical_ring_advance_and_submit(request);
}
static int intel_lr_context_render_state_init(struct drm_i915_gem_request *req)
{
struct render_state so;
int ret;
ret = i915_gem_render_state_prepare(req->engine, &so);
if (ret)
return ret;
if (so.rodata == NULL)
return 0;
ret = req->engine->emit_bb_start(req, so.ggtt_offset,
I915_DISPATCH_SECURE);
if (ret)
goto out;
ret = req->engine->emit_bb_start(req,
drm/i915: Add provision to extend Golden context batch The Golden batch carries 3D state at the beginning so that HW starts with a known state. It is carried as a binary blob which is auto-generated from source. The idea was it would be easier to maintain and keep the complexity out of the kernel which makes sense as we don't really touch it. However if you really need to update it then you need to update generator source and keep the binary blob in sync with it. There is a need to patch this in bxt to send one additional command to enable a feature. A solution was to patch the binary data with some additional data structures (included as part of auto-generator source) but it was unnecessarily complicated. Chris suggested the idea of having a secondary batch and execute two batch buffers. It has clear advantages as we needn't touch the base golden batch, can customize secondary/auxiliary batch depending on Gen and can be carried in the driver with no dependencies. This patch adds support for this auxiliary batch which is inserted at the end of golden batch and is completely independent from it. Thanks to Mika for the preliminary review. v2: Strictly conform to the batch size requirements to cover Gen2 and add comments to clarify overflow check in macro (Chris, Mika). v3: aux_batch_offset was declared as u64, change it to u32 (Chris) Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Cc: Mika Kuoppala <mika.kuoppala@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Armin Reese <armin.c.reese@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-20 03:46:10 -06:00
(so.ggtt_offset + so.aux_batch_offset),
I915_DISPATCH_SECURE);
if (ret)
goto out;
i915_vma_move_to_active(i915_gem_obj_to_ggtt(so.obj), req);
out:
i915_gem_render_state_fini(&so);
return ret;
}
static int gen8_init_rcs_context(struct drm_i915_gem_request *req)
{
int ret;
ret = intel_logical_ring_workarounds_emit(req);
if (ret)
return ret;
drm/i915: Added Programming of the MOCS This change adds the programming of the MOCS registers to the gen 9+ platforms. The set of MOCS configuration entries introduced by this patch is intended to be minimal but sufficient to cover the needs of current userspace - i.e. a good set of defaults. It is expected to be extended in the future to provide further default values or to allow userspace to redefine its private MOCS tables based on its demand for additional caching configurations. In this setup, userspace should only utilize the first N entries, higher entries are reserved for future use. It creates a fixed register set that is programmed across the different engines so that all engines have the same table. This is done as the main RCS context only holds the registers for itself and the shared L3 values. By trying to keep the registers consistent across the different engines it should make the programming for the registers consistent. v2: -'static const' for private data structures and style changes.(Matt Turner) v3: - Make the tables "slightly" more readable. (Damien Lespiau) - Updated tables fix performance regression. v4: - Code formatting. (Chris Wilson) - re-privatised mocs code. (Daniel Vetter) v5: - Changed the name of a function. (Chris Wilson) v6: - re-based - Added Mesa table entry (skylake & broxton) (Francisco Jerez) - Tidied up the readability defines (Francisco Jerez) - NUMBER of entries defines wrong. (Jim Bish) - Added comments to clear up the meaning of the tables (Jim Bish) Signed-off-by: Peter Antoine <peter.antoine@intel.com> v7 (Francisco Jerez): - Don't write L3-specific MOCS_ESC/SCC values into the e/LLC control tables. Prefix L3-specific defines consistently with L3_ and e/LLC-specific defines with LE_ to avoid this kind of confusion in the future. - Change L3CC WT define back to RESERVED (matches my hardware documentation and the original patch, probably a misunderstanding of my own previous comment). - Drop Android tables, define new minimal tables more suitable for the open source stack. - Add comment that the MOCS tables are part of the kernel ABI. - Move intel_logical_ring_begin() and _advance() calls one level down (Chris Wilson). - Minor formatting and style fixes. v8 (Francisco Jerez): - Add table size sanity check to emit_mocs_control/l3cc_table() (Chris Wilson). - Add comment about undefined entries being implicitly set to uncached for forwards compatibility. v9 (Francisco Jerez): - Minor style fixes. Signed-off-by: Francisco Jerez <currojerez@riseup.net> Acked-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-07-10 11:13:11 -06:00
ret = intel_rcs_context_init_mocs(req);
/*
* Failing to program the MOCS is non-fatal.The system will not
* run at peak performance. So generate an error and carry on.
*/
if (ret)
DRM_ERROR("MOCS failed to program: expect performance issues.\n");
return intel_lr_context_render_state_init(req);
}
/**
* intel_logical_ring_cleanup() - deallocate the Engine Command Streamer
*
* @ring: Engine Command Streamer.
*
*/
void intel_logical_ring_cleanup(struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv;
if (!intel_engine_initialized(engine))
return;
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
/*
* Tasklet cannot be active at this point due intel_mark_active/idle
* so this is just for documentation.
*/
if (WARN_ON(test_bit(TASKLET_STATE_SCHED, &engine->irq_tasklet.state)))
tasklet_kill(&engine->irq_tasklet);
dev_priv = engine->dev->dev_private;
if (engine->buffer) {
intel_logical_ring_stop(engine);
WARN_ON((I915_READ_MODE(engine) & MODE_IDLE) == 0);
}
if (engine->cleanup)
engine->cleanup(engine);
i915_cmd_parser_fini_ring(engine);
i915_gem_batch_pool_fini(&engine->batch_pool);
if (engine->status_page.obj) {
i915_gem_object_unpin_map(engine->status_page.obj);
engine->status_page.obj = NULL;
}
intel_lr_context_unpin(dev_priv->kernel_context, engine);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
engine->idle_lite_restore_wa = 0;
engine->disable_lite_restore_wa = false;
engine->ctx_desc_template = 0;
lrc_destroy_wa_ctx_obj(engine);
engine->dev = NULL;
}
static void
logical_ring_default_vfuncs(struct drm_device *dev,
struct intel_engine_cs *engine)
{
/* Default vfuncs which can be overriden by each engine. */
engine->init_hw = gen8_init_common_ring;
engine->emit_request = gen8_emit_request;
engine->emit_flush = gen8_emit_flush;
engine->irq_get = gen8_logical_ring_get_irq;
engine->irq_put = gen8_logical_ring_put_irq;
engine->emit_bb_start = gen8_emit_bb_start;
engine->get_seqno = gen8_get_seqno;
engine->set_seqno = gen8_set_seqno;
if (IS_BXT_REVID(dev, 0, BXT_REVID_A1)) {
engine->irq_seqno_barrier = bxt_a_seqno_barrier;
engine->set_seqno = bxt_a_set_seqno;
}
}
static inline void
logical_ring_default_irqs(struct intel_engine_cs *engine, unsigned shift)
{
engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
}
static int
lrc_setup_hws(struct intel_engine_cs *engine,
struct drm_i915_gem_object *dctx_obj)
{
void *hws;
/* The HWSP is part of the default context object in LRC mode. */
engine->status_page.gfx_addr = i915_gem_obj_ggtt_offset(dctx_obj) +
LRC_PPHWSP_PN * PAGE_SIZE;
hws = i915_gem_object_pin_map(dctx_obj);
if (IS_ERR(hws))
return PTR_ERR(hws);
engine->status_page.page_addr = hws + LRC_PPHWSP_PN * PAGE_SIZE;
engine->status_page.obj = dctx_obj;
return 0;
}
static int
logical_ring_init(struct drm_device *dev, struct intel_engine_cs *engine)
{
struct drm_i915_private *dev_priv = to_i915(dev);
struct intel_context *dctx = dev_priv->kernel_context;
enum forcewake_domains fw_domains;
int ret;
/* Intentionally left blank. */
engine->buffer = NULL;
engine->dev = dev;
INIT_LIST_HEAD(&engine->active_list);
INIT_LIST_HEAD(&engine->request_list);
i915_gem_batch_pool_init(dev, &engine->batch_pool);
init_waitqueue_head(&engine->irq_queue);
INIT_LIST_HEAD(&engine->buffers);
INIT_LIST_HEAD(&engine->execlist_queue);
spin_lock_init(&engine->execlist_lock);
drm/i915: Move execlists irq handler to a bottom half Doing a lot of work in the interrupt handler introduces huge latencies to the system as a whole. Most dramatic effect can be seen by running an all engine stress test like igt/gem_exec_nop/all where, when the kernel config is lean enough, the whole system can be brought into multi-second periods of complete non-interactivty. That can look for example like this: NMI watchdog: BUG: soft lockup - CPU#0 stuck for 23s! [kworker/u8:3:143] Modules linked in: [redacted for brevity] CPU: 0 PID: 143 Comm: kworker/u8:3 Tainted: G U L 4.5.0-160321+ #183 Hardware name: Intel Corporation Broadwell Client platform/WhiteTip Mountain 1 Workqueue: i915 gen6_pm_rps_work [i915] task: ffff8800aae88000 ti: ffff8800aae90000 task.ti: ffff8800aae90000 RIP: 0010:[<ffffffff8104a3c2>] [<ffffffff8104a3c2>] __do_softirq+0x72/0x1d0 RSP: 0000:ffff88014f403f38 EFLAGS: 00000206 RAX: ffff8800aae94000 RBX: 0000000000000000 RCX: 00000000000006e0 RDX: 0000000000000020 RSI: 0000000004208060 RDI: 0000000000215d80 RBP: ffff88014f403f80 R08: 0000000b1b42c180 R09: 0000000000000022 R10: 0000000000000004 R11: 00000000ffffffff R12: 000000000000a030 R13: 0000000000000082 R14: ffff8800aa4d0080 R15: 0000000000000082 FS: 0000000000000000(0000) GS:ffff88014f400000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007fa53b90c000 CR3: 0000000001a0a000 CR4: 00000000001406f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Stack: 042080601b33869f ffff8800aae94000 00000000fffc2678 ffff88010000000a 0000000000000000 000000000000a030 0000000000005302 ffff8800aa4d0080 0000000000000206 ffff88014f403f90 ffffffff8104a716 ffff88014f403fa8 Call Trace: <IRQ> [<ffffffff8104a716>] irq_exit+0x86/0x90 [<ffffffff81031e7d>] smp_apic_timer_interrupt+0x3d/0x50 [<ffffffff814f3eac>] apic_timer_interrupt+0x7c/0x90 <EOI> [<ffffffffa01c5b40>] ? gen8_write64+0x1a0/0x1a0 [i915] [<ffffffff814f2b39>] ? _raw_spin_unlock_irqrestore+0x9/0x20 [<ffffffffa01c5c44>] gen8_write32+0x104/0x1a0 [i915] [<ffffffff8132c6a2>] ? n_tty_receive_buf_common+0x372/0xae0 [<ffffffffa017cc9e>] gen6_set_rps_thresholds+0x1be/0x330 [i915] [<ffffffffa017eaf0>] gen6_set_rps+0x70/0x200 [i915] [<ffffffffa0185375>] intel_set_rps+0x25/0x30 [i915] [<ffffffffa01768fd>] gen6_pm_rps_work+0x10d/0x2e0 [i915] [<ffffffff81063852>] ? finish_task_switch+0x72/0x1c0 [<ffffffff8105ab29>] process_one_work+0x139/0x350 [<ffffffff8105b186>] worker_thread+0x126/0x490 [<ffffffff8105b060>] ? rescuer_thread+0x320/0x320 [<ffffffff8105fa64>] kthread+0xc4/0xe0 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 [<ffffffff814f351f>] ret_from_fork+0x3f/0x70 [<ffffffff8105f9a0>] ? kthread_create_on_node+0x170/0x170 I could not explain, or find a code path, which would explain a +20 second lockup, but from some instrumentation it was apparent the interrupts off proportion of time was between 10-25% under heavy load which is quite bad. When a interrupt "cliff" is reached, which was >~320k irq/s on my machine, the whole system goes into a terrible state of the above described multi-second lockups. By moving the GT interrupt handling to a tasklet in a most simple way, the problem above disappears completely. Testing the effect on sytem-wide latencies using igt/gem_syslatency shows the following before this patch: gem_syslatency: cycles=1532739, latency mean=416531.829us max=2499237us gem_syslatency: cycles=1839434, latency mean=1458099.157us max=4998944us gem_syslatency: cycles=1432570, latency mean=2688.451us max=1201185us gem_syslatency: cycles=1533543, latency mean=416520.499us max=2498886us This shows that the unrelated process is experiencing huge delays in its wake-up latency. After the patch the results look like this: gem_syslatency: cycles=808907, latency mean=53.133us max=1640us gem_syslatency: cycles=862154, latency mean=62.778us max=2117us gem_syslatency: cycles=856039, latency mean=58.079us max=2123us gem_syslatency: cycles=841683, latency mean=56.914us max=1667us Showing a huge improvement in the unrelated process wake-up latency. It also shows an approximate halving in the number of total empty batches submitted during the test. This may not be worrying since the test puts the driver under a very unrealistic load with ncpu threads doing empty batch submission to all GPU engines each. Another benefit compared to the hard-irq handling is that now work on all engines can be dispatched in parallel since we can have up to number of CPUs active tasklets. (While previously a single hard-irq would serially dispatch on one engine after another.) More interesting scenario with regards to throughput is "gem_latency -n 100" which shows 25% better throughput and CPU usage, and 14% better dispatch latencies. I did not find any gains or regressions with Synmark2 or GLbench under light testing. More benchmarking is certainly required. v2: * execlists_lock should be taken as spin_lock_bh when queuing work from userspace now. (Chris Wilson) * uncore.lock must be taken with spin_lock_irq when submitting requests since that now runs from either softirq or process context. v3: * Expanded commit message with more testing data; * converted missed locking sites to _bh; * added execlist_lock comment. (Chris Wilson) v4: * Mention dispatch parallelism in commit. (Chris Wilson) * Do not hold uncore.lock over MMIO reads since the block is already serialised per-engine via the tasklet itself. (Chris Wilson) * intel_lrc_irq_handler should be static. (Chris Wilson) * Cancel/sync the tasklet on GPU reset. (Chris Wilson) * Document and WARN that tasklet cannot be active/pending on engine cleanup. (Chris Wilson/Imre Deak) Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Imre Deak <imre.deak@intel.com> Testcase: igt/gem_exec_nop/all Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=94350 Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1459768316-6670-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-04-04 05:11:56 -06:00
tasklet_init(&engine->irq_tasklet,
intel_lrc_irq_handler, (unsigned long)engine);
logical_ring_init_platform_invariants(engine);
fw_domains = intel_uncore_forcewake_for_reg(dev_priv,
RING_ELSP(engine),
FW_REG_WRITE);
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
RING_CONTEXT_STATUS_PTR(engine),
FW_REG_READ | FW_REG_WRITE);
fw_domains |= intel_uncore_forcewake_for_reg(dev_priv,
RING_CONTEXT_STATUS_BUF_BASE(engine),
FW_REG_READ);
engine->fw_domains = fw_domains;
ret = i915_cmd_parser_init_ring(engine);
if (ret)
goto error;
ret = execlists_context_deferred_alloc(dctx, engine);
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
if (ret)
goto error;
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
/* As this is the default context, always pin it */
ret = intel_lr_context_pin(dctx, engine);
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
if (ret) {
DRM_ERROR("Failed to pin context for %s: %d\n",
engine->name, ret);
goto error;
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
}
/* And setup the hardware status page. */
ret = lrc_setup_hws(engine, dctx->engine[engine->id].state);
if (ret) {
DRM_ERROR("Failed to set up hws %s: %d\n", engine->name, ret);
goto error;
}
return 0;
error:
intel_logical_ring_cleanup(engine);
return ret;
}
static int logical_render_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *engine = &dev_priv->engine[RCS];
int ret;
engine->name = "render ring";
engine->id = RCS;
engine->exec_id = I915_EXEC_RENDER;
engine->guc_id = GUC_RENDER_ENGINE;
engine->mmio_base = RENDER_RING_BASE;
logical_ring_default_irqs(engine, GEN8_RCS_IRQ_SHIFT);
if (HAS_L3_DPF(dev))
engine->irq_keep_mask |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
logical_ring_default_vfuncs(dev, engine);
/* Override some for render ring. */
if (INTEL_INFO(dev)->gen >= 9)
engine->init_hw = gen9_init_render_ring;
else
engine->init_hw = gen8_init_render_ring;
engine->init_context = gen8_init_rcs_context;
engine->cleanup = intel_fini_pipe_control;
engine->emit_flush = gen8_emit_flush_render;
engine->emit_request = gen8_emit_request_render;
engine->dev = dev;
ret = intel_init_pipe_control(engine);
if (ret)
return ret;
ret = intel_init_workaround_bb(engine);
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
if (ret) {
/*
* We continue even if we fail to initialize WA batch
* because we only expect rare glitches but nothing
* critical to prevent us from using GPU
*/
DRM_ERROR("WA batch buffer initialization failed: %d\n",
ret);
}
ret = logical_ring_init(dev, engine);
if (ret) {
lrc_destroy_wa_ctx_obj(engine);
}
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
return ret;
}
static int logical_bsd_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *engine = &dev_priv->engine[VCS];
engine->name = "bsd ring";
engine->id = VCS;
engine->exec_id = I915_EXEC_BSD;
engine->guc_id = GUC_VIDEO_ENGINE;
engine->mmio_base = GEN6_BSD_RING_BASE;
logical_ring_default_irqs(engine, GEN8_VCS1_IRQ_SHIFT);
logical_ring_default_vfuncs(dev, engine);
return logical_ring_init(dev, engine);
}
static int logical_bsd2_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *engine = &dev_priv->engine[VCS2];
engine->name = "bsd2 ring";
engine->id = VCS2;
engine->exec_id = I915_EXEC_BSD;
engine->guc_id = GUC_VIDEO_ENGINE2;
engine->mmio_base = GEN8_BSD2_RING_BASE;
logical_ring_default_irqs(engine, GEN8_VCS2_IRQ_SHIFT);
logical_ring_default_vfuncs(dev, engine);
return logical_ring_init(dev, engine);
}
static int logical_blt_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *engine = &dev_priv->engine[BCS];
engine->name = "blitter ring";
engine->id = BCS;
engine->exec_id = I915_EXEC_BLT;
engine->guc_id = GUC_BLITTER_ENGINE;
engine->mmio_base = BLT_RING_BASE;
logical_ring_default_irqs(engine, GEN8_BCS_IRQ_SHIFT);
logical_ring_default_vfuncs(dev, engine);
return logical_ring_init(dev, engine);
}
static int logical_vebox_ring_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_engine_cs *engine = &dev_priv->engine[VECS];
engine->name = "video enhancement ring";
engine->id = VECS;
engine->exec_id = I915_EXEC_VEBOX;
engine->guc_id = GUC_VIDEOENHANCE_ENGINE;
engine->mmio_base = VEBOX_RING_BASE;
logical_ring_default_irqs(engine, GEN8_VECS_IRQ_SHIFT);
logical_ring_default_vfuncs(dev, engine);
return logical_ring_init(dev, engine);
}
/**
* intel_logical_rings_init() - allocate, populate and init the Engine Command Streamers
* @dev: DRM device.
*
* This function inits the engines for an Execlists submission style (the equivalent in the
* legacy ringbuffer submission world would be i915_gem_init_engines). It does it only for
* those engines that are present in the hardware.
*
* Return: non-zero if the initialization failed.
*/
int intel_logical_rings_init(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
ret = logical_render_ring_init(dev);
if (ret)
return ret;
if (HAS_BSD(dev)) {
ret = logical_bsd_ring_init(dev);
if (ret)
goto cleanup_render_ring;
}
if (HAS_BLT(dev)) {
ret = logical_blt_ring_init(dev);
if (ret)
goto cleanup_bsd_ring;
}
if (HAS_VEBOX(dev)) {
ret = logical_vebox_ring_init(dev);
if (ret)
goto cleanup_blt_ring;
}
if (HAS_BSD2(dev)) {
ret = logical_bsd2_ring_init(dev);
if (ret)
goto cleanup_vebox_ring;
}
return 0;
cleanup_vebox_ring:
intel_logical_ring_cleanup(&dev_priv->engine[VECS]);
cleanup_blt_ring:
intel_logical_ring_cleanup(&dev_priv->engine[BCS]);
cleanup_bsd_ring:
intel_logical_ring_cleanup(&dev_priv->engine[VCS]);
cleanup_render_ring:
intel_logical_ring_cleanup(&dev_priv->engine[RCS]);
return ret;
}
static u32
make_rpcs(struct drm_device *dev)
{
u32 rpcs = 0;
/*
* No explicit RPCS request is needed to ensure full
* slice/subslice/EU enablement prior to Gen9.
*/
if (INTEL_INFO(dev)->gen < 9)
return 0;
/*
* Starting in Gen9, render power gating can leave
* slice/subslice/EU in a partially enabled state. We
* must make an explicit request through RPCS for full
* enablement.
*/
if (INTEL_INFO(dev)->has_slice_pg) {
rpcs |= GEN8_RPCS_S_CNT_ENABLE;
rpcs |= INTEL_INFO(dev)->slice_total <<
GEN8_RPCS_S_CNT_SHIFT;
rpcs |= GEN8_RPCS_ENABLE;
}
if (INTEL_INFO(dev)->has_subslice_pg) {
rpcs |= GEN8_RPCS_SS_CNT_ENABLE;
rpcs |= INTEL_INFO(dev)->subslice_per_slice <<
GEN8_RPCS_SS_CNT_SHIFT;
rpcs |= GEN8_RPCS_ENABLE;
}
if (INTEL_INFO(dev)->has_eu_pg) {
rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
GEN8_RPCS_EU_MIN_SHIFT;
rpcs |= INTEL_INFO(dev)->eu_per_subslice <<
GEN8_RPCS_EU_MAX_SHIFT;
rpcs |= GEN8_RPCS_ENABLE;
}
return rpcs;
}
static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
{
u32 indirect_ctx_offset;
switch (INTEL_INFO(engine->dev)->gen) {
default:
MISSING_CASE(INTEL_INFO(engine->dev)->gen);
/* fall through */
case 9:
indirect_ctx_offset =
GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
case 8:
indirect_ctx_offset =
GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
break;
}
return indirect_ctx_offset;
}
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
static int
populate_lr_context(struct intel_context *ctx,
struct drm_i915_gem_object *ctx_obj,
struct intel_engine_cs *engine,
struct intel_ringbuffer *ringbuf)
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
{
struct drm_device *dev = engine->dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
void *vaddr;
u32 *reg_state;
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
int ret;
if (!ppgtt)
ppgtt = dev_priv->mm.aliasing_ppgtt;
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
ret = i915_gem_object_set_to_cpu_domain(ctx_obj, true);
if (ret) {
DRM_DEBUG_DRIVER("Could not set to CPU domain\n");
return ret;
}
vaddr = i915_gem_object_pin_map(ctx_obj);
if (IS_ERR(vaddr)) {
ret = PTR_ERR(vaddr);
DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
return ret;
}
ctx_obj->dirty = true;
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
/* The second page of the context object contains some fields which must
* be set up prior to the first execution. */
reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
/* A context is actually a big batch buffer with several MI_LOAD_REGISTER_IMM
* commands followed by (reg, value) pairs. The values we are setting here are
* only for the first context restore: on a subsequent save, the GPU will
* recreate this batchbuffer with new values (including all the missing
* MI_LOAD_REGISTER_IMM commands that we are not initializing here). */
reg_state[CTX_LRI_HEADER_0] =
MI_LOAD_REGISTER_IMM(engine->id == RCS ? 14 : 11) | MI_LRI_FORCE_POSTED;
ASSIGN_CTX_REG(reg_state, CTX_CONTEXT_CONTROL,
RING_CONTEXT_CONTROL(engine),
_MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH |
CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
(HAS_RESOURCE_STREAMER(dev) ?
CTX_CTRL_RS_CTX_ENABLE : 0)));
ASSIGN_CTX_REG(reg_state, CTX_RING_HEAD, RING_HEAD(engine->mmio_base),
0);
ASSIGN_CTX_REG(reg_state, CTX_RING_TAIL, RING_TAIL(engine->mmio_base),
0);
drm/i915/bdw: Pin the ringbuffer backing object to GGTT on-demand Same as with the context, pinning to GGTT regardless is harmful (it badly fragments the GGTT and can even exhaust it). Unfortunately, this case is also more complex than the previous one because we need to map and access the ringbuffer in several places along the execbuffer path (and we cannot make do by leaving the default ringbuffer pinned, as before). Also, the context object itself contains a pointer to the ringbuffer address that we have to keep updated if we are going to allow the ringbuffer to move around. v2: Same as with the context pinning, we cannot really do it during an interrupt. Also, pin the default ringbuffers objects regardless (makes error capture a lot easier). v3: Rebased. Take a pin reference of the ringbuffer for each item in the execlist request queue because the hardware may still be using the ringbuffer after the MI_USER_INTERRUPT to notify the seqno update is executed. The ringbuffer must remain pinned until the context save is complete. No longer pin and unpin ringbuffer in populate_lr_context() - this transient address is meaningless and the pinning can cause a sleep while atomic. v4: Moved ringbuffer pin and unpin into the lr_context_pin functions. Downgraded pinning check BUG_ONs to WARN_ONs. v5: Reinstated WARN_ONs for unexpected execlist states. Removed unused variable. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:56 -07:00
/* Ring buffer start address is not known until the buffer is pinned.
* It is written to the context image in execlists_update_context()
*/
ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_START,
RING_START(engine->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_RING_BUFFER_CONTROL,
RING_CTL(engine->mmio_base),
((ringbuf->size - PAGE_SIZE) & RING_NR_PAGES) | RING_VALID);
ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_U,
RING_BBADDR_UDW(engine->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_BB_HEAD_L,
RING_BBADDR(engine->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_BB_STATE,
RING_BBSTATE(engine->mmio_base),
RING_BB_PPGTT);
ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_U,
RING_SBBADDR_UDW(engine->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_HEAD_L,
RING_SBBADDR(engine->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_SECOND_BB_STATE,
RING_SBBSTATE(engine->mmio_base), 0);
if (engine->id == RCS) {
ASSIGN_CTX_REG(reg_state, CTX_BB_PER_CTX_PTR,
RING_BB_PER_CTX_PTR(engine->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX,
RING_INDIRECT_CTX(engine->mmio_base), 0);
ASSIGN_CTX_REG(reg_state, CTX_RCS_INDIRECT_CTX_OFFSET,
RING_INDIRECT_CTX_OFFSET(engine->mmio_base), 0);
if (engine->wa_ctx.obj) {
struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
uint32_t ggtt_offset = i915_gem_obj_ggtt_offset(wa_ctx->obj);
reg_state[CTX_RCS_INDIRECT_CTX+1] =
(ggtt_offset + wa_ctx->indirect_ctx.offset * sizeof(uint32_t)) |
(wa_ctx->indirect_ctx.size / CACHELINE_DWORDS);
reg_state[CTX_RCS_INDIRECT_CTX_OFFSET+1] =
intel_lr_indirect_ctx_offset(engine) << 6;
drm/i915/gen8: Add infrastructure to initialize WA batch buffers Some of the WA are to be applied during context save but before restore and some at the end of context save/restore but before executing the instructions in the ring, WA batch buffers are created for this purpose and these WA cannot be applied using normal means. Each context has two registers to load the offsets of these batch buffers. If they are non-zero, HW understands that it need to execute these batches. v1: In this version two separate ring_buffer objects were used to load WA instructions for indirect and per context batch buffers and they were part of every context. v2: Chris suggested to include additional page in context and use it to load these WA instead of creating separate objects. This will simplify lot of things as we need not explicity pin/unpin them. Thomas Daniel further pointed that GuC is planning to use a similar setup to share data between GuC and driver and WA batch buffers can probably share that page. However after discussions with Dave who is implementing GuC changes, he suggested to use an independent page for the reasons - GuC area might grow and these WA are initialized only once and are not changed afterwards so we can share them share across all contexts. The page is updated with WA during render ring init. This has an advantage of not adding more special cases to default_context. We don't know upfront the number of WA we will applying using these batch buffers. For this reason the size was fixed earlier but it is not a good idea. To fix this, the functions that load instructions are modified to report the no of commands inserted and the size is now calculated after the batch is updated. A macro is introduced to add commands to these batch buffers which also checks for overflow and returns error. We have a full page dedicated for these WA so that should be sufficient for good number of WA, anything more means we have major issues. The list for Gen8 is small, same for Gen9 also, maybe few more gets added going forward but not close to filling entire page. Chris suggested a two-pass approach but we agreed to go with single page setup as it is a one-off routine and simpler code wins. One additional option is offset field which is helpful if we would like to have multiple batches at different offsets within the page and select them based on some criteria. This is not a requirement at this point but could help in future (Dave). Chris provided some helpful macros and suggestions which further simplified the code, they will also help in reducing code duplication when WA for other Gen are added. Add detailed comments explaining restrictions. Use do {} while(0) for wa_ctx_emit() macro. (Many thanks to Chris, Dave and Thomas for their reviews and inputs) Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: Dave Gordon <david.s.gordon@intel.com> Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> Signed-off-by: Arun Siluvery <arun.siluvery@linux.intel.com> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-06-19 12:07:01 -06:00
reg_state[CTX_BB_PER_CTX_PTR+1] =
(ggtt_offset + wa_ctx->per_ctx.offset * sizeof(uint32_t)) |
0x01;
}
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
}
reg_state[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
ASSIGN_CTX_REG(reg_state, CTX_CTX_TIMESTAMP,
RING_CTX_TIMESTAMP(engine->mmio_base), 0);
/* PDP values well be assigned later if needed */
ASSIGN_CTX_REG(reg_state, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(engine, 3),
0);
ASSIGN_CTX_REG(reg_state, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(engine, 3),
0);
ASSIGN_CTX_REG(reg_state, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(engine, 2),
0);
ASSIGN_CTX_REG(reg_state, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(engine, 2),
0);
ASSIGN_CTX_REG(reg_state, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(engine, 1),
0);
ASSIGN_CTX_REG(reg_state, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(engine, 1),
0);
ASSIGN_CTX_REG(reg_state, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(engine, 0),
0);
ASSIGN_CTX_REG(reg_state, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(engine, 0),
0);
drm/i915/gen8: Dynamic page table allocations This finishes off the dynamic page tables allocations, in the legacy 3 level style that already exists. Most everything has already been setup to this point, the patch finishes off the enabling by setting the appropriate function pointers. In LRC mode, contexts need to know the PDPs when they are populated. With dynamic page table allocations, these PDPs may not exist yet. Check if PDPs have been allocated and use the scratch page if they do not exist yet. Before submission, update the PDPs in the logic ring context as PDPs have been allocated. v2: Update aliasing/true ppgtt allocate/teardown/clear functions for gen 6 & 7. v3: Rebase. v4: Remove BUG() from ppgtt_unbind_vma, but keep checking that either teardown_va_range or clear_range functions exist (Daniel). v5: Similar to gen6, in init, gen8_ppgtt_clear_range call is only needed for aliasing ppgtt. Zombie tracking was originally added for teardown function and is no longer required. v6: Update err_out case in gen8_alloc_va_range (missed from lastest rebase). v7: Rebase after s/page_tables/page_table/. v8: Updated scratch_pt check after scratch flag was removed in previous patch. v9: Note that lrc mode needs to be updated to support init state without any PDP. v10: Unmap correct page_table in gen8_alloc_va_range's error case, clean-up gen8_aliasing_ppgtt_init (remove duplicated map), and initialize PTs during page table allocation. v11: Squashed LRC enabling commit, otherwise LRC mode would be left broken until it was updated to handle the init case without any PDP. v12: Do not overallocate new_pts bitmap, make alloc_gen8_temp_bitmaps static and don't abuse of inline functions. (Mika) Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com> Signed-off-by: Ben Widawsky <ben@bwidawsk.net> Signed-off-by: Michel Thierry <michel.thierry@intel.com> (v2+) Reviewed-by: Mika Kuoppala <mika.kuoppala@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-04-08 05:13:34 -06:00
2015-07-30 04:06:23 -06:00
if (USES_FULL_48BIT_PPGTT(ppgtt->base.dev)) {
/* 64b PPGTT (48bit canonical)
* PDP0_DESCRIPTOR contains the base address to PML4 and
* other PDP Descriptors are ignored.
*/
ASSIGN_CTX_PML4(ppgtt, reg_state);
} else {
/* 32b PPGTT
* PDP*_DESCRIPTOR contains the base address of space supported.
* With dynamic page allocation, PDPs may not be allocated at
* this point. Point the unallocated PDPs to the scratch page
*/
drm/i915: Execlists small cleanups and micro-optimisations Assorted changes in the areas of code cleanup, reduction of invariant conditional in the interrupt handler and lock contention and MMIO access optimisation. * Remove needless initialization. * Improve cache locality by reorganizing code and/or using branch hints to keep unexpected or error conditions out of line. * Favor busy submit path vs. empty queue. * Less branching in hot-paths. v2: * Avoid mmio reads when possible. (Chris Wilson) * Use natural integer size for csb indices. * Remove useless return value from execlists_update_context. * Extract 32-bit ppgtt PDPs update so it is out of line and shared with two callers. * Grab forcewake across all mmio operations to ease the load on uncore lock and use chepear mmio ops. v3: * Removed some more pointless u8 data types. * Removed unused return from execlists_context_queue. * Commit message updates. v4: * Unclumsify the unqueue if statement. (Chris Wilson) * Hide forcewake from the queuing function. (Chris Wilson) Version 3 now makes the irq handling code path ~20% smaller on 48-bit PPGTT hardware, and a little bit less elsewhere. Hot paths are mostly in-line now and hammering on the uncore spinlock is greatly reduced together with mmio traffic to an extent. Benchmarking with "gem_latency -n 100" (keep submitting batches with 100 nop instruction) shows approximately 4% higher throughput, 2% less CPU time and 22% smaller latencies. This was on a big-core while small-cores could benefit even more. Most likely reason for the improvements are the MMIO optimization and uncore lock traffic reduction. One odd result is with "gem_latency -n 0" (dispatching empty batches) which shows 5% more throughput, 8% less CPU time, 25% better producer and consumer latencies, but 15% higher dispatch latency which is yet unexplained. Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com> Cc: Chris Wilson <chris@chris-wilson.co.uk> Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> Link: http://patchwork.freedesktop.org/patch/msgid/1456505912-22286-1-git-send-email-tvrtko.ursulin@linux.intel.com
2016-02-26 09:58:32 -07:00
execlists_update_context_pdps(ppgtt, reg_state);
2015-07-30 04:06:23 -06:00
}
if (engine->id == RCS) {
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
reg_state[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
ASSIGN_CTX_REG(reg_state, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE,
make_rpcs(dev));
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
}
i915_gem_object_unpin_map(ctx_obj);
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
return 0;
}
/**
* intel_lr_context_free() - free the LRC specific bits of a context
* @ctx: the LR context to free.
*
* The real context freeing is done in i915_gem_context_free: this only
* takes care of the bits that are LRC related: the per-engine backing
* objects and the logical ringbuffer.
*/
void intel_lr_context_free(struct intel_context *ctx)
{
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
int i;
for (i = I915_NUM_ENGINES; --i >= 0; ) {
struct intel_ringbuffer *ringbuf = ctx->engine[i].ringbuf;
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
if (!ctx_obj)
continue;
drm/i915/bdw: Pin the context backing objects to GGTT on-demand Up until now, we have pinned every logical ring context backing object during creation, and left it pinned until destruction. This made my life easier, but it's a harmful thing to do, because we cause fragmentation of the GGTT (and, eventually, we would run out of space). This patch makes the pinning on-demand: the backing objects of the two contexts that are written to the ELSP are pinned right before submission and unpinned once the hardware is done with them. The only context that is still pinned regardless is the global default one, so that the HWS can still be accessed in the same way (ring->status_page). v2: In the early version of this patch, we were pinning the context as we put it into the ELSP: on the one hand, this is very efficient because only a maximum two contexts are pinned at any given time, but on the other hand, we cannot really pin in interrupt time :( v3: Use a mutex rather than atomic_t to protect pin count to avoid races. Do not unpin default context in free_request. v4: Break out pin and unpin into functions. Fix style problems reported by checkpatch v5: Remove unpin_lock as all pinning and unpinning is done with the struct mutex already locked. Add WARN_ONs to make sure this is the case in future. Issue: VIZ-4277 Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Signed-off-by: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Akash Goel <akash.goels@gmail.com> Reviewed-by: Deepak S<deepak.s@linux.intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-11-13 03:28:10 -07:00
WARN_ON(ctx->engine[i].pin_count);
intel_ringbuffer_free(ringbuf);
drm_gem_object_unreference(&ctx_obj->base);
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
}
}
/**
* intel_lr_context_size() - return the size of the context for an engine
* @ring: which engine to find the context size for
*
* Each engine may require a different amount of space for a context image,
* so when allocating (or copying) an image, this function can be used to
* find the right size for the specific engine.
*
* Return: size (in bytes) of an engine-specific context image
*
* Note: this size includes the HWSP, which is part of the context image
* in LRC mode, but does not include the "shared data page" used with
* GuC submission. The caller should account for this if using the GuC.
*/
uint32_t intel_lr_context_size(struct intel_engine_cs *engine)
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
{
int ret = 0;
WARN_ON(INTEL_INFO(engine->dev)->gen < 8);
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
switch (engine->id) {
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
case RCS:
if (INTEL_INFO(engine->dev)->gen >= 9)
ret = GEN9_LR_CONTEXT_RENDER_SIZE;
else
ret = GEN8_LR_CONTEXT_RENDER_SIZE;
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
break;
case VCS:
case BCS:
case VECS:
case VCS2:
ret = GEN8_LR_CONTEXT_OTHER_SIZE;
break;
}
return ret;
}
/**
* execlists_context_deferred_alloc() - create the LRC specific bits of a context
* @ctx: LR context to create.
* @engine: engine to be used with the context.
*
* This function can be called more than once, with different engines, if we plan
* to use the context with them. The context backing objects and the ringbuffers
* (specially the ringbuffer backing objects) suck a lot of memory up, and that's why
* the creation is a deferred call: it's better to make sure first that we need to use
* a given ring with the context.
*
* Return: non-zero on error.
*/
static int execlists_context_deferred_alloc(struct intel_context *ctx,
struct intel_engine_cs *engine)
{
struct drm_device *dev = engine->dev;
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
struct drm_i915_gem_object *ctx_obj;
uint32_t context_size;
struct intel_ringbuffer *ringbuf;
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
int ret;
WARN_ON(ctx->legacy_hw_ctx.rcs_state != NULL);
WARN_ON(ctx->engine[engine->id].state);
context_size = round_up(intel_lr_context_size(engine), 4096);
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
drm/i915: Integrate GuC-based command submission GuC-based submission is mostly the same as execlist mode, up to intel_logical_ring_advance_and_submit(), where the context being dispatched would be added to the execlist queue; at this point we submit the context to the GuC backend instead. There are, however, a few other changes also required, notably: 1. Contexts must be pinned at GGTT addresses accessible by the GuC i.e. NOT in the range [0..WOPCM_SIZE), so we have to add the PIN_OFFSET_BIAS flag to the relevant GGTT-pinning calls. 2. The GuC's TLB must be invalidated after a context is pinned at a new GGTT address. 3. GuC firmware uses the one page before Ring Context as shared data. Therefore, whenever driver wants to get base address of LRC, we will offset one page for it. LRC_PPHWSP_PN is defined as the page number of LRCA. 4. In the work queue used to pass requests to the GuC, the GuC firmware requires the ring-tail-offset to be represented as an 11-bit value, expressed in QWords. Therefore, the ringbuffer size must be reduced to the representable range (4 pages). v2: Defer adding #defines until needed [Chris Wilson] Rationalise type declarations [Chris Wilson] v4: Squashed kerneldoc patch into here [Daniel Vetter] v5: Update request->tail in code common to both GuC and execlist modes. Add a private version of lr_context_update(), as sharing the execlist version leads to race conditions when the CPU and the GuC both update TAIL in the context image. Conversion of error-captured HWS page to string must account for offset from start of object to actual HWS (LRC_PPHWSP_PN). Issue: VIZ-4884 Signed-off-by: Alex Dai <yu.dai@intel.com> Signed-off-by: Dave Gordon <david.s.gordon@intel.com> Reviewed-by: Tom O'Rourke <Tom.O'Rourke@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-08-12 08:43:43 -06:00
/* One extra page as the sharing data between driver and GuC */
context_size += PAGE_SIZE * LRC_PPHWSP_PN;
ctx_obj = i915_gem_object_create(dev, context_size);
if (IS_ERR(ctx_obj)) {
DRM_DEBUG_DRIVER("Alloc LRC backing obj failed.\n");
return PTR_ERR(ctx_obj);
drm/i915/bdw: A bit more advanced LR context alloc/free Now that we have the ability to allocate our own context backing objects and we have multiplexed one of them per engine inside the context structs, we can finally allocate and free them correctly. Regarding the context size, reading the register to calculate the sizes can work, I think, however the docs are very clear about the actual context sizes on GEN8, so just hardcode that and use it. v2: Rebased on top of the Full PPGTT series. It is important to notice that at this point we have one global default context per engine, all of them using the aliasing PPGTT (as opposed to the single global default context we have with legacy HW contexts). v3: - Go back to one single global default context, this time with multiple backing objects inside. - Use different context sizes for non-render engines, as suggested by Damien (still hardcoded, since the information about the context size registers in the BSpec is, well, *lacking*). - Render ctx size is 20 (or 19) pages, but not 21 (caught by Damien). - Move default context backing object creation to intel_init_ring (so that we don't waste memory in rings that might not get initialized). v4: - Reuse the HW legacy context init/fini. - Create a separate free function. - Rename the functions with an intel_ preffix. v5: Several rebases to account for the changes in the previous patches. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:14 -06:00
}
ringbuf = intel_engine_create_ringbuffer(engine, 4 * PAGE_SIZE);
if (IS_ERR(ringbuf)) {
ret = PTR_ERR(ringbuf);
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
goto error_deref_obj;
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
}
ret = populate_lr_context(ctx, ctx_obj, engine, ringbuf);
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
if (ret) {
DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
goto error_ringbuf;
}
ctx->engine[engine->id].ringbuf = ringbuf;
ctx->engine[engine->id].state = ctx_obj;
ctx->engine[engine->id].initialised = engine->init_context == NULL;
return 0;
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
error_ringbuf:
intel_ringbuffer_free(ringbuf);
drm/i915: Split alloc from init for lrc Extend init/init_hw split to context init. - Move context initialisation in to i915_gem_init_hw - Move one off initialisation for render ring to i915_gem_validate_context - Move default context initialisation to logical_ring_init Rename intel_lr_context_deferred_create to intel_lr_context_deferred_alloc, to reflect reduced functionality & alloc/init split. This patch is intended to split out the allocation of resources & initialisation to allow easier reuse of code for resume/gpu reset. v2: Removed function ptr wrapping of do_switch_context (Daniel Vetter) Left ->init_context int intel_lr_context_deferred_alloc (Daniel Vetter) Remove unnecessary init flag & ring type test. (Daniel Vetter) Improve commit message (Daniel Vetter) v3: On init/reinit, set the hw next sequence number to the sw next sequence number. This is set to 1 at driver load time. This prevents the seqno being reset on reinit (Chris Wilson) v4: Set seqno back to ~0 - 0x1000 at start-of-day, and increment by 0x100 on reset. This makes it obvious which bbs are which after a reset. (David Gordon & John Harrison) Rebase. v5: Rebase. Fixed rebase breakage. Put context pinning in separate function. Removed code churn. (Thomas Daniel) v6: Cleanup up issues introduced in v2 & v5 (Thomas Daniel) Issue: VIZ-4798 Signed-off-by: Nick Hoath <nicholas.hoath@intel.com> Cc: Daniel Vetter <daniel.vetter@ffwll.ch> Cc: Chris Wilson <chris@chris-wilson.co.uk> Cc: John Harrison <john.c.harrison@intel.com> Cc: David Gordon <david.s.gordon@intel.com> Cc: Thomas Daniel <thomas.daniel@intel.com> Reviewed-by: Thomas Daniel <thomas.daniel@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2015-09-11 05:53:46 -06:00
error_deref_obj:
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
drm_gem_object_unreference(&ctx_obj->base);
ctx->engine[engine->id].ringbuf = NULL;
ctx->engine[engine->id].state = NULL;
drm/i915/bdw: Populate LR contexts (somewhat) For the most part, logical ring context objects are similar to hardware contexts in that the backing object is meant to be opaque. There are some exceptions where we need to poke certain offsets of the object for initialization, updating the tail pointer or updating the PDPs. For our basic execlist implementation we'll only need our PPGTT PDs, and ringbuffer addresses in order to set up the context. With previous patches, we have both, so start prepping the context to be load. Before running a context for the first time you must populate some fields in the context object. These fields begin 1 PAGE + LRCA, ie. the first page (in 0 based counting) of the context image. These same fields will be read and written to as contexts are saved and restored once the system is up and running. Many of these fields are completely reused from previous global registers: ringbuffer head/tail/control, context control matches some previous MI_SET_CONTEXT flags, and page directories. There are other fields which we don't touch which we may want in the future. v2: CTX_LRI_HEADER_0 is MI_LOAD_REGISTER_IMM(14) for render and (11) for other engines. v3: Several rebases and general changes to the code. v4: Squash with "Extract LR context object populating" Also, Damien's review comments: - Set the Force Posted bit on the LRI header, as the BSpec suggest we do. - Prevent warning when compiling a 32-bits kernel without HIGHMEM64. - Add a clarifying comment to the context population code. v5: Damien's review comments: - The third MI_LOAD_REGISTER_IMM in the context does not set Force Posted. - Remove dead code. v6: Add a note about the (presumed) differences between BDW and CHV state contexts. Also, Brad's review comments: - Use the _MASKED_BIT_ENABLE, upper_32_bits and lower_32_bits macros. - Be less magical about how we set the ring size in the context. Signed-off-by: Ben Widawsky <ben@bwidawsk.net> (v1) Signed-off-by: Rafael Barbalho <rafael.barbalho@intel.com> (v2) Signed-off-by: Oscar Mateo <oscar.mateo@intel.com> Reviewed-by: Damien Lespiau <damien.lespiau@intel.com> Signed-off-by: Daniel Vetter <daniel.vetter@ffwll.ch>
2014-07-24 10:04:17 -06:00
return ret;
}
void intel_lr_context_reset(struct drm_i915_private *dev_priv,
struct intel_context *ctx)
{
struct intel_engine_cs *engine;
for_each_engine(engine, dev_priv) {
struct drm_i915_gem_object *ctx_obj =
ctx->engine[engine->id].state;
struct intel_ringbuffer *ringbuf =
ctx->engine[engine->id].ringbuf;
void *vaddr;
uint32_t *reg_state;
if (!ctx_obj)
continue;
vaddr = i915_gem_object_pin_map(ctx_obj);
if (WARN_ON(IS_ERR(vaddr)))
continue;
reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
ctx_obj->dirty = true;
reg_state[CTX_RING_HEAD+1] = 0;
reg_state[CTX_RING_TAIL+1] = 0;
i915_gem_object_unpin_map(ctx_obj);
ringbuf->head = 0;
ringbuf->tail = 0;
}
}