alistair23-linux/arch/sparc/kernel/setup_64.c

435 lines
9.2 KiB
C
Raw Normal View History

/*
* linux/arch/sparc64/kernel/setup.c
*
* Copyright (C) 1995,1996 David S. Miller (davem@caip.rutgers.edu)
* Copyright (C) 1997 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
*/
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <asm/smp.h>
#include <linux/user.h>
#include <linux/screen_info.h>
#include <linux/delay.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/kdev_t.h>
#include <linux/major.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/inet.h>
#include <linux/console.h>
#include <linux/root_dev.h>
#include <linux/interrupt.h>
#include <linux/cpu.h>
#include <linux/initrd.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/oplib.h>
#include <asm/page.h>
#include <asm/pgtable.h>
#include <asm/idprom.h>
#include <asm/head.h>
#include <asm/starfire.h>
#include <asm/mmu_context.h>
#include <asm/timer.h>
#include <asm/sections.h>
#include <asm/setup.h>
#include <asm/mmu.h>
#include <asm/ns87303.h>
#ifdef CONFIG_IP_PNP
#include <net/ipconfig.h>
#endif
#include "entry.h"
#include "kernel.h"
/* Used to synchronize accesses to NatSemi SUPER I/O chip configure
* operations in asm/ns87303.h
*/
DEFINE_SPINLOCK(ns87303_lock);
EXPORT_SYMBOL(ns87303_lock);
struct screen_info screen_info = {
0, 0, /* orig-x, orig-y */
0, /* unused */
0, /* orig-video-page */
0, /* orig-video-mode */
128, /* orig-video-cols */
0, 0, 0, /* unused, ega_bx, unused */
54, /* orig-video-lines */
0, /* orig-video-isVGA */
16 /* orig-video-points */
};
static void
prom_console_write(struct console *con, const char *s, unsigned n)
{
prom_write(s, n);
}
/* Exported for mm/init.c:paging_init. */
unsigned long cmdline_memory_size = 0;
static struct console prom_early_console = {
.name = "earlyprom",
.write = prom_console_write,
.flags = CON_PRINTBUFFER | CON_BOOT | CON_ANYTIME,
.index = -1,
};
/*
* Process kernel command line switches that are specific to the
* SPARC or that require special low-level processing.
*/
static void __init process_switch(char c)
{
switch (c) {
case 'd':
case 's':
break;
case 'h':
prom_printf("boot_flags_init: Halt!\n");
prom_halt();
break;
case 'p':
/* Just ignore, this behavior is now the default. */
break;
case 'P':
/* Force UltraSPARC-III P-Cache on. */
if (tlb_type != cheetah) {
printk("BOOT: Ignoring P-Cache force option.\n");
break;
}
cheetah_pcache_forced_on = 1;
add_taint(TAINT_MACHINE_CHECK);
cheetah_enable_pcache();
break;
default:
printk("Unknown boot switch (-%c)\n", c);
break;
}
}
static void __init boot_flags_init(char *commands)
{
while (*commands) {
/* Move to the start of the next "argument". */
while (*commands && *commands == ' ')
commands++;
/* Process any command switches, otherwise skip it. */
if (*commands == '\0')
break;
if (*commands == '-') {
commands++;
while (*commands && *commands != ' ')
process_switch(*commands++);
continue;
}
if (!strncmp(commands, "mem=", 4)) {
/*
* "mem=XXX[kKmM]" overrides the PROM-reported
* memory size.
*/
cmdline_memory_size = simple_strtoul(commands + 4,
&commands, 0);
if (*commands == 'K' || *commands == 'k') {
cmdline_memory_size <<= 10;
commands++;
} else if (*commands=='M' || *commands=='m') {
cmdline_memory_size <<= 20;
commands++;
}
}
while (*commands && *commands != ' ')
commands++;
}
}
extern unsigned short root_flags;
extern unsigned short root_dev;
extern unsigned short ram_flags;
#define RAMDISK_IMAGE_START_MASK 0x07FF
#define RAMDISK_PROMPT_FLAG 0x8000
#define RAMDISK_LOAD_FLAG 0x4000
extern int root_mountflags;
char reboot_command[COMMAND_LINE_SIZE];
static struct pt_regs fake_swapper_regs = { { 0, }, 0, 0, 0, 0 };
void __init per_cpu_patch(void)
{
struct cpuid_patch_entry *p;
unsigned long ver;
int is_jbus;
if (tlb_type == spitfire && !this_is_starfire)
return;
is_jbus = 0;
if (tlb_type != hypervisor) {
__asm__ ("rdpr %%ver, %0" : "=r" (ver));
is_jbus = ((ver >> 32UL) == __JALAPENO_ID ||
(ver >> 32UL) == __SERRANO_ID);
}
p = &__cpuid_patch;
while (p < &__cpuid_patch_end) {
unsigned long addr = p->addr;
unsigned int *insns;
switch (tlb_type) {
case spitfire:
insns = &p->starfire[0];
break;
case cheetah:
case cheetah_plus:
if (is_jbus)
insns = &p->cheetah_jbus[0];
else
insns = &p->cheetah_safari[0];
break;
case hypervisor:
insns = &p->sun4v[0];
break;
default:
prom_printf("Unknown cpu type, halting.\n");
prom_halt();
};
*(unsigned int *) (addr + 0) = insns[0];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 0));
*(unsigned int *) (addr + 4) = insns[1];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 4));
*(unsigned int *) (addr + 8) = insns[2];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 8));
*(unsigned int *) (addr + 12) = insns[3];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 12));
p++;
}
}
void __init sun4v_patch(void)
{
extern void sun4v_hvapi_init(void);
struct sun4v_1insn_patch_entry *p1;
struct sun4v_2insn_patch_entry *p2;
if (tlb_type != hypervisor)
return;
p1 = &__sun4v_1insn_patch;
while (p1 < &__sun4v_1insn_patch_end) {
unsigned long addr = p1->addr;
*(unsigned int *) (addr + 0) = p1->insn;
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 0));
p1++;
}
p2 = &__sun4v_2insn_patch;
while (p2 < &__sun4v_2insn_patch_end) {
unsigned long addr = p2->addr;
*(unsigned int *) (addr + 0) = p2->insns[0];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 0));
*(unsigned int *) (addr + 4) = p2->insns[1];
wmb();
__asm__ __volatile__("flush %0" : : "r" (addr + 4));
p2++;
}
sun4v_hvapi_init();
}
#ifdef CONFIG_SMP
void __init boot_cpu_id_too_large(int cpu)
{
prom_printf("Serious problem, boot cpu id (%d) >= NR_CPUS (%d)\n",
cpu, NR_CPUS);
prom_halt();
}
#endif
void __init setup_arch(char **cmdline_p)
{
/* Initialize PROM console and command line. */
*cmdline_p = prom_getbootargs();
strcpy(boot_command_line, *cmdline_p);
parse_early_param();
boot_flags_init(*cmdline_p);
register_console(&prom_early_console);
if (tlb_type == hypervisor)
printk("ARCH: SUN4V\n");
else
printk("ARCH: SUN4U\n");
#ifdef CONFIG_DUMMY_CONSOLE
conswitchp = &dummy_con;
#elif defined(CONFIG_PROM_CONSOLE)
conswitchp = &prom_con;
#endif
idprom_init();
if (!root_flags)
root_mountflags &= ~MS_RDONLY;
ROOT_DEV = old_decode_dev(root_dev);
#ifdef CONFIG_BLK_DEV_RAM
rd_image_start = ram_flags & RAMDISK_IMAGE_START_MASK;
rd_prompt = ((ram_flags & RAMDISK_PROMPT_FLAG) != 0);
rd_doload = ((ram_flags & RAMDISK_LOAD_FLAG) != 0);
#endif
task_thread_info(&init_task)->kregs = &fake_swapper_regs;
#ifdef CONFIG_IP_PNP
if (!ic_set_manually) {
int chosen = prom_finddevice ("/chosen");
u32 cl, sv, gw;
cl = prom_getintdefault (chosen, "client-ip", 0);
sv = prom_getintdefault (chosen, "server-ip", 0);
gw = prom_getintdefault (chosen, "gateway-ip", 0);
if (cl && sv) {
ic_myaddr = cl;
ic_servaddr = sv;
if (gw)
ic_gateway = gw;
#if defined(CONFIG_IP_PNP_BOOTP) || defined(CONFIG_IP_PNP_RARP)
ic_proto_enabled = 0;
#endif
}
}
#endif
[SPARC64]: Elminate all usage of hard-coded trap globals. UltraSPARC has special sets of global registers which are switched to for certain trap types. There is one set for MMU related traps, one set of Interrupt Vector processing, and another set (called the Alternate globals) for all other trap types. For what seems like forever we've hard coded the values in some of these trap registers. Some examples include: 1) Interrupt Vector global %g6 holds current processors interrupt work struct where received interrupts are managed for IRQ handler dispatch. 2) MMU global %g7 holds the base of the page tables of the currently active address space. 3) Alternate global %g6 held the current_thread_info() value. Such hardcoding has resulted in some serious issues in many areas. There are some code sequences where having another register available would help clean up the implementation. Taking traps such as cross-calls from the OBP firmware requires some trick code sequences wherein we have to save away and restore all of the special sets of global registers when we enter/exit OBP. We were also using the IMMU TSB register on SMP to hold the per-cpu area base address, which doesn't work any longer now that we actually use the TSB facility of the cpu. The implementation is pretty straight forward. One tricky bit is getting the current processor ID as that is different on different cpu variants. We use a stub with a fancy calling convention which we patch at boot time. The calling convention is that the stub is branched to and the (PC - 4) to return to is in register %g1. The cpu number is left in %g6. This stub can be invoked by using the __GET_CPUID macro. We use an array of per-cpu trap state to store the current thread and physical address of the current address space's page tables. The TRAP_LOAD_THREAD_REG loads %g6 with the current thread from this table, it uses __GET_CPUID and also clobbers %g1. TRAP_LOAD_IRQ_WORK is used by the interrupt vector processing to load the current processor's IRQ software state into %g6. It also uses __GET_CPUID and clobbers %g1. Finally, TRAP_LOAD_PGD_PHYS loads the physical address base of the current address space's page tables into %g7, it clobbers %g1 and uses __GET_CPUID. Many refinements are possible, as well as some tuning, with this stuff in place. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-27 00:24:22 -07:00
/* Get boot processor trap_block[] setup. */
[SPARC64]: Get SUN4V SMP working. The sibling cpu bringup is extremely fragile. We can only perform the most basic calls until we take over the trap table from the firmware/hypervisor on the new cpu. This means no accesses to %g4, %g5, %g6 since those can't be TLB translated without our trap handlers. In order to achieve this: 1) Change sun4v_init_mondo_queues() so that it can operate in several modes. It can allocate the queues, or install them in the current processor, or both. The boot cpu does both in it's call early on. Later, the boot cpu allocates the sibling cpu queue, starts the sibling cpu, then the sibling cpu loads them in. 2) init_cur_cpu_trap() is changed to take the current_thread_info() as an argument instead of reading %g6 directly on the current cpu. 3) Create a trampoline stack for the sibling cpus. We do our basic kernel calls using this stack, which is locked into the kernel image, then go to our proper thread stack after taking over the trap table. 4) While we are in this delicate startup state, we put 0xdeadbeef into %g4/%g5/%g6 in order to catch accidental accesses. 5) On the final prom_set_trap_table*() call, we put &init_thread_union into %g6. This is a hack to make prom_world(0) work. All that wants to do is restore the %asi register using get_thread_current_ds(). Longer term we should just do the OBP calls to set the trap table by hand just like we do for everything else. This would avoid that silly prom_world(0) issue, then we can remove the init_thread_union hack. Signed-off-by: David S. Miller <davem@davemloft.net>
2006-02-17 02:29:17 -07:00
init_cur_cpu_trap(current_thread_info());
paging_init();
}
/* BUFFER is PAGE_SIZE bytes long. */
extern void smp_info(struct seq_file *);
extern void smp_bogo(struct seq_file *);
extern void mmu_info(struct seq_file *);
unsigned int dcache_parity_tl1_occurred;
unsigned int icache_parity_tl1_occurred;
int ncpus_probed;
static int show_cpuinfo(struct seq_file *m, void *__unused)
{
seq_printf(m,
"cpu\t\t: %s\n"
"fpu\t\t: %s\n"
"pmu\t\t: %s\n"
"prom\t\t: %s\n"
"type\t\t: %s\n"
"ncpus probed\t: %d\n"
"ncpus active\t: %d\n"
"D$ parity tl1\t: %u\n"
"I$ parity tl1\t: %u\n"
#ifndef CONFIG_SMP
"Cpu0ClkTck\t: %016lx\n"
#endif
,
sparc_cpu_type,
sparc_fpu_type,
sparc_pmu_type,
prom_version,
((tlb_type == hypervisor) ?
"sun4v" :
"sun4u"),
ncpus_probed,
num_online_cpus(),
dcache_parity_tl1_occurred,
icache_parity_tl1_occurred
#ifndef CONFIG_SMP
, cpu_data(0).clock_tick
#endif
);
#ifdef CONFIG_SMP
smp_bogo(m);
#endif
mmu_info(m);
#ifdef CONFIG_SMP
smp_info(m);
#endif
return 0;
}
static void *c_start(struct seq_file *m, loff_t *pos)
{
/* The pointer we are returning is arbitrary,
* it just has to be non-NULL and not IS_ERR
* in the success case.
*/
return *pos == 0 ? &c_start : NULL;
}
static void *c_next(struct seq_file *m, void *v, loff_t *pos)
{
++*pos;
return c_start(m, pos);
}
static void c_stop(struct seq_file *m, void *v)
{
}
const struct seq_operations cpuinfo_op = {
.start =c_start,
.next = c_next,
.stop = c_stop,
.show = show_cpuinfo,
};
extern int stop_a_enabled;
void sun_do_break(void)
{
if (!stop_a_enabled)
return;
prom_printf("\n");
flush_user_windows();
prom_cmdline();
}
EXPORT_SYMBOL(sun_do_break);
int stop_a_enabled = 1;
EXPORT_SYMBOL(stop_a_enabled);