1
0
Fork 0
alistair23-linux/net/netfilter/nf_conntrack_proto_gre.c

336 lines
9.4 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* ip_conntrack_proto_gre.c - Version 3.0
*
* Connection tracking protocol helper module for GRE.
*
* GRE is a generic encapsulation protocol, which is generally not very
* suited for NAT, as it has no protocol-specific part as port numbers.
*
* It has an optional key field, which may help us distinguishing two
* connections between the same two hosts.
*
* GRE is defined in RFC 1701 and RFC 1702, as well as RFC 2784
*
* PPTP is built on top of a modified version of GRE, and has a mandatory
* field called "CallID", which serves us for the same purpose as the key
* field in plain GRE.
*
* Documentation about PPTP can be found in RFC 2637
*
* (C) 2000-2005 by Harald Welte <laforge@gnumonks.org>
*
* Development of this code funded by Astaro AG (http://www.astaro.com/)
*
* (C) 2006-2012 Patrick McHardy <kaber@trash.net>
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/timer.h>
#include <linux/list.h>
#include <linux/seq_file.h>
#include <linux/in.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 02:04:11 -06:00
#include <linux/slab.h>
#include <net/dst.h>
#include <net/net_namespace.h>
#include <net/netns/generic.h>
#include <net/netfilter/nf_conntrack_l4proto.h>
#include <net/netfilter/nf_conntrack_helper.h>
#include <net/netfilter/nf_conntrack_core.h>
#include <net/netfilter/nf_conntrack_timeout.h>
#include <linux/netfilter/nf_conntrack_proto_gre.h>
#include <linux/netfilter/nf_conntrack_pptp.h>
static const unsigned int gre_timeouts[GRE_CT_MAX] = {
[GRE_CT_UNREPLIED] = 30*HZ,
[GRE_CT_REPLIED] = 180*HZ,
};
/* used when expectation is added */
static DEFINE_SPINLOCK(keymap_lock);
static inline struct nf_gre_net *gre_pernet(struct net *net)
{
return &net->ct.nf_ct_proto.gre;
}
void nf_ct_gre_keymap_flush(struct net *net)
{
struct nf_gre_net *net_gre = gre_pernet(net);
struct nf_ct_gre_keymap *km, *tmp;
spin_lock_bh(&keymap_lock);
list_for_each_entry_safe(km, tmp, &net_gre->keymap_list, list) {
list_del_rcu(&km->list);
kfree_rcu(km, rcu);
}
spin_unlock_bh(&keymap_lock);
}
static inline int gre_key_cmpfn(const struct nf_ct_gre_keymap *km,
const struct nf_conntrack_tuple *t)
{
return km->tuple.src.l3num == t->src.l3num &&
!memcmp(&km->tuple.src.u3, &t->src.u3, sizeof(t->src.u3)) &&
!memcmp(&km->tuple.dst.u3, &t->dst.u3, sizeof(t->dst.u3)) &&
km->tuple.dst.protonum == t->dst.protonum &&
km->tuple.dst.u.all == t->dst.u.all;
}
/* look up the source key for a given tuple */
static __be16 gre_keymap_lookup(struct net *net, struct nf_conntrack_tuple *t)
{
struct nf_gre_net *net_gre = gre_pernet(net);
struct nf_ct_gre_keymap *km;
__be16 key = 0;
list_for_each_entry_rcu(km, &net_gre->keymap_list, list) {
if (gre_key_cmpfn(km, t)) {
key = km->tuple.src.u.gre.key;
break;
}
}
pr_debug("lookup src key 0x%x for ", key);
nf_ct_dump_tuple(t);
return key;
}
/* add a single keymap entry, associate with specified master ct */
int nf_ct_gre_keymap_add(struct nf_conn *ct, enum ip_conntrack_dir dir,
struct nf_conntrack_tuple *t)
{
struct net *net = nf_ct_net(ct);
struct nf_gre_net *net_gre = gre_pernet(net);
struct nf_ct_pptp_master *ct_pptp_info = nfct_help_data(ct);
struct nf_ct_gre_keymap **kmp, *km;
kmp = &ct_pptp_info->keymap[dir];
if (*kmp) {
/* check whether it's a retransmission */
list_for_each_entry_rcu(km, &net_gre->keymap_list, list) {
if (gre_key_cmpfn(km, t) && km == *kmp)
return 0;
}
pr_debug("trying to override keymap_%s for ct %p\n",
dir == IP_CT_DIR_REPLY ? "reply" : "orig", ct);
return -EEXIST;
}
km = kmalloc(sizeof(*km), GFP_ATOMIC);
if (!km)
return -ENOMEM;
memcpy(&km->tuple, t, sizeof(*t));
*kmp = km;
pr_debug("adding new entry %p: ", km);
nf_ct_dump_tuple(&km->tuple);
spin_lock_bh(&keymap_lock);
list_add_tail(&km->list, &net_gre->keymap_list);
spin_unlock_bh(&keymap_lock);
return 0;
}
EXPORT_SYMBOL_GPL(nf_ct_gre_keymap_add);
/* destroy the keymap entries associated with specified master ct */
void nf_ct_gre_keymap_destroy(struct nf_conn *ct)
{
struct nf_ct_pptp_master *ct_pptp_info = nfct_help_data(ct);
enum ip_conntrack_dir dir;
pr_debug("entering for ct %p\n", ct);
spin_lock_bh(&keymap_lock);
for (dir = IP_CT_DIR_ORIGINAL; dir < IP_CT_DIR_MAX; dir++) {
if (ct_pptp_info->keymap[dir]) {
pr_debug("removing %p from list\n",
ct_pptp_info->keymap[dir]);
list_del_rcu(&ct_pptp_info->keymap[dir]->list);
kfree_rcu(ct_pptp_info->keymap[dir], rcu);
ct_pptp_info->keymap[dir] = NULL;
}
}
spin_unlock_bh(&keymap_lock);
}
EXPORT_SYMBOL_GPL(nf_ct_gre_keymap_destroy);
/* PUBLIC CONNTRACK PROTO HELPER FUNCTIONS */
/* gre hdr info to tuple */
bool gre_pkt_to_tuple(const struct sk_buff *skb, unsigned int dataoff,
struct net *net, struct nf_conntrack_tuple *tuple)
{
const struct pptp_gre_header *pgrehdr;
struct pptp_gre_header _pgrehdr;
__be16 srckey;
const struct gre_base_hdr *grehdr;
struct gre_base_hdr _grehdr;
/* first only delinearize old RFC1701 GRE header */
grehdr = skb_header_pointer(skb, dataoff, sizeof(_grehdr), &_grehdr);
if (!grehdr || (grehdr->flags & GRE_VERSION) != GRE_VERSION_1) {
/* try to behave like "nf_conntrack_proto_generic" */
tuple->src.u.all = 0;
tuple->dst.u.all = 0;
return true;
}
/* PPTP header is variable length, only need up to the call_id field */
pgrehdr = skb_header_pointer(skb, dataoff, 8, &_pgrehdr);
if (!pgrehdr)
return true;
if (grehdr->protocol != GRE_PROTO_PPP) {
pr_debug("Unsupported GRE proto(0x%x)\n", ntohs(grehdr->protocol));
return false;
}
tuple->dst.u.gre.key = pgrehdr->call_id;
srckey = gre_keymap_lookup(net, tuple);
tuple->src.u.gre.key = srckey;
return true;
}
#ifdef CONFIG_NF_CONNTRACK_PROCFS
/* print private data for conntrack */
static void gre_print_conntrack(struct seq_file *s, struct nf_conn *ct)
{
seq_printf(s, "timeout=%u, stream_timeout=%u ",
(ct->proto.gre.timeout / HZ),
(ct->proto.gre.stream_timeout / HZ));
}
#endif
static unsigned int *gre_get_timeouts(struct net *net)
{
return gre_pernet(net)->timeouts;
}
/* Returns verdict for packet, and may modify conntrack */
int nf_conntrack_gre_packet(struct nf_conn *ct,
struct sk_buff *skb,
unsigned int dataoff,
enum ip_conntrack_info ctinfo,
const struct nf_hook_state *state)
{
if (state->pf != NFPROTO_IPV4)
return -NF_ACCEPT;
if (!nf_ct_is_confirmed(ct)) {
unsigned int *timeouts = nf_ct_timeout_lookup(ct);
if (!timeouts)
timeouts = gre_get_timeouts(nf_ct_net(ct));
/* initialize to sane value. Ideally a conntrack helper
* (e.g. in case of pptp) is increasing them */
ct->proto.gre.stream_timeout = timeouts[GRE_CT_REPLIED];
ct->proto.gre.timeout = timeouts[GRE_CT_UNREPLIED];
}
/* If we've seen traffic both ways, this is a GRE connection.
* Extend timeout. */
if (ct->status & IPS_SEEN_REPLY) {
nf_ct_refresh_acct(ct, ctinfo, skb,
ct->proto.gre.stream_timeout);
/* Also, more likely to be important, and not a probe. */
if (!test_and_set_bit(IPS_ASSURED_BIT, &ct->status))
nf_conntrack_event_cache(IPCT_ASSURED, ct);
} else
nf_ct_refresh_acct(ct, ctinfo, skb,
ct->proto.gre.timeout);
return NF_ACCEPT;
}
#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
#include <linux/netfilter/nfnetlink.h>
#include <linux/netfilter/nfnetlink_cttimeout.h>
static int gre_timeout_nlattr_to_obj(struct nlattr *tb[],
struct net *net, void *data)
{
unsigned int *timeouts = data;
struct nf_gre_net *net_gre = gre_pernet(net);
if (!timeouts)
timeouts = gre_get_timeouts(net);
/* set default timeouts for GRE. */
timeouts[GRE_CT_UNREPLIED] = net_gre->timeouts[GRE_CT_UNREPLIED];
timeouts[GRE_CT_REPLIED] = net_gre->timeouts[GRE_CT_REPLIED];
if (tb[CTA_TIMEOUT_GRE_UNREPLIED]) {
timeouts[GRE_CT_UNREPLIED] =
ntohl(nla_get_be32(tb[CTA_TIMEOUT_GRE_UNREPLIED])) * HZ;
}
if (tb[CTA_TIMEOUT_GRE_REPLIED]) {
timeouts[GRE_CT_REPLIED] =
ntohl(nla_get_be32(tb[CTA_TIMEOUT_GRE_REPLIED])) * HZ;
}
return 0;
}
static int
gre_timeout_obj_to_nlattr(struct sk_buff *skb, const void *data)
{
const unsigned int *timeouts = data;
if (nla_put_be32(skb, CTA_TIMEOUT_GRE_UNREPLIED,
htonl(timeouts[GRE_CT_UNREPLIED] / HZ)) ||
nla_put_be32(skb, CTA_TIMEOUT_GRE_REPLIED,
htonl(timeouts[GRE_CT_REPLIED] / HZ)))
goto nla_put_failure;
return 0;
nla_put_failure:
return -ENOSPC;
}
static const struct nla_policy
gre_timeout_nla_policy[CTA_TIMEOUT_GRE_MAX+1] = {
[CTA_TIMEOUT_GRE_UNREPLIED] = { .type = NLA_U32 },
[CTA_TIMEOUT_GRE_REPLIED] = { .type = NLA_U32 },
};
#endif /* CONFIG_NF_CONNTRACK_TIMEOUT */
void nf_conntrack_gre_init_net(struct net *net)
{
struct nf_gre_net *net_gre = gre_pernet(net);
int i;
INIT_LIST_HEAD(&net_gre->keymap_list);
for (i = 0; i < GRE_CT_MAX; i++)
net_gre->timeouts[i] = gre_timeouts[i];
}
/* protocol helper struct */
const struct nf_conntrack_l4proto nf_conntrack_l4proto_gre = {
.l4proto = IPPROTO_GRE,
#ifdef CONFIG_NF_CONNTRACK_PROCFS
.print_conntrack = gre_print_conntrack,
#endif
#if IS_ENABLED(CONFIG_NF_CT_NETLINK)
.tuple_to_nlattr = nf_ct_port_tuple_to_nlattr,
.nlattr_tuple_size = nf_ct_port_nlattr_tuple_size,
.nlattr_to_tuple = nf_ct_port_nlattr_to_tuple,
.nla_policy = nf_ct_port_nla_policy,
#endif
#ifdef CONFIG_NF_CONNTRACK_TIMEOUT
.ctnl_timeout = {
.nlattr_to_obj = gre_timeout_nlattr_to_obj,
.obj_to_nlattr = gre_timeout_obj_to_nlattr,
.nlattr_max = CTA_TIMEOUT_GRE_MAX,
.obj_size = sizeof(unsigned int) * GRE_CT_MAX,
.nla_policy = gre_timeout_nla_policy,
},
#endif /* CONFIG_NF_CONNTRACK_TIMEOUT */
};