1
0
Fork 0
Commit Graph

882976 Commits (c1f729c7dec0df04d62550d981af849f970a660d)

Author SHA1 Message Date
Li Jun 75d0d4ff59 usb: typec: tcpm: reset hard_reset_count for any disconnect
commit 2d9c6442a9 upstream.

Current tcpm_detach() only reset hard_reset_count if port->attached
is true, this may cause this counter clear is missed if the CC
disconnect event is generated after tcpm_port_reset() is done
by other events, e.g. VBUS off comes first before CC disconect for
a power sink, in that case the first tcpm_detach() will only clear
port->attached flag but leave hard_reset_count there because
tcpm_port_is_disconnected() is still false, then later tcpm_detach()
by CC disconnect will directly return due to port->attached is cleared,
finally this will result tcpm will not try hard reset or error recovery
for later attach.

ChiYuan reported this issue on his platform with below tcpm trace:
After power sink session setup after hard reset 2 times, detach
from the power source and then attach:
[ 4848.046358] VBUS off
[ 4848.046384] state change SNK_READY -> SNK_UNATTACHED
[ 4848.050908] Setting voltage/current limit 0 mV 0 mA
[ 4848.050936] polarity 0
[ 4848.052593] Requesting mux state 0, usb-role 0, orientation 0
[ 4848.053222] Start toggling
[ 4848.086500] state change SNK_UNATTACHED -> TOGGLING
[ 4848.089983] CC1: 0 -> 0, CC2: 3 -> 3 [state TOGGLING, polarity 0, connected]
[ 4848.089993] state change TOGGLING -> SNK_ATTACH_WAIT
[ 4848.090031] pending state change SNK_ATTACH_WAIT -> SNK_DEBOUNCED @200 ms
[ 4848.141162] CC1: 0 -> 0, CC2: 3 -> 0 [state SNK_ATTACH_WAIT, polarity 0, disconnected]
[ 4848.141170] state change SNK_ATTACH_WAIT -> SNK_ATTACH_WAIT
[ 4848.141184] pending state change SNK_ATTACH_WAIT -> SNK_UNATTACHED @20 ms
[ 4848.163156] state change SNK_ATTACH_WAIT -> SNK_UNATTACHED [delayed 20 ms]
[ 4848.163162] Start toggling
[ 4848.216918] CC1: 0 -> 0, CC2: 0 -> 3 [state TOGGLING, polarity 0, connected]
[ 4848.216954] state change TOGGLING -> SNK_ATTACH_WAIT
[ 4848.217080] pending state change SNK_ATTACH_WAIT -> SNK_DEBOUNCED @200 ms
[ 4848.231771] CC1: 0 -> 0, CC2: 3 -> 0 [state SNK_ATTACH_WAIT, polarity 0, disconnected]
[ 4848.231800] state change SNK_ATTACH_WAIT -> SNK_ATTACH_WAIT
[ 4848.231857] pending state change SNK_ATTACH_WAIT -> SNK_UNATTACHED @20 ms
[ 4848.256022] state change SNK_ATTACH_WAIT -> SNK_UNATTACHED [delayed20 ms]
[ 4848.256049] Start toggling
[ 4848.871148] VBUS on
[ 4848.885324] CC1: 0 -> 0, CC2: 0 -> 3 [state TOGGLING, polarity 0, connected]
[ 4848.885372] state change TOGGLING -> SNK_ATTACH_WAIT
[ 4848.885548] pending state change SNK_ATTACH_WAIT -> SNK_DEBOUNCED @200 ms
[ 4849.088240] state change SNK_ATTACH_WAIT -> SNK_DEBOUNCED [delayed200 ms]
[ 4849.088284] state change SNK_DEBOUNCED -> SNK_ATTACHED
[ 4849.088291] polarity 1
[ 4849.088769] Requesting mux state 1, usb-role 2, orientation 2
[ 4849.088895] state change SNK_ATTACHED -> SNK_STARTUP
[ 4849.088907] state change SNK_STARTUP -> SNK_DISCOVERY
[ 4849.088915] Setting voltage/current limit 5000 mV 0 mA
[ 4849.088927] vbus=0 charge:=1
[ 4849.090505] state change SNK_DISCOVERY -> SNK_WAIT_CAPABILITIES
[ 4849.090828] pending state change SNK_WAIT_CAPABILITIES -> SNK_READY @240 ms
[ 4849.335878] state change SNK_WAIT_CAPABILITIES -> SNK_READY [delayed240 ms]

this patch fix this issue by clear hard_reset_count at any cases
of cc disconnect, í.e. don't check port->attached flag.

Fixes: 4b4e02c831 ("typec: tcpm: Move out of staging")
Cc: stable@vger.kernel.org
Reported-and-tested-by: ChiYuan Huang <cy_huang@richtek.com>
Reviewed-by: Guenter Roeck <linux@roeck-us.net>
Reviewed-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Signed-off-by: Li Jun <jun.li@nxp.com>
Link: https://lore.kernel.org/r/1602500592-3817-1-git-send-email-jun.li@nxp.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:28 +01:00
Jerome Brunet 543432d078 usb: cdc-acm: fix cooldown mechanism
commit 38203b8385 upstream.

Commit a4e7279cd1 ("cdc-acm: introduce a cool down") is causing
regression if there is some USB error, such as -EPROTO.

This has been reported on some samples of the Odroid-N2 using the Combee II
Zibgee USB dongle.

> struct acm *acm = container_of(work, struct acm, work)

is incorrect in case of a delayed work and causes warnings, usually from
the workqueue:

> WARNING: CPU: 0 PID: 0 at kernel/workqueue.c:1474 __queue_work+0x480/0x528.

When this happens, USB eventually stops working completely after a while.
Also the ACM_ERROR_DELAY bit is never set, so the cooldown mechanism
previously introduced cannot be triggered and acm_submit_read_urb() is
never called.

This changes makes the cdc-acm driver use a single delayed work, fixing the
pointer arithmetic in acm_softint() and set the ACM_ERROR_DELAY when the
cooldown mechanism appear to be needed.

Fixes: a4e7279cd1 ("cdc-acm: introduce a cool down")
Cc: Oliver Neukum <oneukum@suse.com>
Reported-by: Pascal Vizeli <pascal.vizeli@nabucasa.com>
Acked-by: Oliver Neukum <oneukum@suse.com>
Signed-off-by: Jerome Brunet <jbrunet@baylibre.com>
Link: https://lore.kernel.org/r/20201019170702.150534-1-jbrunet@baylibre.com
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:28 +01:00
Thinh Nguyen 2850f148cd usb: dwc3: gadget: END_TRANSFER before CLEAR_STALL command
commit d97c78a190 upstream.

According the programming guide (for all DWC3 IPs), when the driver
handles ClearFeature(halt) request, it should issue CLEAR_STALL command
_after_ the END_TRANSFER command completes. The END_TRANSFER command may
take some time to complete. So, delay the ClearFeature(halt) request
control status stage and wait for END_TRANSFER command completion
interrupt. Only after END_TRANSFER command completes that the driver
may issue CLEAR_STALL command.

Cc: stable@vger.kernel.org
Fixes: cb11ea56f3 ("usb: dwc3: gadget: Properly handle ClearFeature(halt)")
Signed-off-by: Thinh Nguyen <thinhn@synopsys.com>
Signed-off-by: Felipe Balbi <balbi@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:28 +01:00
Thinh Nguyen 206dcd6ce8 usb: dwc3: gadget: Resume pending requests after CLEAR_STALL
commit c503672abe upstream.

The function driver may queue new requests right after halting the
endpoint (i.e. queue new requests while the endpoint is stalled).
There's no restriction preventing it from doing so. However, dwc3
currently drops those requests after CLEAR_STALL. The driver should only
drop started requests. Keep the pending requests in the pending list to
resume and process them after the host issues ClearFeature(Halt) to the
endpoint.

Cc: stable@vger.kernel.org
Fixes: cb11ea56f3 ("usb: dwc3: gadget: Properly handle ClearFeature(halt)")
Signed-off-by: Thinh Nguyen <thinhn@synopsys.com>
Signed-off-by: Felipe Balbi <balbi@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:28 +01:00
Li Jun 97224cdc04 usb: dwc3: core: don't trigger runtime pm when remove driver
commit 266d049390 upstream.

No need to trigger runtime pm in driver removal, otherwise if user
disable auto suspend via sys file, runtime suspend may be entered,
which will call dwc3_core_exit() again and there will be clock disable
not balance warning:

[ 2026.820154] xhci-hcd xhci-hcd.0.auto: remove, state 4
[ 2026.825268] usb usb2: USB disconnect, device number 1
[ 2026.831017] xhci-hcd xhci-hcd.0.auto: USB bus 2 deregistered
[ 2026.836806] xhci-hcd xhci-hcd.0.auto: remove, state 4
[ 2026.842029] usb usb1: USB disconnect, device number 1
[ 2026.848029] xhci-hcd xhci-hcd.0.auto: USB bus 1 deregistered
[ 2026.865889] ------------[ cut here ]------------
[ 2026.870506] usb2_ctrl_root_clk already disabled
[ 2026.875082] WARNING: CPU: 0 PID: 731 at drivers/clk/clk.c:958
clk_core_disable+0xa0/0xa8
[ 2026.883170] Modules linked in: dwc3(-) phy_fsl_imx8mq_usb [last
unloaded: dwc3]
[ 2026.890488] CPU: 0 PID: 731 Comm: rmmod Not tainted
5.8.0-rc7-00280-g9d08cca-dirty #245
[ 2026.898489] Hardware name: NXP i.MX8MQ EVK (DT)
[ 2026.903020] pstate: 20000085 (nzCv daIf -PAN -UAO BTYPE=--)
[ 2026.908594] pc : clk_core_disable+0xa0/0xa8
[ 2026.912777] lr : clk_core_disable+0xa0/0xa8
[ 2026.916958] sp : ffff8000121b39a0
[ 2026.920271] x29: ffff8000121b39a0 x28: ffff0000b11f3700
[ 2026.925583] x27: 0000000000000000 x26: ffff0000b539c700
[ 2026.930895] x25: 000001d7e44e1232 x24: ffff0000b76fa800
[ 2026.936208] x23: ffff0000b76fa6f8 x22: ffff800008d01040
[ 2026.941520] x21: ffff0000b539ce00 x20: ffff0000b7105000
[ 2026.946832] x19: ffff0000b7105000 x18: 0000000000000010
[ 2026.952144] x17: 0000000000000001 x16: 0000000000000000
[ 2026.957456] x15: ffff0000b11f3b70 x14: ffffffffffffffff
[ 2026.962768] x13: ffff8000921b36f7 x12: ffff8000121b36ff
[ 2026.968080] x11: ffff8000119e1000 x10: ffff800011bf26d0
[ 2026.973392] x9 : 0000000000000000 x8 : ffff800011bf3000
[ 2026.978704] x7 : ffff800010695d68 x6 : 0000000000000252
[ 2026.984016] x5 : ffff0000bb9881f0 x4 : 0000000000000000
[ 2026.989327] x3 : 0000000000000027 x2 : 0000000000000023
[ 2026.994639] x1 : ac2fa471aa7cab00 x0 : 0000000000000000
[ 2026.999951] Call trace:
[ 2027.002401]  clk_core_disable+0xa0/0xa8
[ 2027.006238]  clk_core_disable_lock+0x20/0x38
[ 2027.010508]  clk_disable+0x1c/0x28
[ 2027.013911]  clk_bulk_disable+0x34/0x50
[ 2027.017758]  dwc3_core_exit+0xec/0x110 [dwc3]
[ 2027.022122]  dwc3_suspend_common+0x84/0x188 [dwc3]
[ 2027.026919]  dwc3_runtime_suspend+0x74/0x9c [dwc3]
[ 2027.031712]  pm_generic_runtime_suspend+0x28/0x40
[ 2027.036419]  genpd_runtime_suspend+0xa0/0x258
[ 2027.040777]  __rpm_callback+0x88/0x140
[ 2027.044526]  rpm_callback+0x20/0x80
[ 2027.048015]  rpm_suspend+0xd0/0x418
[ 2027.051503]  __pm_runtime_suspend+0x58/0xa0
[ 2027.055693]  dwc3_runtime_idle+0x7c/0x90 [dwc3]
[ 2027.060224]  __rpm_callback+0x88/0x140
[ 2027.063973]  rpm_idle+0x78/0x150
[ 2027.067201]  __pm_runtime_idle+0x58/0xa0
[ 2027.071130]  dwc3_remove+0x64/0xc0 [dwc3]
[ 2027.075140]  platform_drv_remove+0x28/0x48
[ 2027.079239]  device_release_driver_internal+0xf4/0x1c0
[ 2027.084377]  driver_detach+0x4c/0xd8
[ 2027.087954]  bus_remove_driver+0x54/0xa8
[ 2027.091877]  driver_unregister+0x2c/0x58
[ 2027.095799]  platform_driver_unregister+0x10/0x18
[ 2027.100509]  dwc3_driver_exit+0x14/0x1408 [dwc3]
[ 2027.105129]  __arm64_sys_delete_module+0x178/0x218
[ 2027.109922]  el0_svc_common.constprop.0+0x68/0x160
[ 2027.114714]  do_el0_svc+0x20/0x80
[ 2027.118031]  el0_sync_handler+0x88/0x190
[ 2027.121953]  el0_sync+0x140/0x180
[ 2027.125267] ---[ end trace 027f4f8189958f1f ]---
[ 2027.129976] ------------[ cut here ]------------

Fixes: fc8bb91bc8 ("usb: dwc3: implement runtime PM")
Cc: <stable@vger.kernel.org>
Signed-off-by: Li Jun <jun.li@nxp.com>
Signed-off-by: Felipe Balbi <balbi@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:28 +01:00
Li Jun 726f638e7c usb: dwc3: core: add phy cleanup for probe error handling
commit 03c1fd622f upstream.

Add the phy cleanup if dwc3 mode init fail, which is the missing part of
de-init for dwc3 core init.

Fixes: c499ff71ff ("usb: dwc3: core: re-factor init and exit paths")
Cc: <stable@vger.kernel.org>
Signed-off-by: Li Jun <jun.li@nxp.com>
Signed-off-by: Felipe Balbi <balbi@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:28 +01:00
Thinh Nguyen f935b70cf7 usb: dwc3: gadget: Check MPS of the request length
commit ca3df3468e upstream.

When preparing for SG, not all the entries are prepared at once. When
resume, don't use the remaining request length to calculate for MPS
alignment. Use the entire request->length to do that.

Cc: stable@vger.kernel.org
Fixes: 5d187c0454 ("usb: dwc3: gadget: Don't setup more than requested")
Signed-off-by: Thinh Nguyen <Thinh.Nguyen@synopsys.com>
Signed-off-by: Felipe Balbi <balbi@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:28 +01:00
Thinh Nguyen 1c9e86c933 usb: dwc3: ep0: Fix ZLP for OUT ep0 requests
commit 66706077dc upstream.

The current ZLP handling for ep0 requests is only for control IN
requests. For OUT direction, DWC3 needs to check and setup for MPS
alignment.

Usually, control OUT requests can indicate its transfer size via the
wLength field of the control message. So usb_request->zero is usually
not needed for OUT direction. To handle ZLP OUT for control endpoint,
make sure the TRB is MPS size.

Cc: stable@vger.kernel.org
Fixes: c7fcdeb262 ("usb: dwc3: ep0: simplify EP0 state machine")
Fixes: d6e5a549cc ("usb: dwc3: simplify ZLP handling")
Signed-off-by: Thinh Nguyen <Thinh.Nguyen@synopsys.com>
Signed-off-by: Felipe Balbi <balbi@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:27 +01:00
Raymond Tan 3468cbceb5 usb: dwc3: pci: Allow Elkhart Lake to utilize DSM method for PM functionality
commit a609ce2a13 upstream.

Similar to some other IA platforms, Elkhart Lake too depends on the
PMU register write to request transition of Dx power state.

Thus, we add the PCI_DEVICE_ID_INTEL_EHLLP to the list of devices that
shall execute the ACPI _DSM method during D0/D3 sequence.

[heikki.krogerus@linux.intel.com: included Fixes tag]

Fixes: dbb0569de8 ("usb: dwc3: pci: Add Support for Intel Elkhart Lake Devices")
Cc: stable@vger.kernel.org
Signed-off-by: Raymond Tan <raymond.tan@intel.com>
Signed-off-by: Heikki Krogerus <heikki.krogerus@linux.intel.com>
Signed-off-by: Felipe Balbi <balbi@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:27 +01:00
Sandeep Singh 2600a131e1 usb: xhci: Workaround for S3 issue on AMD SNPS 3.0 xHC
commit 2a63281568 upstream.

On some platform of AMD, S3 fails with HCE and SRE errors. To fix this,
need to disable a bit which is enable in sparse controller.

Cc: stable@vger.kernel.org #v4.19+
Signed-off-by: Sanket Goswami <Sanket.Goswami@amd.com>
Signed-off-by: Sandeep Singh <sandeep.singh@amd.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Link: https://lore.kernel.org/r/20201028203124.375344-3-mathias.nyman@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:27 +01:00
Filipe Manana c964d386e8 btrfs: fix readahead hang and use-after-free after removing a device
commit 66d204a16c upstream.

Very sporadically I had test case btrfs/069 from fstests hanging (for
years, it is not a recent regression), with the following traces in
dmesg/syslog:

  [162301.160628] BTRFS info (device sdc): dev_replace from /dev/sdd (devid 2) to /dev/sdg started
  [162301.181196] BTRFS info (device sdc): scrub: finished on devid 4 with status: 0
  [162301.287162] BTRFS info (device sdc): dev_replace from /dev/sdd (devid 2) to /dev/sdg finished
  [162513.513792] INFO: task btrfs-transacti:1356167 blocked for more than 120 seconds.
  [162513.514318]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.514522] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.514747] task:btrfs-transacti state:D stack:    0 pid:1356167 ppid:     2 flags:0x00004000
  [162513.514751] Call Trace:
  [162513.514761]  __schedule+0x5ce/0xd00
  [162513.514765]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.514771]  schedule+0x46/0xf0
  [162513.514844]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.514850]  ? finish_wait+0x90/0x90
  [162513.514864]  start_transaction+0x37c/0x5f0 [btrfs]
  [162513.514879]  transaction_kthread+0xa4/0x170 [btrfs]
  [162513.514891]  ? btrfs_cleanup_transaction+0x660/0x660 [btrfs]
  [162513.514894]  kthread+0x153/0x170
  [162513.514897]  ? kthread_stop+0x2c0/0x2c0
  [162513.514902]  ret_from_fork+0x22/0x30
  [162513.514916] INFO: task fsstress:1356184 blocked for more than 120 seconds.
  [162513.515192]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.515431] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.515680] task:fsstress        state:D stack:    0 pid:1356184 ppid:1356177 flags:0x00004000
  [162513.515682] Call Trace:
  [162513.515688]  __schedule+0x5ce/0xd00
  [162513.515691]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.515697]  schedule+0x46/0xf0
  [162513.515712]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.515716]  ? finish_wait+0x90/0x90
  [162513.515729]  start_transaction+0x37c/0x5f0 [btrfs]
  [162513.515743]  btrfs_attach_transaction_barrier+0x1f/0x50 [btrfs]
  [162513.515753]  btrfs_sync_fs+0x61/0x1c0 [btrfs]
  [162513.515758]  ? __ia32_sys_fdatasync+0x20/0x20
  [162513.515761]  iterate_supers+0x87/0xf0
  [162513.515765]  ksys_sync+0x60/0xb0
  [162513.515768]  __do_sys_sync+0xa/0x10
  [162513.515771]  do_syscall_64+0x33/0x80
  [162513.515774]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.515781] RIP: 0033:0x7f5238f50bd7
  [162513.515782] Code: Bad RIP value.
  [162513.515784] RSP: 002b:00007fff67b978e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a2
  [162513.515786] RAX: ffffffffffffffda RBX: 000055b1fad2c560 RCX: 00007f5238f50bd7
  [162513.515788] RDX: 00000000ffffffff RSI: 000000000daf0e74 RDI: 000000000000003a
  [162513.515789] RBP: 0000000000000032 R08: 000000000000000a R09: 00007f5239019be0
  [162513.515791] R10: fffffffffffff24f R11: 0000000000000206 R12: 000000000000003a
  [162513.515792] R13: 00007fff67b97950 R14: 00007fff67b97906 R15: 000055b1fad1a340
  [162513.515804] INFO: task fsstress:1356185 blocked for more than 120 seconds.
  [162513.516064]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.516329] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.516617] task:fsstress        state:D stack:    0 pid:1356185 ppid:1356177 flags:0x00000000
  [162513.516620] Call Trace:
  [162513.516625]  __schedule+0x5ce/0xd00
  [162513.516628]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.516634]  schedule+0x46/0xf0
  [162513.516647]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.516650]  ? finish_wait+0x90/0x90
  [162513.516662]  start_transaction+0x4d7/0x5f0 [btrfs]
  [162513.516679]  btrfs_setxattr_trans+0x3c/0x100 [btrfs]
  [162513.516686]  __vfs_setxattr+0x66/0x80
  [162513.516691]  __vfs_setxattr_noperm+0x70/0x200
  [162513.516697]  vfs_setxattr+0x6b/0x120
  [162513.516703]  setxattr+0x125/0x240
  [162513.516709]  ? lock_acquire+0xb1/0x480
  [162513.516712]  ? mnt_want_write+0x20/0x50
  [162513.516721]  ? rcu_read_lock_any_held+0x8e/0xb0
  [162513.516723]  ? preempt_count_add+0x49/0xa0
  [162513.516725]  ? __sb_start_write+0x19b/0x290
  [162513.516727]  ? preempt_count_add+0x49/0xa0
  [162513.516732]  path_setxattr+0xba/0xd0
  [162513.516739]  __x64_sys_setxattr+0x27/0x30
  [162513.516741]  do_syscall_64+0x33/0x80
  [162513.516743]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.516745] RIP: 0033:0x7f5238f56d5a
  [162513.516746] Code: Bad RIP value.
  [162513.516748] RSP: 002b:00007fff67b97868 EFLAGS: 00000202 ORIG_RAX: 00000000000000bc
  [162513.516750] RAX: ffffffffffffffda RBX: 0000000000000001 RCX: 00007f5238f56d5a
  [162513.516751] RDX: 000055b1fbb0d5a0 RSI: 00007fff67b978a0 RDI: 000055b1fbb0d470
  [162513.516753] RBP: 000055b1fbb0d5a0 R08: 0000000000000001 R09: 00007fff67b97700
  [162513.516754] R10: 0000000000000004 R11: 0000000000000202 R12: 0000000000000004
  [162513.516756] R13: 0000000000000024 R14: 0000000000000001 R15: 00007fff67b978a0
  [162513.516767] INFO: task fsstress:1356196 blocked for more than 120 seconds.
  [162513.517064]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.517365] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.517763] task:fsstress        state:D stack:    0 pid:1356196 ppid:1356177 flags:0x00004000
  [162513.517780] Call Trace:
  [162513.517786]  __schedule+0x5ce/0xd00
  [162513.517789]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.517796]  schedule+0x46/0xf0
  [162513.517810]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.517814]  ? finish_wait+0x90/0x90
  [162513.517829]  start_transaction+0x37c/0x5f0 [btrfs]
  [162513.517845]  btrfs_attach_transaction_barrier+0x1f/0x50 [btrfs]
  [162513.517857]  btrfs_sync_fs+0x61/0x1c0 [btrfs]
  [162513.517862]  ? __ia32_sys_fdatasync+0x20/0x20
  [162513.517865]  iterate_supers+0x87/0xf0
  [162513.517869]  ksys_sync+0x60/0xb0
  [162513.517872]  __do_sys_sync+0xa/0x10
  [162513.517875]  do_syscall_64+0x33/0x80
  [162513.517878]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.517881] RIP: 0033:0x7f5238f50bd7
  [162513.517883] Code: Bad RIP value.
  [162513.517885] RSP: 002b:00007fff67b978e8 EFLAGS: 00000206 ORIG_RAX: 00000000000000a2
  [162513.517887] RAX: ffffffffffffffda RBX: 000055b1fad2c560 RCX: 00007f5238f50bd7
  [162513.517889] RDX: 0000000000000000 RSI: 000000007660add2 RDI: 0000000000000053
  [162513.517891] RBP: 0000000000000032 R08: 0000000000000067 R09: 00007f5239019be0
  [162513.517893] R10: fffffffffffff24f R11: 0000000000000206 R12: 0000000000000053
  [162513.517895] R13: 00007fff67b97950 R14: 00007fff67b97906 R15: 000055b1fad1a340
  [162513.517908] INFO: task fsstress:1356197 blocked for more than 120 seconds.
  [162513.518298]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.518672] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.519157] task:fsstress        state:D stack:    0 pid:1356197 ppid:1356177 flags:0x00000000
  [162513.519160] Call Trace:
  [162513.519165]  __schedule+0x5ce/0xd00
  [162513.519168]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.519174]  schedule+0x46/0xf0
  [162513.519190]  wait_current_trans+0xde/0x140 [btrfs]
  [162513.519193]  ? finish_wait+0x90/0x90
  [162513.519206]  start_transaction+0x4d7/0x5f0 [btrfs]
  [162513.519222]  btrfs_create+0x57/0x200 [btrfs]
  [162513.519230]  lookup_open+0x522/0x650
  [162513.519246]  path_openat+0x2b8/0xa50
  [162513.519270]  do_filp_open+0x91/0x100
  [162513.519275]  ? find_held_lock+0x32/0x90
  [162513.519280]  ? lock_acquired+0x33b/0x470
  [162513.519285]  ? do_raw_spin_unlock+0x4b/0xc0
  [162513.519287]  ? _raw_spin_unlock+0x29/0x40
  [162513.519295]  do_sys_openat2+0x20d/0x2d0
  [162513.519300]  do_sys_open+0x44/0x80
  [162513.519304]  do_syscall_64+0x33/0x80
  [162513.519307]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.519309] RIP: 0033:0x7f5238f4a903
  [162513.519310] Code: Bad RIP value.
  [162513.519312] RSP: 002b:00007fff67b97758 EFLAGS: 00000246 ORIG_RAX: 0000000000000055
  [162513.519314] RAX: ffffffffffffffda RBX: 00000000ffffffff RCX: 00007f5238f4a903
  [162513.519316] RDX: 0000000000000000 RSI: 00000000000001b6 RDI: 000055b1fbb0d470
  [162513.519317] RBP: 00007fff67b978c0 R08: 0000000000000001 R09: 0000000000000002
  [162513.519319] R10: 00007fff67b974f7 R11: 0000000000000246 R12: 0000000000000013
  [162513.519320] R13: 00000000000001b6 R14: 00007fff67b97906 R15: 000055b1fad1c620
  [162513.519332] INFO: task btrfs:1356211 blocked for more than 120 seconds.
  [162513.519727]       Not tainted 5.9.0-rc6-btrfs-next-69 #1
  [162513.520115] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  [162513.520508] task:btrfs           state:D stack:    0 pid:1356211 ppid:1356178 flags:0x00004002
  [162513.520511] Call Trace:
  [162513.520516]  __schedule+0x5ce/0xd00
  [162513.520519]  ? _raw_spin_unlock_irqrestore+0x3c/0x60
  [162513.520525]  schedule+0x46/0xf0
  [162513.520544]  btrfs_scrub_pause+0x11f/0x180 [btrfs]
  [162513.520548]  ? finish_wait+0x90/0x90
  [162513.520562]  btrfs_commit_transaction+0x45a/0xc30 [btrfs]
  [162513.520574]  ? start_transaction+0xe0/0x5f0 [btrfs]
  [162513.520596]  btrfs_dev_replace_finishing+0x6d8/0x711 [btrfs]
  [162513.520619]  btrfs_dev_replace_by_ioctl.cold+0x1cc/0x1fd [btrfs]
  [162513.520639]  btrfs_ioctl+0x2a25/0x36f0 [btrfs]
  [162513.520643]  ? do_sigaction+0xf3/0x240
  [162513.520645]  ? find_held_lock+0x32/0x90
  [162513.520648]  ? do_sigaction+0xf3/0x240
  [162513.520651]  ? lock_acquired+0x33b/0x470
  [162513.520655]  ? _raw_spin_unlock_irq+0x24/0x50
  [162513.520657]  ? lockdep_hardirqs_on+0x7d/0x100
  [162513.520660]  ? _raw_spin_unlock_irq+0x35/0x50
  [162513.520662]  ? do_sigaction+0xf3/0x240
  [162513.520671]  ? __x64_sys_ioctl+0x83/0xb0
  [162513.520672]  __x64_sys_ioctl+0x83/0xb0
  [162513.520677]  do_syscall_64+0x33/0x80
  [162513.520679]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [162513.520681] RIP: 0033:0x7fc3cd307d87
  [162513.520682] Code: Bad RIP value.
  [162513.520684] RSP: 002b:00007ffe30a56bb8 EFLAGS: 00000202 ORIG_RAX: 0000000000000010
  [162513.520686] RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fc3cd307d87
  [162513.520687] RDX: 00007ffe30a57a30 RSI: 00000000ca289435 RDI: 0000000000000003
  [162513.520689] RBP: 0000000000000000 R08: 0000000000000000 R09: 0000000000000000
  [162513.520690] R10: 0000000000000008 R11: 0000000000000202 R12: 0000000000000003
  [162513.520692] R13: 0000557323a212e0 R14: 00007ffe30a5a520 R15: 0000000000000001
  [162513.520703]
		  Showing all locks held in the system:
  [162513.520712] 1 lock held by khungtaskd/54:
  [162513.520713]  #0: ffffffffb40a91a0 (rcu_read_lock){....}-{1:2}, at: debug_show_all_locks+0x15/0x197
  [162513.520728] 1 lock held by in:imklog/596:
  [162513.520729]  #0: ffff8f3f0d781400 (&f->f_pos_lock){+.+.}-{3:3}, at: __fdget_pos+0x4d/0x60
  [162513.520782] 1 lock held by btrfs-transacti/1356167:
  [162513.520784]  #0: ffff8f3d810cc848 (&fs_info->transaction_kthread_mutex){+.+.}-{3:3}, at: transaction_kthread+0x4a/0x170 [btrfs]
  [162513.520798] 1 lock held by btrfs/1356190:
  [162513.520800]  #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write_file+0x22/0x60
  [162513.520805] 1 lock held by fsstress/1356184:
  [162513.520806]  #0: ffff8f3d576440e8 (&type->s_umount_key#62){++++}-{3:3}, at: iterate_supers+0x6f/0xf0
  [162513.520811] 3 locks held by fsstress/1356185:
  [162513.520812]  #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write+0x20/0x50
  [162513.520815]  #1: ffff8f3d80a650b8 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: vfs_setxattr+0x50/0x120
  [162513.520820]  #2: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs]
  [162513.520833] 1 lock held by fsstress/1356196:
  [162513.520834]  #0: ffff8f3d576440e8 (&type->s_umount_key#62){++++}-{3:3}, at: iterate_supers+0x6f/0xf0
  [162513.520838] 3 locks held by fsstress/1356197:
  [162513.520839]  #0: ffff8f3d57644470 (sb_writers#15){.+.+}-{0:0}, at: mnt_want_write+0x20/0x50
  [162513.520843]  #1: ffff8f3d506465e8 (&type->i_mutex_dir_key#10){++++}-{3:3}, at: path_openat+0x2a7/0xa50
  [162513.520846]  #2: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs]
  [162513.520858] 2 locks held by btrfs/1356211:
  [162513.520859]  #0: ffff8f3d810cde30 (&fs_info->dev_replace.lock_finishing_cancel_unmount){+.+.}-{3:3}, at: btrfs_dev_replace_finishing+0x52/0x711 [btrfs]
  [162513.520877]  #1: ffff8f3d57644690 (sb_internal#2){.+.+}-{0:0}, at: start_transaction+0x40e/0x5f0 [btrfs]

This was weird because the stack traces show that a transaction commit,
triggered by a device replace operation, is blocking trying to pause any
running scrubs but there are no stack traces of blocked tasks doing a
scrub.

After poking around with drgn, I noticed there was a scrub task that was
constantly running and blocking for shorts periods of time:

  >>> t = find_task(prog, 1356190)
  >>> prog.stack_trace(t)
  #0  __schedule+0x5ce/0xcfc
  #1  schedule+0x46/0xe4
  #2  schedule_timeout+0x1df/0x475
  #3  btrfs_reada_wait+0xda/0x132
  #4  scrub_stripe+0x2a8/0x112f
  #5  scrub_chunk+0xcd/0x134
  #6  scrub_enumerate_chunks+0x29e/0x5ee
  #7  btrfs_scrub_dev+0x2d5/0x91b
  #8  btrfs_ioctl+0x7f5/0x36e7
  #9  __x64_sys_ioctl+0x83/0xb0
  #10 do_syscall_64+0x33/0x77
  #11 entry_SYSCALL_64+0x7c/0x156

Which corresponds to:

int btrfs_reada_wait(void *handle)
{
    struct reada_control *rc = handle;
    struct btrfs_fs_info *fs_info = rc->fs_info;

    while (atomic_read(&rc->elems)) {
        if (!atomic_read(&fs_info->reada_works_cnt))
            reada_start_machine(fs_info);
        wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
                          (HZ + 9) / 10);
    }
(...)

So the counter "rc->elems" was set to 1 and never decreased to 0, causing
the scrub task to loop forever in that function. Then I used the following
script for drgn to check the readahead requests:

  $ cat dump_reada.py
  import sys
  import drgn
  from drgn import NULL, Object, cast, container_of, execscript, \
      reinterpret, sizeof
  from drgn.helpers.linux import *

  mnt_path = b"/home/fdmanana/btrfs-tests/scratch_1"

  mnt = None
  for mnt in for_each_mount(prog, dst = mnt_path):
      pass

  if mnt is None:
      sys.stderr.write(f'Error: mount point {mnt_path} not found\n')
      sys.exit(1)

  fs_info = cast('struct btrfs_fs_info *', mnt.mnt.mnt_sb.s_fs_info)

  def dump_re(re):
      nzones = re.nzones.value_()
      print(f're at {hex(re.value_())}')
      print(f'\t logical {re.logical.value_()}')
      print(f'\t refcnt {re.refcnt.value_()}')
      print(f'\t nzones {nzones}')
      for i in range(nzones):
          dev = re.zones[i].device
          name = dev.name.str.string_()
          print(f'\t\t dev id {dev.devid.value_()} name {name}')
      print()

  for _, e in radix_tree_for_each(fs_info.reada_tree):
      re = cast('struct reada_extent *', e)
      dump_re(re)

  $ drgn dump_reada.py
  re at 0xffff8f3da9d25ad8
          logical 38928384
          refcnt 1
          nzones 1
                 dev id 0 name b'/dev/sdd'
  $

So there was one readahead extent with a single zone corresponding to the
source device of that last device replace operation logged in dmesg/syslog.
Also the ID of that zone's device was 0 which is a special value set in
the source device of a device replace operation when the operation finishes
(constant BTRFS_DEV_REPLACE_DEVID set at btrfs_dev_replace_finishing()),
confirming again that device /dev/sdd was the source of a device replace
operation.

Normally there should be as many zones in the readahead extent as there are
devices, and I wasn't expecting the extent to be in a block group with a
'single' profile, so I went and confirmed with the following drgn script
that there weren't any single profile block groups:

  $ cat dump_block_groups.py
  import sys
  import drgn
  from drgn import NULL, Object, cast, container_of, execscript, \
      reinterpret, sizeof
  from drgn.helpers.linux import *

  mnt_path = b"/home/fdmanana/btrfs-tests/scratch_1"

  mnt = None
  for mnt in for_each_mount(prog, dst = mnt_path):
      pass

  if mnt is None:
      sys.stderr.write(f'Error: mount point {mnt_path} not found\n')
      sys.exit(1)

  fs_info = cast('struct btrfs_fs_info *', mnt.mnt.mnt_sb.s_fs_info)

  BTRFS_BLOCK_GROUP_DATA = (1 << 0)
  BTRFS_BLOCK_GROUP_SYSTEM = (1 << 1)
  BTRFS_BLOCK_GROUP_METADATA = (1 << 2)
  BTRFS_BLOCK_GROUP_RAID0 = (1 << 3)
  BTRFS_BLOCK_GROUP_RAID1 = (1 << 4)
  BTRFS_BLOCK_GROUP_DUP = (1 << 5)
  BTRFS_BLOCK_GROUP_RAID10 = (1 << 6)
  BTRFS_BLOCK_GROUP_RAID5 = (1 << 7)
  BTRFS_BLOCK_GROUP_RAID6 = (1 << 8)
  BTRFS_BLOCK_GROUP_RAID1C3 = (1 << 9)
  BTRFS_BLOCK_GROUP_RAID1C4 = (1 << 10)

  def bg_flags_string(bg):
      flags = bg.flags.value_()
      ret = ''
      if flags & BTRFS_BLOCK_GROUP_DATA:
          ret = 'data'
      if flags & BTRFS_BLOCK_GROUP_METADATA:
          if len(ret) > 0:
              ret += '|'
          ret += 'meta'
      if flags & BTRFS_BLOCK_GROUP_SYSTEM:
          if len(ret) > 0:
              ret += '|'
          ret += 'system'
      if flags & BTRFS_BLOCK_GROUP_RAID0:
          ret += ' raid0'
      elif flags & BTRFS_BLOCK_GROUP_RAID1:
          ret += ' raid1'
      elif flags & BTRFS_BLOCK_GROUP_DUP:
          ret += ' dup'
      elif flags & BTRFS_BLOCK_GROUP_RAID10:
          ret += ' raid10'
      elif flags & BTRFS_BLOCK_GROUP_RAID5:
          ret += ' raid5'
      elif flags & BTRFS_BLOCK_GROUP_RAID6:
          ret += ' raid6'
      elif flags & BTRFS_BLOCK_GROUP_RAID1C3:
          ret += ' raid1c3'
      elif flags & BTRFS_BLOCK_GROUP_RAID1C4:
          ret += ' raid1c4'
      else:
          ret += ' single'

      return ret

  def dump_bg(bg):
      print()
      print(f'block group at {hex(bg.value_())}')
      print(f'\t start {bg.start.value_()} length {bg.length.value_()}')
      print(f'\t flags {bg.flags.value_()} - {bg_flags_string(bg)}')

  bg_root = fs_info.block_group_cache_tree.address_of_()
  for bg in rbtree_inorder_for_each_entry('struct btrfs_block_group', bg_root, 'cache_node'):
      dump_bg(bg)

  $ drgn dump_block_groups.py

  block group at 0xffff8f3d673b0400
         start 22020096 length 16777216
         flags 258 - system raid6

  block group at 0xffff8f3d53ddb400
         start 38797312 length 536870912
         flags 260 - meta raid6

  block group at 0xffff8f3d5f4d9c00
         start 575668224 length 2147483648
         flags 257 - data raid6

  block group at 0xffff8f3d08189000
         start 2723151872 length 67108864
         flags 258 - system raid6

  block group at 0xffff8f3db70ff000
         start 2790260736 length 1073741824
         flags 260 - meta raid6

  block group at 0xffff8f3d5f4dd800
         start 3864002560 length 67108864
         flags 258 - system raid6

  block group at 0xffff8f3d67037000
         start 3931111424 length 2147483648
         flags 257 - data raid6
  $

So there were only 2 reasons left for having a readahead extent with a
single zone: reada_find_zone(), called when creating a readahead extent,
returned NULL either because we failed to find the corresponding block
group or because a memory allocation failed. With some additional and
custom tracing I figured out that on every further ocurrence of the
problem the block group had just been deleted when we were looping to
create the zones for the readahead extent (at reada_find_extent()), so we
ended up with only one zone in the readahead extent, corresponding to a
device that ends up getting replaced.

So after figuring that out it became obvious why the hang happens:

1) Task A starts a scrub on any device of the filesystem, except for
   device /dev/sdd;

2) Task B starts a device replace with /dev/sdd as the source device;

3) Task A calls btrfs_reada_add() from scrub_stripe() and it is currently
   starting to scrub a stripe from block group X. This call to
   btrfs_reada_add() is the one for the extent tree. When btrfs_reada_add()
   calls reada_add_block(), it passes the logical address of the extent
   tree's root node as its 'logical' argument - a value of 38928384;

4) Task A then enters reada_find_extent(), called from reada_add_block().
   It finds there isn't any existing readahead extent for the logical
   address 38928384, so it proceeds to the path of creating a new one.

   It calls btrfs_map_block() to find out which stripes exist for the block
   group X. On the first iteration of the for loop that iterates over the
   stripes, it finds the stripe for device /dev/sdd, so it creates one
   zone for that device and adds it to the readahead extent. Before getting
   into the second iteration of the loop, the cleanup kthread deletes block
   group X because it was empty. So in the iterations for the remaining
   stripes it does not add more zones to the readahead extent, because the
   calls to reada_find_zone() returned NULL because they couldn't find
   block group X anymore.

   As a result the new readahead extent has a single zone, corresponding to
   the device /dev/sdd;

4) Before task A returns to btrfs_reada_add() and queues the readahead job
   for the readahead work queue, task B finishes the device replace and at
   btrfs_dev_replace_finishing() swaps the device /dev/sdd with the new
   device /dev/sdg;

5) Task A returns to reada_add_block(), which increments the counter
   "->elems" of the reada_control structure allocated at btrfs_reada_add().

   Then it returns back to btrfs_reada_add() and calls
   reada_start_machine(). This queues a job in the readahead work queue to
   run the function reada_start_machine_worker(), which calls
   __reada_start_machine().

   At __reada_start_machine() we take the device list mutex and for each
   device found in the current device list, we call
   reada_start_machine_dev() to start the readahead work. However at this
   point the device /dev/sdd was already freed and is not in the device
   list anymore.

   This means the corresponding readahead for the extent at 38928384 is
   never started, and therefore the "->elems" counter of the reada_control
   structure allocated at btrfs_reada_add() never goes down to 0, causing
   the call to btrfs_reada_wait(), done by the scrub task, to wait forever.

Note that the readahead request can be made either after the device replace
started or before it started, however in pratice it is very unlikely that a
device replace is able to start after a readahead request is made and is
able to complete before the readahead request completes - maybe only on a
very small and nearly empty filesystem.

This hang however is not the only problem we can have with readahead and
device removals. When the readahead extent has other zones other than the
one corresponding to the device that is being removed (either by a device
replace or a device remove operation), we risk having a use-after-free on
the device when dropping the last reference of the readahead extent.

For example if we create a readahead extent with two zones, one for the
device /dev/sdd and one for the device /dev/sde:

1) Before the readahead worker starts, the device /dev/sdd is removed,
   and the corresponding btrfs_device structure is freed. However the
   readahead extent still has the zone pointing to the device structure;

2) When the readahead worker starts, it only finds device /dev/sde in the
   current device list of the filesystem;

3) It starts the readahead work, at reada_start_machine_dev(), using the
   device /dev/sde;

4) Then when it finishes reading the extent from device /dev/sde, it calls
   __readahead_hook() which ends up dropping the last reference on the
   readahead extent through the last call to reada_extent_put();

5) At reada_extent_put() it iterates over each zone of the readahead extent
   and attempts to delete an element from the device's 'reada_extents'
   radix tree, resulting in a use-after-free, as the device pointer of the
   zone for /dev/sdd is now stale. We can also access the device after
   dropping the last reference of a zone, through reada_zone_release(),
   also called by reada_extent_put().

And a device remove suffers the same problem, however since it shrinks the
device size down to zero before removing the device, it is very unlikely to
still have readahead requests not completed by the time we free the device,
the only possibility is if the device has a very little space allocated.

While the hang problem is exclusive to scrub, since it is currently the
only user of btrfs_reada_add() and btrfs_reada_wait(), the use-after-free
problem affects any path that triggers readhead, which includes
btree_readahead_hook() and __readahead_hook() (a readahead worker can
trigger readahed for the children of a node) for example - any path that
ends up calling reada_add_block() can trigger the use-after-free after a
device is removed.

So fix this by waiting for any readahead requests for a device to complete
before removing a device, ensuring that while waiting for existing ones no
new ones can be made.

This problem has been around for a very long time - the readahead code was
added in 2011, device remove exists since 2008 and device replace was
introduced in 2013, hard to pick a specific commit for a git Fixes tag.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:27 +01:00
Filipe Manana dfda50e882 btrfs: fix use-after-free on readahead extent after failure to create it
commit 83bc1560e0 upstream.

If we fail to find suitable zones for a new readahead extent, we end up
leaving a stale pointer in the global readahead extents radix tree
(fs_info->reada_tree), which can trigger the following trace later on:

  [13367.696354] BUG: kernel NULL pointer dereference, address: 00000000000000b0
  [13367.696802] #PF: supervisor read access in kernel mode
  [13367.697249] #PF: error_code(0x0000) - not-present page
  [13367.697721] PGD 0 P4D 0
  [13367.698171] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
  [13367.698632] CPU: 6 PID: 851214 Comm: btrfs Tainted: G        W         5.9.0-rc6-btrfs-next-69 #1
  [13367.699100] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
  [13367.700069] RIP: 0010:__lock_acquire+0x20a/0x3970
  [13367.700562] Code: ff 1f 0f b7 c0 48 0f (...)
  [13367.701609] RSP: 0018:ffffb14448f57790 EFLAGS: 00010046
  [13367.702140] RAX: 0000000000000000 RBX: 29b935140c15e8cf RCX: 0000000000000000
  [13367.702698] RDX: 0000000000000002 RSI: ffffffffb3d66bd0 RDI: 0000000000000046
  [13367.703240] RBP: ffff8a52ba8ac040 R08: 00000c2866ad9288 R09: 0000000000000001
  [13367.703783] R10: 0000000000000001 R11: 00000000b66d9b53 R12: ffff8a52ba8ac9b0
  [13367.704330] R13: 0000000000000000 R14: ffff8a532b6333e8 R15: 0000000000000000
  [13367.704880] FS:  00007fe1df6b5700(0000) GS:ffff8a5376600000(0000) knlGS:0000000000000000
  [13367.705438] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [13367.705995] CR2: 00000000000000b0 CR3: 000000022cca8004 CR4: 00000000003706e0
  [13367.706565] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  [13367.707127] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  [13367.707686] Call Trace:
  [13367.708246]  ? ___slab_alloc+0x395/0x740
  [13367.708820]  ? reada_add_block+0xae/0xee0 [btrfs]
  [13367.709383]  lock_acquire+0xb1/0x480
  [13367.709955]  ? reada_add_block+0xe0/0xee0 [btrfs]
  [13367.710537]  ? reada_add_block+0xae/0xee0 [btrfs]
  [13367.711097]  ? rcu_read_lock_sched_held+0x5d/0x90
  [13367.711659]  ? kmem_cache_alloc_trace+0x8d2/0x990
  [13367.712221]  ? lock_acquired+0x33b/0x470
  [13367.712784]  _raw_spin_lock+0x34/0x80
  [13367.713356]  ? reada_add_block+0xe0/0xee0 [btrfs]
  [13367.713966]  reada_add_block+0xe0/0xee0 [btrfs]
  [13367.714529]  ? btrfs_root_node+0x15/0x1f0 [btrfs]
  [13367.715077]  btrfs_reada_add+0x117/0x170 [btrfs]
  [13367.715620]  scrub_stripe+0x21e/0x10d0 [btrfs]
  [13367.716141]  ? kvm_sched_clock_read+0x5/0x10
  [13367.716657]  ? __lock_acquire+0x41e/0x3970
  [13367.717184]  ? scrub_chunk+0x60/0x140 [btrfs]
  [13367.717697]  ? find_held_lock+0x32/0x90
  [13367.718254]  ? scrub_chunk+0x60/0x140 [btrfs]
  [13367.718773]  ? lock_acquired+0x33b/0x470
  [13367.719278]  ? scrub_chunk+0xcd/0x140 [btrfs]
  [13367.719786]  scrub_chunk+0xcd/0x140 [btrfs]
  [13367.720291]  scrub_enumerate_chunks+0x270/0x5c0 [btrfs]
  [13367.720787]  ? finish_wait+0x90/0x90
  [13367.721281]  btrfs_scrub_dev+0x1ee/0x620 [btrfs]
  [13367.721762]  ? rcu_read_lock_any_held+0x8e/0xb0
  [13367.722235]  ? preempt_count_add+0x49/0xa0
  [13367.722710]  ? __sb_start_write+0x19b/0x290
  [13367.723192]  btrfs_ioctl+0x7f5/0x36f0 [btrfs]
  [13367.723660]  ? __fget_files+0x101/0x1d0
  [13367.724118]  ? find_held_lock+0x32/0x90
  [13367.724559]  ? __fget_files+0x101/0x1d0
  [13367.724982]  ? __x64_sys_ioctl+0x83/0xb0
  [13367.725399]  __x64_sys_ioctl+0x83/0xb0
  [13367.725802]  do_syscall_64+0x33/0x80
  [13367.726188]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [13367.726574] RIP: 0033:0x7fe1df7add87
  [13367.726948] Code: 00 00 00 48 8b 05 09 91 (...)
  [13367.727763] RSP: 002b:00007fe1df6b4d48 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  [13367.728179] RAX: ffffffffffffffda RBX: 000055ce1fb596a0 RCX: 00007fe1df7add87
  [13367.728604] RDX: 000055ce1fb596a0 RSI: 00000000c400941b RDI: 0000000000000003
  [13367.729021] RBP: 0000000000000000 R08: 00007fe1df6b5700 R09: 0000000000000000
  [13367.729431] R10: 00007fe1df6b5700 R11: 0000000000000246 R12: 00007ffd922b07de
  [13367.729842] R13: 00007ffd922b07df R14: 00007fe1df6b4e40 R15: 0000000000802000
  [13367.730275] Modules linked in: btrfs blake2b_generic xor (...)
  [13367.732638] CR2: 00000000000000b0
  [13367.733166] ---[ end trace d298b6805556acd9 ]---

What happens is the following:

1) At reada_find_extent() we don't find any existing readahead extent for
   the metadata extent starting at logical address X;

2) So we proceed to create a new one. We then call btrfs_map_block() to get
   information about which stripes contain extent X;

3) After that we iterate over the stripes and create only one zone for the
   readahead extent - only one because reada_find_zone() returned NULL for
   all iterations except for one, either because a memory allocation failed
   or it couldn't find the block group of the extent (it may have just been
   deleted);

4) We then add the new readahead extent to the readahead extents radix
   tree at fs_info->reada_tree;

5) Then we iterate over each zone of the new readahead extent, and find
   that the device used for that zone no longer exists, because it was
   removed or it was the source device of a device replace operation.
   Since this left 'have_zone' set to 0, after finishing the loop we jump
   to the 'error' label, call kfree() on the new readahead extent and
   return without removing it from the radix tree at fs_info->reada_tree;

6) Any future call to reada_find_extent() for the logical address X will
   find the stale pointer in the readahead extents radix tree, increment
   its reference counter, which can trigger the use-after-free right
   away or return it to the caller reada_add_block() that results in the
   use-after-free of the example trace above.

So fix this by making sure we delete the readahead extent from the radix
tree if we fail to setup zones for it (when 'have_zone = 0').

Fixes: 3194502118 ("btrfs: reada: bypass adding extent when all zone failed")
CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:27 +01:00
Daniel Xu 834a61b212 btrfs: tree-checker: validate number of chunk stripes and parity
commit 85d07fbe09 upstream.

If there's no parity and num_stripes < ncopies, a crafted image can
trigger a division by zero in calc_stripe_length().

The image was generated through fuzzing.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=209587
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:27 +01:00
Josef Bacik 1cedc54ad3 btrfs: cleanup cow block on error
commit 572c83acdc upstream.

In fstest btrfs/064 a transaction abort in __btrfs_cow_block could lead
to a system lockup. It gets stuck trying to write back inodes, and the
write back thread was trying to lock an extent buffer:

  $ cat /proc/2143497/stack
  [<0>] __btrfs_tree_lock+0x108/0x250
  [<0>] lock_extent_buffer_for_io+0x35e/0x3a0
  [<0>] btree_write_cache_pages+0x15a/0x3b0
  [<0>] do_writepages+0x28/0xb0
  [<0>] __writeback_single_inode+0x54/0x5c0
  [<0>] writeback_sb_inodes+0x1e8/0x510
  [<0>] wb_writeback+0xcc/0x440
  [<0>] wb_workfn+0xd7/0x650
  [<0>] process_one_work+0x236/0x560
  [<0>] worker_thread+0x55/0x3c0
  [<0>] kthread+0x13a/0x150
  [<0>] ret_from_fork+0x1f/0x30

This is because we got an error while COWing a block, specifically here

        if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
                ret = btrfs_reloc_cow_block(trans, root, buf, cow);
                if (ret) {
                        btrfs_abort_transaction(trans, ret);
                        return ret;
                }
        }

  [16402.241552] BTRFS: Transaction aborted (error -2)
  [16402.242362] WARNING: CPU: 1 PID: 2563188 at fs/btrfs/ctree.c:1074 __btrfs_cow_block+0x376/0x540
  [16402.249469] CPU: 1 PID: 2563188 Comm: fsstress Not tainted 5.9.0-rc6+ #8
  [16402.249936] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.13.0-2.fc32 04/01/2014
  [16402.250525] RIP: 0010:__btrfs_cow_block+0x376/0x540
  [16402.252417] RSP: 0018:ffff9cca40e578b0 EFLAGS: 00010282
  [16402.252787] RAX: 0000000000000025 RBX: 0000000000000002 RCX: ffff9132bbd19388
  [16402.253278] RDX: 00000000ffffffd8 RSI: 0000000000000027 RDI: ffff9132bbd19380
  [16402.254063] RBP: ffff9132b41a49c0 R08: 0000000000000000 R09: 0000000000000000
  [16402.254887] R10: 0000000000000000 R11: ffff91324758b080 R12: ffff91326ef17ce0
  [16402.255694] R13: ffff91325fc0f000 R14: ffff91326ef176b0 R15: ffff9132815e2000
  [16402.256321] FS:  00007f542c6d7b80(0000) GS:ffff9132bbd00000(0000) knlGS:0000000000000000
  [16402.256973] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  [16402.257374] CR2: 00007f127b83f250 CR3: 0000000133480002 CR4: 0000000000370ee0
  [16402.257867] Call Trace:
  [16402.258072]  btrfs_cow_block+0x109/0x230
  [16402.258356]  btrfs_search_slot+0x530/0x9d0
  [16402.258655]  btrfs_lookup_file_extent+0x37/0x40
  [16402.259155]  __btrfs_drop_extents+0x13c/0xd60
  [16402.259628]  ? btrfs_block_rsv_migrate+0x4f/0xb0
  [16402.259949]  btrfs_replace_file_extents+0x190/0x820
  [16402.260873]  btrfs_clone+0x9ae/0xc00
  [16402.261139]  btrfs_extent_same_range+0x66/0x90
  [16402.261771]  btrfs_remap_file_range+0x353/0x3b1
  [16402.262333]  vfs_dedupe_file_range_one.part.0+0xd5/0x140
  [16402.262821]  vfs_dedupe_file_range+0x189/0x220
  [16402.263150]  do_vfs_ioctl+0x552/0x700
  [16402.263662]  __x64_sys_ioctl+0x62/0xb0
  [16402.264023]  do_syscall_64+0x33/0x40
  [16402.264364]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
  [16402.264862] RIP: 0033:0x7f542c7d15cb
  [16402.266901] RSP: 002b:00007ffd35944ea8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
  [16402.267627] RAX: ffffffffffffffda RBX: 00000000009d1968 RCX: 00007f542c7d15cb
  [16402.268298] RDX: 00000000009d2490 RSI: 00000000c0189436 RDI: 0000000000000003
  [16402.268958] RBP: 00000000009d2520 R08: 0000000000000036 R09: 00000000009d2e64
  [16402.269726] R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000002
  [16402.270659] R13: 000000000001f000 R14: 00000000009d1970 R15: 00000000009d2e80
  [16402.271498] irq event stamp: 0
  [16402.271846] hardirqs last  enabled at (0): [<0000000000000000>] 0x0
  [16402.272497] hardirqs last disabled at (0): [<ffffffff910dbf59>] copy_process+0x6b9/0x1ba0
  [16402.273343] softirqs last  enabled at (0): [<ffffffff910dbf59>] copy_process+0x6b9/0x1ba0
  [16402.273905] softirqs last disabled at (0): [<0000000000000000>] 0x0
  [16402.274338] ---[ end trace 737874a5a41a8236 ]---
  [16402.274669] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry
  [16402.276179] BTRFS info (device dm-9): forced readonly
  [16402.277046] BTRFS: error (device dm-9) in btrfs_replace_file_extents:2723: errno=-2 No such entry
  [16402.278744] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry
  [16402.279968] BTRFS: error (device dm-9) in __btrfs_cow_block:1074: errno=-2 No such entry
  [16402.280582] BTRFS info (device dm-9): balance: ended with status: -30

The problem here is that as soon as we allocate the new block it is
locked and marked dirty in the btree inode.  This means that we could
attempt to writeback this block and need to lock the extent buffer.
However we're not unlocking it here and thus we deadlock.

Fix this by unlocking the cow block if we have any errors inside of
__btrfs_cow_block, and also free it so we do not leak it.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:27 +01:00
Qu Wenruo d3ce2d0fb8 btrfs: tree-checker: fix false alert caused by legacy btrfs root item
commit 1465af12e2 upstream.

Commit 259ee7754b ("btrfs: tree-checker: Add ROOT_ITEM check")
introduced btrfs root item size check, however btrfs root item has two
versions, the legacy one which just ends before generation_v2 member, is
smaller than current btrfs root item size.

This caused btrfs kernel to reject valid but old tree root leaves.

Fix this problem by also allowing legacy root item, since kernel can
already handle them pretty well and upgrade to newer root item format
when needed.

Reported-by: Martin Steigerwald <martin@lichtvoll.de>
Fixes: 259ee7754b ("btrfs: tree-checker: Add ROOT_ITEM check")
CC: stable@vger.kernel.org # 5.4+
Tested-By: Martin Steigerwald <martin@lichtvoll.de>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:27 +01:00
Denis Efremov 4b82b8aba0 btrfs: use kvzalloc() to allocate clone_roots in btrfs_ioctl_send()
commit 8eb2fd0015 upstream.

btrfs_ioctl_send() used open-coded kvzalloc implementation earlier.
The code was accidentally replaced with kzalloc() call [1]. Restore
the original code by using kvzalloc() to allocate sctx->clone_roots.

[1] https://patchwork.kernel.org/patch/9757891/#20529627

Fixes: 818e010bf9 ("btrfs: replace opencoded kvzalloc with the helper")
CC: stable@vger.kernel.org # 4.14+
Signed-off-by: Denis Efremov <efremov@linux.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:26 +01:00
Filipe Manana 6ec4b82fc3 btrfs: send, recompute reference path after orphanization of a directory
commit 9c2b4e0347 upstream.

During an incremental send, when an inode has multiple new references we
might end up emitting rename operations for orphanizations that have a
source path that is no longer valid due to a previous orphanization of
some directory inode. This causes the receiver to fail since it tries
to rename a path that does not exists.

Example reproducer:

  $ cat reproducer.sh
  #!/bin/bash

  mkfs.btrfs -f /dev/sdi >/dev/null
  mount /dev/sdi /mnt/sdi

  touch /mnt/sdi/f1
  touch /mnt/sdi/f2
  mkdir /mnt/sdi/d1
  mkdir /mnt/sdi/d1/d2

  # Filesystem looks like:
  #
  # .                           (ino 256)
  # |----- f1                   (ino 257)
  # |----- f2                   (ino 258)
  # |----- d1/                  (ino 259)
  #        |----- d2/           (ino 260)

  btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap1
  btrfs send -f /tmp/snap1.send /mnt/sdi/snap1

  # Now do a series of changes such that:
  #
  # *) inode 258 has one new hardlink and the previous name changed
  #
  # *) both names conflict with the old names of two other inodes:
  #
  #    1) the new name "d1" conflicts with the old name of inode 259,
  #       under directory inode 256 (root)
  #
  #    2) the new name "d2" conflicts with the old name of inode 260
  #       under directory inode 259
  #
  # *) inodes 259 and 260 now have the old names of inode 258
  #
  # *) inode 257 is now located under inode 260 - an inode with a number
  #    smaller than the inode (258) for which we created a second hard
  #    link and swapped its names with inodes 259 and 260
  #
  ln /mnt/sdi/f2 /mnt/sdi/d1/f2_link
  mv /mnt/sdi/f1 /mnt/sdi/d1/d2/f1

  # Swap d1 and f2.
  mv /mnt/sdi/d1 /mnt/sdi/tmp
  mv /mnt/sdi/f2 /mnt/sdi/d1
  mv /mnt/sdi/tmp /mnt/sdi/f2

  # Swap d2 and f2_link
  mv /mnt/sdi/f2/d2 /mnt/sdi/tmp
  mv /mnt/sdi/f2/f2_link /mnt/sdi/f2/d2
  mv /mnt/sdi/tmp /mnt/sdi/f2/f2_link

  # Filesystem now looks like:
  #
  # .                                (ino 256)
  # |----- d1                        (ino 258)
  # |----- f2/                       (ino 259)
  #        |----- f2_link/           (ino 260)
  #        |       |----- f1         (ino 257)
  #        |
  #        |----- d2                 (ino 258)

  btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap2
  btrfs send -f /tmp/snap2.send -p /mnt/sdi/snap1 /mnt/sdi/snap2

  mkfs.btrfs -f /dev/sdj >/dev/null
  mount /dev/sdj /mnt/sdj

  btrfs receive -f /tmp/snap1.send /mnt/sdj
  btrfs receive -f /tmp/snap2.send /mnt/sdj

  umount /mnt/sdi
  umount /mnt/sdj

When executed the receive of the incremental stream fails:

  $ ./reproducer.sh
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
  At subvol /mnt/sdi/snap1
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
  At subvol /mnt/sdi/snap2
  At subvol snap1
  At snapshot snap2
  ERROR: rename d1/d2 -> o260-6-0 failed: No such file or directory

This happens because:

1) When processing inode 257 we end up computing the name for inode 259
   because it is an ancestor in the send snapshot, and at that point it
   still has its old name, "d1", from the parent snapshot because inode
   259 was not yet processed. We then cache that name, which is valid
   until we start processing inode 259 (or set the progress to 260 after
   processing its references);

2) Later we start processing inode 258 and collecting all its new
   references into the list sctx->new_refs. The first reference in the
   list happens to be the reference for name "d1" while the reference for
   name "d2" is next (the last element of the list).
   We compute the full path "d1/d2" for this second reference and store
   it in the reference (its ->full_path member). The path used for the
   new parent directory was "d1" and not "f2" because inode 259, the
   new parent, was not yet processed;

3) When we start processing the new references at process_recorded_refs()
   we start with the first reference in the list, for the new name "d1".
   Because there is a conflicting inode that was not yet processed, which
   is directory inode 259, we orphanize it, renaming it from "d1" to
   "o259-6-0";

4) Then we start processing the new reference for name "d2", and we
   realize it conflicts with the reference of inode 260 in the parent
   snapshot. So we issue an orphanization operation for inode 260 by
   emitting a rename operation with a destination path of "o260-6-0"
   and a source path of "d1/d2" - this source path is the value we
   stored in the reference earlier at step 2), corresponding to the
   ->full_path member of the reference, however that path is no longer
   valid due to the orphanization of the directory inode 259 in step 3).
   This makes the receiver fail since the path does not exists, it should
   have been "o259-6-0/d2".

Fix this by recomputing the full path of a reference before emitting an
orphanization if we previously orphanized any directory, since that
directory could be a parent in the new path. This is a rare scenario so
keeping it simple and not checking if that previously orphanized directory
is in fact an ancestor of the inode we are trying to orphanize.

A test case for fstests follows soon.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:26 +01:00
Filipe Manana c2dcc9b03b btrfs: send, orphanize first all conflicting inodes when processing references
commit 98272bb77b upstream.

When doing an incremental send it is possible that when processing the new
references for an inode we end up issuing rename or link operations that
have an invalid path, which contains the orphanized name of a directory
before we actually orphanized it, causing the receiver to fail.

The following reproducer triggers such scenario:

  $ cat reproducer.sh
  #!/bin/bash

  mkfs.btrfs -f /dev/sdi >/dev/null
  mount /dev/sdi /mnt/sdi

  touch /mnt/sdi/a
  touch /mnt/sdi/b
  mkdir /mnt/sdi/testdir
  # We want "a" to have a lower inode number then "testdir" (257 vs 259).
  mv /mnt/sdi/a /mnt/sdi/testdir/a

  # Filesystem looks like:
  #
  # .                           (ino 256)
  # |----- testdir/             (ino 259)
  # |          |----- a         (ino 257)
  # |
  # |----- b                    (ino 258)

  btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap1
  btrfs send -f /tmp/snap1.send /mnt/sdi/snap1

  # Now rename 259 to "testdir_2", then change the name of 257 to
  # "testdir" and make it a direct descendant of the root inode (256).
  # Also create a new link for inode 257 with the old name of inode 258.
  # By swapping the names and location of several inodes and create a
  # nasty dependency chain of rename and link operations.
  mv /mnt/sdi/testdir/a /mnt/sdi/a2
  touch /mnt/sdi/testdir/a
  mv /mnt/sdi/b /mnt/sdi/b2
  ln /mnt/sdi/a2 /mnt/sdi/b
  mv /mnt/sdi/testdir /mnt/sdi/testdir_2
  mv /mnt/sdi/a2 /mnt/sdi/testdir

  # Filesystem now looks like:
  #
  # .                            (ino 256)
  # |----- testdir_2/            (ino 259)
  # |          |----- a          (ino 260)
  # |
  # |----- testdir               (ino 257)
  # |----- b                     (ino 257)
  # |----- b2                    (ino 258)

  btrfs subvolume snapshot -r /mnt/sdi /mnt/sdi/snap2
  btrfs send -f /tmp/snap2.send -p /mnt/sdi/snap1 /mnt/sdi/snap2

  mkfs.btrfs -f /dev/sdj >/dev/null
  mount /dev/sdj /mnt/sdj

  btrfs receive -f /tmp/snap1.send /mnt/sdj
  btrfs receive -f /tmp/snap2.send /mnt/sdj

  umount /mnt/sdi
  umount /mnt/sdj

When running the reproducer, the receive of the incremental send stream
fails:

  $ ./reproducer.sh
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
  At subvol /mnt/sdi/snap1
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
  At subvol /mnt/sdi/snap2
  At subvol snap1
  At snapshot snap2
  ERROR: link b -> o259-6-0/a failed: No such file or directory

The problem happens because of the following:

1) Before we start iterating the list of new references for inode 257,
   we generate its current path and store it at @valid_path, done at
   the very beginning of process_recorded_refs(). The generated path
   is "o259-6-0/a", containing the orphanized name for inode 259;

2) Then we iterate over the list of new references, which has the
   references "b" and "testdir" in that specific order;

3) We process reference "b" first, because it is in the list before
   reference "testdir". We then issue a link operation to create
   the new reference "b" using a target path corresponding to the
   content at @valid_path, which corresponds to "o259-6-0/a".
   However we haven't yet orphanized inode 259, its name is still
   "testdir", and not "o259-6-0". The orphanization of 259 did not
   happen yet because we will process the reference named "testdir"
   for inode 257 only in the next iteration of the loop that goes
   over the list of new references.

Fix the issue by having a preliminar iteration over all the new references
at process_recorded_refs(). This iteration is responsible only for doing
the orphanization of other inodes that have and old reference that
conflicts with one of the new references of the inode we are currently
processing. The emission of rename and link operations happen now in the
next iteration of the new references.

A test case for fstests will follow soon.

CC: stable@vger.kernel.org # 4.4+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:26 +01:00
Filipe Manana e1cf034899 btrfs: reschedule if necessary when logging directory items
commit bb56f02f26 upstream.

Logging directories with many entries can take a significant amount of
time, and in some cases monopolize a cpu/core for a long time if the
logging task doesn't happen to block often enough.

Johannes and Lu Fengqi reported test case generic/041 triggering a soft
lockup when the kernel has CONFIG_SOFTLOCKUP_DETECTOR=y. For this test
case we log an inode with 3002 hard links, and because the test removed
one hard link before fsyncing the file, the inode logging causes the
parent directory do be logged as well, which has 6004 directory items to
log (3002 BTRFS_DIR_ITEM_KEY items plus 3002 BTRFS_DIR_INDEX_KEY items),
so it can take a significant amount of time and trigger the soft lockup.

So just make tree-log.c:log_dir_items() reschedule when necessary,
releasing the current search path before doing so and then resume from
where it was before the reschedule.

The stack trace produced when the soft lockup happens is the following:

[10480.277653] watchdog: BUG: soft lockup - CPU#2 stuck for 22s! [xfs_io:28172]
[10480.279418] Modules linked in: dm_thin_pool dm_persistent_data (...)
[10480.284915] irq event stamp: 29646366
[10480.285987] hardirqs last  enabled at (29646365): [<ffffffff85249b66>] __slab_alloc.constprop.0+0x56/0x60
[10480.288482] hardirqs last disabled at (29646366): [<ffffffff8579b00d>] irqentry_enter+0x1d/0x50
[10480.290856] softirqs last  enabled at (4612): [<ffffffff85a00323>] __do_softirq+0x323/0x56c
[10480.293615] softirqs last disabled at (4483): [<ffffffff85800dbf>] asm_call_on_stack+0xf/0x20
[10480.296428] CPU: 2 PID: 28172 Comm: xfs_io Not tainted 5.9.0-rc4-default+ #1248
[10480.298948] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
[10480.302455] RIP: 0010:__slab_alloc.constprop.0+0x19/0x60
[10480.304151] Code: 86 e8 31 75 21 00 66 66 2e 0f 1f 84 00 00 00 (...)
[10480.309558] RSP: 0018:ffffadbe09397a58 EFLAGS: 00000282
[10480.311179] RAX: ffff8a495ab92840 RBX: 0000000000000282 RCX: 0000000000000006
[10480.313242] RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffffffff85249b66
[10480.315260] RBP: ffff8a497d04b740 R08: 0000000000000001 R09: 0000000000000001
[10480.317229] R10: ffff8a497d044800 R11: ffff8a495ab93c40 R12: 0000000000000000
[10480.319169] R13: 0000000000000000 R14: 0000000000000c40 R15: ffffffffc01daf70
[10480.321104] FS:  00007fa1dc5c0e40(0000) GS:ffff8a497da00000(0000) knlGS:0000000000000000
[10480.323559] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[10480.325235] CR2: 00007fa1dc5befb8 CR3: 0000000004f8a006 CR4: 0000000000170ea0
[10480.327259] Call Trace:
[10480.328286]  ? overwrite_item+0x1f0/0x5a0 [btrfs]
[10480.329784]  __kmalloc+0x831/0xa20
[10480.331009]  ? btrfs_get_32+0xb0/0x1d0 [btrfs]
[10480.332464]  overwrite_item+0x1f0/0x5a0 [btrfs]
[10480.333948]  log_dir_items+0x2ee/0x570 [btrfs]
[10480.335413]  log_directory_changes+0x82/0xd0 [btrfs]
[10480.336926]  btrfs_log_inode+0xc9b/0xda0 [btrfs]
[10480.338374]  ? init_once+0x20/0x20 [btrfs]
[10480.339711]  btrfs_log_inode_parent+0x8d3/0xd10 [btrfs]
[10480.341257]  ? dget_parent+0x97/0x2e0
[10480.342480]  btrfs_log_dentry_safe+0x3a/0x50 [btrfs]
[10480.343977]  btrfs_sync_file+0x24b/0x5e0 [btrfs]
[10480.345381]  do_fsync+0x38/0x70
[10480.346483]  __x64_sys_fsync+0x10/0x20
[10480.347703]  do_syscall_64+0x2d/0x70
[10480.348891]  entry_SYSCALL_64_after_hwframe+0x44/0xa9
[10480.350444] RIP: 0033:0x7fa1dc80970b
[10480.351642] Code: 0f 05 48 3d 00 f0 ff ff 77 45 c3 0f 1f 40 00 48 (...)
[10480.356952] RSP: 002b:00007fffb3d081d0 EFLAGS: 00000293 ORIG_RAX: 000000000000004a
[10480.359458] RAX: ffffffffffffffda RBX: 0000562d93d45e40 RCX: 00007fa1dc80970b
[10480.361426] RDX: 0000562d93d44ab0 RSI: 0000562d93d45e60 RDI: 0000000000000003
[10480.363367] RBP: 0000000000000001 R08: 0000000000000000 R09: 00007fa1dc7b2a40
[10480.365317] R10: 0000562d93d0e366 R11: 0000000000000293 R12: 0000000000000001
[10480.367299] R13: 0000562d93d45290 R14: 0000562d93d45e40 R15: 0000562d93d45e60

Link: https://lore.kernel.org/linux-btrfs/20180713090216.GC575@fnst.localdomain/
Reported-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
CC: stable@vger.kernel.org # 4.4+
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:26 +01:00
Anand Jain 223b462744 btrfs: improve device scanning messages
commit 79dae17d8d upstream.

Systems booting without the initramfs seems to scan an unusual kind
of device path (/dev/root). And at a later time, the device is updated
to the correct path. We generally print the process name and PID of the
process scanning the device but we don't capture the same information if
the device path is rescanned with a different pathname.

The current message is too long, so drop the unnecessary UUID and add
process name and PID.

While at this also update the duplicate device warning to include the
process name and PID so the messages are consistent

CC: stable@vger.kernel.org # 4.19+
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=89721
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:26 +01:00
Qu Wenruo c5f2a50912 btrfs: qgroup: fix wrong qgroup metadata reserve for delayed inode
commit b4c5d8fdff upstream.

For delayed inode facility, qgroup metadata is reserved for it, and
later freed.

However we're freeing more bytes than we reserved.
In btrfs_delayed_inode_reserve_metadata():

	num_bytes = btrfs_calc_metadata_size(fs_info, 1);
	...
		ret = btrfs_qgroup_reserve_meta_prealloc(root,
				fs_info->nodesize, true);
		...
		if (!ret) {
			node->bytes_reserved = num_bytes;

But in btrfs_delayed_inode_release_metadata():

	if (qgroup_free)
		btrfs_qgroup_free_meta_prealloc(node->root,
				node->bytes_reserved);
	else
		btrfs_qgroup_convert_reserved_meta(node->root,
				node->bytes_reserved);

This means, we're always releasing more qgroup metadata rsv than we have
reserved.

This won't trigger selftest warning, as btrfs qgroup metadata rsv has
extra protection against cases like quota enabled half-way.

But we still need to fix this problem any way.

This patch will use the same num_bytes for qgroup metadata rsv so we
could handle it correctly.

Fixes: f218ea6c47 ("btrfs: delayed-inode: Remove wrong qgroup meta reservation calls")
CC: stable@vger.kernel.org # 4.19+
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:26 +01:00
Xiang Chen 1e2f16dd61 PM: runtime: Remove link state checks in rpm_get/put_supplier()
commit d12544fb2a upstream.

To support runtime PM for hisi SAS driver (the driver is in directory
drivers/scsi/hisi_sas), we add device link between scsi_device->sdev_gendev
(consumer device) and hisi_hba->dev(supplier device) with flags
DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE.

After runtime suspended consumers and supplier, unload the dirver which
causes a hung.

We found that it called function device_release_driver_internal() to
release the supplier device (hisi_hba->dev), as the device link was
busy, it set the device link state to DL_STATE_SUPPLIER_UNBIND, and
then it called device_release_driver_internal() to release the consumer
device (scsi_device->sdev_gendev).

Then it would try to call pm_runtime_get_sync() to resume the consumer
device, but because consumer-supplier relation existed, it would try
to resume the supplier first, but as the link state was already
DL_STATE_SUPPLIER_UNBIND, so it skipped resuming the supplier and only
resumed the consumer which hanged (it sends IOs to resume scsi_device
while the SAS controller is suspended).

Simple flow is as follows:

device_release_driver_internal -> (supplier device)
    if device_links_busy ->
	device_links_unbind_consumers ->
	    ...
	    WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND)
	    device_release_driver_internal (consumer device)
    pm_runtime_get_sync -> (consumer device)
	...
	__rpm_callback ->
	    rpm_get_suppliers ->
		if link->state == DL_STATE_SUPPLIER_UNBIND -> skip the action of resuming the supplier
		...
    pm_runtime_clean_up_links
    ...

Correct suspend/resume ordering between a supplier device and its consumer
devices (resume the supplier device before resuming consumer devices, and
suspend consumer devices before suspending the supplier device) should be
guaranteed by runtime PM, but the state checks in rpm_get_supplier() and
rpm_put_supplier() break this rule, so remove them.

Signed-off-by: Xiang Chen <chenxiang66@hisilicon.com>
[ rjw: Subject and changelog edits ]
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:26 +01:00
Quinn Tran a0bdb5b163 scsi: qla2xxx: Fix crash on session cleanup with unload
commit 50457dab67 upstream.

On unload, session cleanup prematurely gave the signal for driver unload
path to advance.

Link: https://lore.kernel.org/r/20200929102152.32278-6-njavali@marvell.com
Fixes: 726b854870 ("qla2xxx: Add framework for async fabric discovery")
Cc: stable@vger.kernel.org
Reviewed-by: Himanshu Madhani <himanshu.madhani@oracle.com>
Signed-off-by: Quinn Tran <qutran@marvell.com>
Signed-off-by: Nilesh Javali <njavali@marvell.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:26 +01:00
Helge Deller f0ef0e2299 scsi: mptfusion: Fix null pointer dereferences in mptscsih_remove()
commit 2f4843b172 upstream.

The mptscsih_remove() function triggers a kernel oops if the Scsi_Host
pointer (ioc->sh) is NULL, as can be seen in this syslog:

 ioc0: LSI53C1030 B2: Capabilities={Initiator,Target}
 Begin: Waiting for root file system ...
 scsi host2: error handler thread failed to spawn, error = -4
 mptspi: ioc0: WARNING - Unable to register controller with SCSI subsystem
 Backtrace:
  [<000000001045b7cc>] mptspi_probe+0x248/0x3d0 [mptspi]
  [<0000000040946470>] pci_device_probe+0x1ac/0x2d8
  [<0000000040add668>] really_probe+0x1bc/0x988
  [<0000000040ade704>] driver_probe_device+0x160/0x218
  [<0000000040adee24>] device_driver_attach+0x160/0x188
  [<0000000040adef90>] __driver_attach+0x144/0x320
  [<0000000040ad7c78>] bus_for_each_dev+0xd4/0x158
  [<0000000040adc138>] driver_attach+0x4c/0x80
  [<0000000040adb3ec>] bus_add_driver+0x3e0/0x498
  [<0000000040ae0130>] driver_register+0xf4/0x298
  [<00000000409450c4>] __pci_register_driver+0x78/0xa8
  [<000000000007d248>] mptspi_init+0x18c/0x1c4 [mptspi]

This patch adds the necessary NULL-pointer checks.  Successfully tested on
a HP C8000 parisc workstation with buggy SCSI drives.

Link: https://lore.kernel.org/r/20201022090005.GA9000@ls3530.fritz.box
Cc: <stable@vger.kernel.org>
Signed-off-by: Helge Deller <deller@gmx.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:25 +01:00
Martin Fuzzey 3fc2cbba40 w1: mxc_w1: Fix timeout resolution problem leading to bus error
commit c9723750a6 upstream.

On my platform (i.MX53) bus access sometimes fails with
	w1_search: max_slave_count 64 reached, will continue next search.

The reason is the use of jiffies to implement a 200us timeout in
mxc_w1_ds2_touch_bit().
On some platforms the jiffies timer resolution is insufficient for this.

Fix by replacing jiffies by ktime_get().

For consistency apply the same change to the other use of jiffies in
mxc_w1_ds2_reset_bus().

Fixes: f80b2581a7 ("w1: mxc_w1: Optimize mxc_w1_ds2_touch_bit()")
Cc: stable <stable@vger.kernel.org>
Signed-off-by: Martin Fuzzey <martin.fuzzey@flowbird.group>
Link: https://lore.kernel.org/r/1601455030-6607-1-git-send-email-martin.fuzzey@flowbird.group
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:25 +01:00
Wei Huang a034ea12bd acpi-cpufreq: Honor _PSD table setting on new AMD CPUs
commit 5368512abe upstream.

acpi-cpufreq has a old quirk that overrides the _PSD table supplied by
BIOS on AMD CPUs. However the _PSD table of new AMD CPUs (Family 19h+)
now accurately reports the P-state dependency of CPU cores. Hence this
quirk needs to be fixed in order to support new CPUs' frequency control.

Fixes: acd3162482 ("acpi-cpufreq: Add quirk to disable _PSD usage on all AMD CPUs")
Signed-off-by: Wei Huang <wei.huang2@amd.com>
[ rjw: Subject edit ]
Cc: 3.10+ <stable@vger.kernel.org> # 3.10+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:25 +01:00
Rafael J. Wysocki 7f9d9a007e ACPI: EC: PM: Drop ec_no_wakeup check from acpi_ec_dispatch_gpe()
commit e0e9ce390d upstream.

It turns out that in some cases there are EC events to flush in
acpi_ec_dispatch_gpe() even though the ec_no_wakeup kernel parameter
is set and the EC GPE is disabled while sleeping, so drop the
ec_no_wakeup check that prevents those events from being processed
from acpi_ec_dispatch_gpe().

Reported-by: Todd Brandt <todd.e.brandt@linux.intel.com>
Cc: 5.4+ <stable@vger.kernel.org> # 5.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:25 +01:00
Rafael J. Wysocki 0adf4dbae9 ACPI: EC: PM: Flush EC work unconditionally after wakeup
commit 5e92442bb4 upstream.

Commit 607b9df630 ("ACPI: EC: PM: Avoid flushing EC work when EC
GPE is inactive") has been reported to cause some power button wakeup
events to be missed on some systems, so modify acpi_ec_dispatch_gpe()
to call acpi_ec_flush_work() unconditionally to effectively reverse
the changes made by that commit.

Also note that the problem which prompted commit 607b9df630 is not
reproducible any more on the affected machine.

Fixes: 607b9df630 ("ACPI: EC: PM: Avoid flushing EC work when EC GPE is inactive")
Reported-by: Raymond Tan <raymond.tan@intel.com>
Cc: 5.4+ <stable@vger.kernel.org> # 5.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:25 +01:00
Lukas Wunner e7f52fd6e0 PCI/ACPI: Whitelist hotplug ports for D3 if power managed by ACPI
commit c6e331312e upstream.

Recent laptops with dual AMD GPUs fail to suspend the discrete GPU, thus
causing lockups on system sleep and high power consumption at runtime.
The discrete GPU would normally be suspended to D3cold by turning off
ACPI _PR3 Power Resources of the Root Port above the GPU.

However on affected systems, the Root Port is hotplug-capable and
pci_bridge_d3_possible() only allows hotplug ports to go to D3 if they
belong to a Thunderbolt device or if the Root Port possesses a
"HotPlugSupportInD3" ACPI property.  Neither is the case on affected
laptops.  The reason for whitelisting only specific, known to work
hotplug ports for D3 is that there have been reports of SkyLake Xeon-SP
systems raising Hardware Error NMIs upon suspending their hotplug ports:
https://lore.kernel.org/linux-pci/20170503180426.GA4058@otc-nc-03/

But if a hotplug port is power manageable by ACPI (as can be detected
through presence of Power Resources and corresponding _PS0 and _PS3
methods) then it ought to be safe to suspend it to D3.  To this end,
amend acpi_pci_bridge_d3() to whitelist such ports for D3.

Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1222
Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1252
Link: https://gitlab.freedesktop.org/drm/amd/-/issues/1304
Reported-and-tested-by: Arthur Borsboom <arthurborsboom@gmail.com>
Reported-and-tested-by: matoro <matoro@airmail.cc>
Reported-by: Aaron Zakhrov <aaron.zakhrov@gmail.com>
Reported-by: Michal Rostecki <mrostecki@suse.com>
Reported-by: Shai Coleman <git@shaicoleman.com>
Signed-off-by: Lukas Wunner <lukas@wunner.de>
Acked-by: Alex Deucher <alexander.deucher@amd.com>
Cc: 5.4+ <stable@vger.kernel.org> # 5.4+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:25 +01:00
Jamie Iles 6341984bef ACPI: debug: don't allow debugging when ACPI is disabled
commit 0fada27714 upstream.

If ACPI is disabled then loading the acpi_dbg module will result in the
following splat when lock debugging is enabled.

  DEBUG_LOCKS_WARN_ON(lock->magic != lock)
  WARNING: CPU: 0 PID: 1 at kernel/locking/mutex.c:938 __mutex_lock+0xa10/0x1290
  Kernel panic - not syncing: panic_on_warn set ...
  CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.9.0-rc8+ #103
  Hardware name: linux,dummy-virt (DT)
  Call trace:
   dump_backtrace+0x0/0x4d8
   show_stack+0x34/0x48
   dump_stack+0x174/0x1f8
   panic+0x360/0x7a0
   __warn+0x244/0x2ec
   report_bug+0x240/0x398
   bug_handler+0x50/0xc0
   call_break_hook+0x160/0x1d8
   brk_handler+0x30/0xc0
   do_debug_exception+0x184/0x340
   el1_dbg+0x48/0xb0
   el1_sync_handler+0x170/0x1c8
   el1_sync+0x80/0x100
   __mutex_lock+0xa10/0x1290
   mutex_lock_nested+0x6c/0xc0
   acpi_register_debugger+0x40/0x88
   acpi_aml_init+0xc4/0x114
   do_one_initcall+0x24c/0xb10
   kernel_init_freeable+0x690/0x728
   kernel_init+0x20/0x1e8
   ret_from_fork+0x10/0x18

This is because acpi_debugger.lock has not been initialized as
acpi_debugger_init() is not called when ACPI is disabled.  Fail module
loading to avoid this and any subsequent problems that might arise by
trying to debug AML when ACPI is disabled.

Fixes: 8cfb0cdf07 ("ACPI / debugger: Add IO interface to access debugger functionalities")
Reviewed-by: Hanjun Guo <guohanjun@huawei.com>
Signed-off-by: Jamie Iles <jamie@nuviainc.com>
Cc: 4.10+ <stable@vger.kernel.org> # 4.10+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:25 +01:00
Alex Hung 1a5f62a3c6 ACPI: video: use ACPI backlight for HP 635 Notebook
commit b226faab4e upstream.

The default backlight interface is AMD's radeon_bl0 which does not
work on this system, so use the ACPI backlight interface on it
instead.

BugLink: https://bugs.launchpad.net/bugs/1894667
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Alex Hung <alex.hung@canonical.com>
[ rjw: Changelog edits ]
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:25 +01:00
Ben Hutchings 9578d73814 ACPI / extlog: Check for RDMSR failure
commit 7cecb47f55 upstream.

extlog_init() uses rdmsrl() to read an MSR, which on older CPUs
provokes a error message at boot:

    unchecked MSR access error: RDMSR from 0x179 at rIP: 0xcd047307 (native_read_msr+0x7/0x40)

Use rdmsrl_safe() instead, and return -ENODEV if it fails.

Reported-by: jim@photojim.ca
References: https://bugs.debian.org/971058
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Ben Hutchings <ben@decadent.org.uk>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:24 +01:00
dmitry.torokhov@gmail.com 5e25b44cc2 ACPI: button: fix handling lid state changes when input device closed
commit 21988a8e51 upstream.

The original intent of 84d3f6b764 was to delay evaluating lid state until
all drivers have been loaded, with input device being opened from userspace
serving as a signal for this condition. Let's ensure that state updates
happen even if userspace closed (or in the future inhibited) input device.

Note that if we go through suspend/resume cycle we assume the system has
been fully initialized even if LID input device has not been opened yet.

This has a side-effect of fixing access to input->users outside of
input->mutex protections by the way of eliminating said accesses and using
driver private flag.

Fixes: 84d3f6b764 ("ACPI / button: Delay acpi_lid_initialize_state() until first user space open")
Signed-off-by: Dmitry Torokhov <dmitry.torokhov@gmail.com>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Cc: 4.15+ <stable@vger.kernel.org> # 4.15+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:24 +01:00
Ashish Sangwan c75b77cb9f NFS: fix nfs_path in case of a rename retry
commit 247db73560 upstream.

We are generating incorrect path in case of rename retry because
we are restarting from wrong dentry. We should restart from the
dentry which was received in the call to nfs_path.

CC: stable@vger.kernel.org
Signed-off-by: Ashish Sangwan <ashishsangwan2@gmail.com>
Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:24 +01:00
Jan Kara f8a6a2ed4b fs: Don't invalidate page buffers in block_write_full_page()
commit 6dbf7bb555 upstream.

If block_write_full_page() is called for a page that is beyond current
inode size, it will truncate page buffers for the page and return 0.
This logic has been added in 2.5.62 in commit 81eb69062588 ("fix ext3
BUG due to race with truncate") in history.git tree to fix a problem
with ext3 in data=ordered mode. This particular problem doesn't exist
anymore because ext3 is long gone and ext4 handles ordered data
differently. Also normally buffers are invalidated by truncate code and
there's no need to specially handle this in ->writepage() code.

This invalidation of page buffers in block_write_full_page() is causing
issues to filesystems (e.g. ext4 or ocfs2) when block device is shrunk
under filesystem's hands and metadata buffers get discarded while being
tracked by the journalling layer. Although it is obviously "not
supported" it can cause kernel crashes like:

[ 7986.689400] BUG: unable to handle kernel NULL pointer dereference at
+0000000000000008
[ 7986.697197] PGD 0 P4D 0
[ 7986.699724] Oops: 0002 [#1] SMP PTI
[ 7986.703200] CPU: 4 PID: 203778 Comm: jbd2/dm-3-8 Kdump: loaded Tainted: G
+O     --------- -  - 4.18.0-147.5.0.5.h126.eulerosv2r9.x86_64 #1
[ 7986.716438] Hardware name: Huawei RH2288H V3/BC11HGSA0, BIOS 1.57 08/11/2015
[ 7986.723462] RIP: 0010:jbd2_journal_grab_journal_head+0x1b/0x40 [jbd2]
...
[ 7986.810150] Call Trace:
[ 7986.812595]  __jbd2_journal_insert_checkpoint+0x23/0x70 [jbd2]
[ 7986.818408]  jbd2_journal_commit_transaction+0x155f/0x1b60 [jbd2]
[ 7986.836467]  kjournald2+0xbd/0x270 [jbd2]

which is not great. The crash happens because bh->b_private is suddently
NULL although BH_JBD flag is still set (this is because
block_invalidatepage() cleared BH_Mapped flag and subsequent bh lookup
found buffer without BH_Mapped set, called init_page_buffers() which has
rewritten bh->b_private). So just remove the invalidation in
block_write_full_page().

Note that the buffer cache invalidation when block device changes size
is already careful to avoid similar problems by using
invalidate_mapping_pages() which skips busy buffers so it was only this
odd block_write_full_page() behavior that could tear down bdev buffers
under filesystem's hands.

Reported-by: Ye Bin <yebin10@huawei.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
CC: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:24 +01:00
Hans de Goede 2f3cb993a6 media: uvcvideo: Fix uvc_ctrl_fixup_xu_info() not having any effect
commit 93df48d37c upstream.

uvc_ctrl_add_info() calls uvc_ctrl_get_flags() which will override
the fixed-up flags set by uvc_ctrl_fixup_xu_info().

uvc_ctrl_init_xu_ctrl() already calls uvc_ctrl_get_flags() before
calling uvc_ctrl_add_info(), so the uvc_ctrl_get_flags() call in
uvc_ctrl_add_info() is not necessary for xu ctrls.

This commit moves the uvc_ctrl_get_flags() call for normal controls
from uvc_ctrl_add_info() to uvc_ctrl_init_ctrl(), so that we no longer
call uvc_ctrl_get_flags() twice for xu controls and so that we no longer
override the fixed-up flags set by uvc_ctrl_fixup_xu_info().

This fixes the xu motor controls not working properly on a Logitech
046d:08cc, and presumably also on the other Logitech models which have
a quirk for this in the uvc_ctrl_fixup_xu_info() function.

Cc: stable@vger.kernel.org
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:24 +01:00
Marek Behún 8ac92a5e5f leds: bcm6328, bcm6358: use devres LED registering function
commit ff5c89d444 upstream.

These two drivers do not provide remove method and use devres for
allocation of other resources, yet they use led_classdev_register
instead of the devres variant, devm_led_classdev_register.

Fix this.

Signed-off-by: Marek Behún <marek.behun@nic.cz>
Cc: Álvaro Fernández Rojas <noltari@gmail.com>
Cc: Kevin Cernekee <cernekee@gmail.com>
Cc: Jaedon Shin <jaedon.shin@gmail.com>
Signed-off-by: Pavel Machek <pavel@ucw.cz>
Cc: stable@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:24 +01:00
Krzysztof Kozlowski a908e29705 extcon: ptn5150: Fix usage of atomic GPIO with sleeping GPIO chips
commit 6aaad58c87 upstream.

The driver uses atomic version of gpiod_set_value() without any real
reason.  It is called in a workqueue under mutex so it could sleep
there.  Changing it to "can_sleep" flavor allows to use the driver with
all GPIO chips.

Fixes: 4ed754de2d ("extcon: Add support for ptn5150 extcon driver")
Cc: <stable@vger.kernel.org>
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Reviewed-by: Vijai Kumar K <vijaikumar.kanagarajan@gmail.com>
Signed-off-by: Chanwoo Choi <cw00.choi@samsung.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:24 +01:00
Krzysztof Kozlowski 004fb028f2 spi: sprd: Release DMA channel also on probe deferral
commit 687a2e7618 upstream.

If dma_request_chan() for TX channel fails with EPROBE_DEFER, the RX
channel would not be released and on next re-probe it would be requested
second time.

Fixes: 386119bc7b ("spi: sprd: spi: sprd: Add DMA mode support")
Cc: <stable@vger.kernel.org>
Signed-off-by: Krzysztof Kozlowski <krzk@kernel.org>
Acked-by: Chunyan Zhang <zhang.lyra@gmail.com>
Link: https://lore.kernel.org/r/20200901152713.18629-1-krzk@kernel.org
Signed-off-by: Mark Brown <broonie@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:23 +01:00
Kim Phillips d789e1c5b1 perf/x86/amd/ibs: Fix raw sample data accumulation
commit 36e1be8ada upstream.

Neither IbsBrTarget nor OPDATA4 are populated in IBS Fetch mode.
Don't accumulate them into raw sample user data in that case.

Also, in Fetch mode, add saving the IBS Fetch Control Extended MSR.

Technically, there is an ABI change here with respect to the IBS raw
sample data format, but I don't see any perf driver version information
being included in perf.data file headers, but, existing users can detect
whether the size of the sample record has reduced by 8 bytes to
determine whether the IBS driver has this fix.

Fixes: 904cb3677f ("perf/x86/amd/ibs: Update IBS MSRs and feature definitions")
Reported-by: Stephane Eranian <stephane.eranian@google.com>
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200908214740.18097-6-kim.phillips@amd.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:23 +01:00
Kim Phillips 2e2a324641 perf/x86/amd/ibs: Don't include randomized bits in get_ibs_op_count()
commit 680d696350 upstream.

get_ibs_op_count() adds hardware's current count (IbsOpCurCnt) bits
to its count regardless of hardware's valid status.

According to the PPR for AMD Family 17h Model 31h B0 55803 Rev 0.54,
if the counter rolls over, valid status is set, and the lower 7 bits
of IbsOpCurCnt are randomized by hardware.

Don't include those bits in the driver's event count.

Fixes: 8b1e13638d ("perf/x86-ibs: Fix usage of IBS op current count")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://bugzilla.kernel.org/show_bug.cgi?id=206537
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:23 +01:00
Kan Liang f9a48ff999 perf/x86/intel: Fix Ice Lake event constraint table
commit 010cb00265 upstream.

An error occues when sampling non-PEBS INST_RETIRED.PREC_DIST(0x01c0)
event.

  perf record -e cpu/event=0xc0,umask=0x01/ -- sleep 1
  Error:
  The sys_perf_event_open() syscall returned with 22 (Invalid argument)
  for event (cpu/event=0xc0,umask=0x01/).
  /bin/dmesg | grep -i perf may provide additional information.

The idxmsk64 of the event is set to 0. The event never be successfully
scheduled.

The event should be limit to the fixed counter 0.

Fixes: 6017608936 ("perf/x86/intel: Add Icelake support")
Reported-by: Yi, Ammy <ammy.yi@intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20200928134726.13090-1-kan.liang@linux.intel.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:23 +01:00
Andy Lutomirski 3674b0445b selftests/x86/fsgsbase: Test PTRACE_PEEKUSER for GSBASE with invalid LDT GS
commit 1b9abd1755 upstream.

This tests commit:

  8ab49526b5 ("x86/fsgsbase/64: Fix NULL deref in 86_fsgsbase_read_task")

Unpatched kernels will OOPS.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/c618ae86d1f757e01b1a8e79869f553cb88acf9a.1598461151.git.luto@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:23 +01:00
Jann Horn 2d1c482277 seccomp: Make duplicate listener detection non-racy
commit dfe719fef0 upstream.

Currently, init_listener() tries to prevent adding a filter with
SECCOMP_FILTER_FLAG_NEW_LISTENER if one of the existing filters already
has a listener. However, this check happens without holding any lock that
would prevent another thread from concurrently installing a new filter
(potentially with a listener) on top of the ones we already have.

Theoretically, this is also a data race: The plain load from
current->seccomp.filter can race with concurrent writes to the same
location.

Fix it by moving the check into the region that holds the siglock to guard
against concurrent TSYNC.

(The "Fixes" tag points to the commit that introduced the theoretical
data race; concurrent installation of another filter with TSYNC only
became possible later, in commit 51891498f2 ("seccomp: allow TSYNC and
USER_NOTIF together").)

Fixes: 6a21cc50f0 ("seccomp: add a return code to trap to userspace")
Reviewed-by: Tycho Andersen <tycho@tycho.pizza>
Signed-off-by: Jann Horn <jannh@google.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20201005014401.490175-1-jannh@google.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:23 +01:00
Raul E Rangel 470c8c409e mmc: sdhci-acpi: AMDI0040: Set SDHCI_QUIRK2_PRESET_VALUE_BROKEN
commit f23cc3ba49 upstream.

This change fixes HS400 tuning for devices with invalid presets.

SDHCI presets are not currently used for eMMC HS/HS200/HS400, but are
used for DDR52. The HS400 retuning sequence is:

    HS400->DDR52->HS->HS200->Perform Tuning->HS->HS400

This means that when HS400 tuning happens, we transition through DDR52
for a very brief period. This causes presets to be enabled
unintentionally and stay enabled when transitioning back to HS200 or
HS400. Some firmware has invalid presets, so we end up with driver
strengths that can cause I/O problems.

Fixes: 34597a3f60 ("mmc: sdhci-acpi: Add support for ACPI HID of AMD Controller with HS400")
Signed-off-by: Raul E Rangel <rrangel@chromium.org>
Acked-by: Adrian Hunter <adrian.hunter@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200928154718.1.Icc21d4b2f354e83e26e57e270dc952f5fe0b0a40@changeid
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:23 +01:00
Adrian Hunter 3f56e94b6f mmc: sdhci: Add LTR support for some Intel BYT based controllers
commit 46f4a69ec8 upstream.

Some Intel BYT based host controllers support the setting of latency
tolerance.  Accordingly, implement the PM QoS ->set_latency_tolerance()
callback.  The raw register values are also exposed via debugfs.

Intel EHL controllers require this support.

Signed-off-by: Adrian Hunter <adrian.hunter@intel.com>
Fixes: cb3a7d4a0a ("mmc: sdhci-pci: Add support for Intel EHL")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20200818104508.7149-1-adrian.hunter@intel.com
Signed-off-by: Ulf Hansson <ulf.hansson@linaro.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:23 +01:00
Song Liu b91d4797b3 md/raid5: fix oops during stripe resizing
commit b44c018cdf upstream.

KoWei reported crash during raid5 reshape:

[ 1032.252932] Oops: 0002 [#1] SMP PTI
[...]
[ 1032.252943] RIP: 0010:memcpy_erms+0x6/0x10
[...]
[ 1032.252947] RSP: 0018:ffffba1ac0c03b78 EFLAGS: 00010286
[ 1032.252949] RAX: 0000784ac0000000 RBX: ffff91bec3d09740 RCX: 0000000000001000
[ 1032.252951] RDX: 0000000000001000 RSI: ffff91be6781c000 RDI: 0000784ac0000000
[ 1032.252953] RBP: ffffba1ac0c03bd8 R08: 0000000000001000 R09: ffffba1ac0c03bf8
[ 1032.252954] R10: 0000000000000000 R11: 0000000000000000 R12: ffffba1ac0c03bf8
[ 1032.252955] R13: 0000000000001000 R14: 0000000000000000 R15: 0000000000000000
[ 1032.252958] FS:  0000000000000000(0000) GS:ffff91becf500000(0000) knlGS:0000000000000000
[ 1032.252959] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1032.252961] CR2: 0000784ac0000000 CR3: 000000031780a002 CR4: 00000000001606e0
[ 1032.252962] Call Trace:
[ 1032.252969]  ? async_memcpy+0x179/0x1000 [async_memcpy]
[ 1032.252977]  ? raid5_release_stripe+0x8e/0x110 [raid456]
[ 1032.252982]  handle_stripe_expansion+0x15a/0x1f0 [raid456]
[ 1032.252988]  handle_stripe+0x592/0x1270 [raid456]
[ 1032.252993]  handle_active_stripes.isra.0+0x3cb/0x5a0 [raid456]
[ 1032.252999]  raid5d+0x35c/0x550 [raid456]
[ 1032.253002]  ? schedule+0x42/0xb0
[ 1032.253006]  ? schedule_timeout+0x10e/0x160
[ 1032.253011]  md_thread+0x97/0x160
[ 1032.253015]  ? wait_woken+0x80/0x80
[ 1032.253019]  kthread+0x104/0x140
[ 1032.253022]  ? md_start_sync+0x60/0x60
[ 1032.253024]  ? kthread_park+0x90/0x90
[ 1032.253027]  ret_from_fork+0x35/0x40

This is because cache_size_mutex was unlocked too early in resize_stripes,
which races with grow_one_stripe() that grow_one_stripe() allocates a
stripe with wrong pool_size.

Fix this issue by unlocking cache_size_mutex after updating pool_size.

Cc: <stable@vger.kernel.org> # v4.4+
Reported-by: KoWei Sung <winders@amazon.com>
Signed-off-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05 11:43:22 +01:00
Chao Leng a7aa5d578f nvme-rdma: fix crash when connect rejected
[ Upstream commit 43efdb8e87 ]

A crash can happened when a connect is rejected.   The host establishes
the connection after received ConnectReply, and then continues to send
the fabrics Connect command.  If the controller does not receive the
ReadyToUse capsule, host may receive a ConnectReject reply.

Call nvme_rdma_destroy_queue_ib after the host received the
RDMA_CM_EVENT_REJECTED event.  Then when the fabrics Connect command
times out, nvme_rdma_timeout calls nvme_rdma_complete_rq to fail the
request.  A crash happenes due to use after free in
nvme_rdma_complete_rq.

nvme_rdma_destroy_queue_ib is redundant when handling the
RDMA_CM_EVENT_REJECTED event as nvme_rdma_destroy_queue_ib is already
called in connection failure handler.

Signed-off-by: Chao Leng <lengchao@huawei.com>
Reviewed-by: Sagi Grimberg <sagi@grimberg.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-05 11:43:22 +01:00
Douglas Gilbert c421c08208 sgl_alloc_order: fix memory leak
[ Upstream commit b2a182a402 ]

sgl_alloc_order() can fail when 'length' is large on a memory
constrained system. When order > 0 it will potentially be
making several multi-page allocations with the later ones more
likely to fail than the earlier one. So it is important that
sgl_alloc_order() frees up any pages it has obtained before
returning NULL. In the case when order > 0 it calls the wrong
free page function and leaks. In testing the leak was
sufficient to bring down my 8 GiB laptop with OOM.

Reviewed-by: Bart Van Assche <bvanassche@acm.org>
Signed-off-by: Douglas Gilbert <dgilbert@interlog.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-05 11:43:22 +01:00
Xiubo Li 742fd49cf8 nbd: make the config put is called before the notifying the waiter
[ Upstream commit 87aac3a80a ]

There has one race case for ceph's rbd-nbd tool. When do mapping
it may fail with EBUSY from ioctl(nbd, NBD_DO_IT), but actually
the nbd device has already unmaped.

It dues to if just after the wake_up(), the recv_work() is scheduled
out and defers calling the nbd_config_put(), though the map process
has exited the "nbd->recv_task" is not cleared.

Signed-off-by: Xiubo Li <xiubli@redhat.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-05 11:43:22 +01:00