1
0
Fork 0
alistair23-linux/drivers/media/dvb-frontends/ts2020.c

322 lines
7.5 KiB
C

/*
Montage Technology TS2020 - Silicon Tuner driver
Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com>
Copyright (C) 2009-2012 TurboSight.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include "dvb_frontend.h"
#include "ts2020.h"
#define TS2020_XTAL_FREQ 27000 /* in kHz */
struct ts2020_state {
u8 tuner_address;
struct i2c_adapter *i2c;
};
static int ts2020_readreg(struct dvb_frontend *fe, u8 reg)
{
struct ts2020_state *state = fe->tuner_priv;
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {
{
.addr = state->tuner_address,
.flags = 0,
.buf = b0,
.len = 1
}, {
.addr = state->tuner_address,
.flags = I2C_M_RD,
.buf = b1,
.len = 1
}
};
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
ret = i2c_transfer(state->i2c, msg, 2);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (ret != 2) {
printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret);
return ret;
}
return b1[0];
}
static int ts2020_writereg(struct dvb_frontend *fe, int reg, int data)
{
struct ts2020_state *state = fe->tuner_priv;
u8 buf[] = { reg, data };
struct i2c_msg msg = { .addr = state->tuner_address,
.flags = 0, .buf = buf, .len = 2 };
int err;
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 1);
err = i2c_transfer(state->i2c, &msg, 1);
if (fe->ops.i2c_gate_ctrl)
fe->ops.i2c_gate_ctrl(fe, 0);
if (err != 1) {
printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x,"
" value == 0x%02x)\n", __func__, err, reg, data);
return -EREMOTEIO;
}
return 0;
}
static int ts2020_init(struct dvb_frontend *fe)
{
ts2020_writereg(fe, 0x42, 0x73);
ts2020_writereg(fe, 0x05, 0x01);
ts2020_writereg(fe, 0x62, 0xf5);
return 0;
}
static int ts2020_get_frequency(struct dvb_frontend *fe, u32 *frequency)
{
u16 ndiv, div4;
div4 = (ts2020_readreg(fe, 0x10) & 0x10) >> 4;
ndiv = ts2020_readreg(fe, 0x01);
ndiv &= 0x0f;
ndiv <<= 8;
ndiv |= ts2020_readreg(fe, 0x02);
/* actual tuned frequency, i.e. including the offset */
*frequency = (ndiv - ndiv % 2 + 1024) * TS2020_XTAL_FREQ
/ (6 + 8) / (div4 + 1) / 2;
return 0;
}
static int ts2020_set_params(struct dvb_frontend *fe)
{
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
u8 mlpf, mlpf_new, mlpf_max, mlpf_min, nlpf;
u16 value, ndiv;
u32 srate = 0, f3db;
ts2020_init(fe);
/* unknown */
ts2020_writereg(fe, 0x07, 0x02);
ts2020_writereg(fe, 0x10, 0x00);
ts2020_writereg(fe, 0x60, 0x79);
ts2020_writereg(fe, 0x08, 0x01);
ts2020_writereg(fe, 0x00, 0x01);
/* calculate and set freq divider */
if (c->frequency < 1146000) {
ts2020_writereg(fe, 0x10, 0x11);
ndiv = ((c->frequency * (6 + 8) * 4) +
(TS2020_XTAL_FREQ / 2)) /
TS2020_XTAL_FREQ - 1024;
} else {
ts2020_writereg(fe, 0x10, 0x01);
ndiv = ((c->frequency * (6 + 8) * 2) +
(TS2020_XTAL_FREQ / 2)) /
TS2020_XTAL_FREQ - 1024;
}
ts2020_writereg(fe, 0x01, (ndiv & 0x0f00) >> 8);
ts2020_writereg(fe, 0x02, ndiv & 0x00ff);
/* set pll */
ts2020_writereg(fe, 0x03, 0x06);
ts2020_writereg(fe, 0x51, 0x0f);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x10);
ts2020_writereg(fe, 0x50, 0x00);
msleep(5);
/* unknown */
ts2020_writereg(fe, 0x51, 0x17);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x08);
ts2020_writereg(fe, 0x50, 0x00);
msleep(5);
value = ts2020_readreg(fe, 0x3d);
value &= 0x0f;
if ((value > 4) && (value < 15)) {
value -= 3;
if (value < 4)
value = 4;
value = ((value << 3) | 0x01) & 0x79;
}
ts2020_writereg(fe, 0x60, value);
ts2020_writereg(fe, 0x51, 0x17);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x08);
ts2020_writereg(fe, 0x50, 0x00);
/* set low-pass filter period */
ts2020_writereg(fe, 0x04, 0x2e);
ts2020_writereg(fe, 0x51, 0x1b);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x04);
ts2020_writereg(fe, 0x50, 0x00);
msleep(5);
srate = c->symbol_rate / 1000;
f3db = (srate << 2) / 5 + 2000;
if (srate < 5000)
f3db += 3000;
if (f3db < 7000)
f3db = 7000;
if (f3db > 40000)
f3db = 40000;
/* set low-pass filter baseband */
value = ts2020_readreg(fe, 0x26);
mlpf = 0x2e * 207 / ((value << 1) + 151);
mlpf_max = mlpf * 135 / 100;
mlpf_min = mlpf * 78 / 100;
if (mlpf_max > 63)
mlpf_max = 63;
/* rounded to the closest integer */
nlpf = ((mlpf * f3db * 1000) + (2766 * TS2020_XTAL_FREQ / 2))
/ (2766 * TS2020_XTAL_FREQ);
if (nlpf > 23)
nlpf = 23;
if (nlpf < 1)
nlpf = 1;
/* rounded to the closest integer */
mlpf_new = ((TS2020_XTAL_FREQ * nlpf * 2766) +
(1000 * f3db / 2)) / (1000 * f3db);
if (mlpf_new < mlpf_min) {
nlpf++;
mlpf_new = ((TS2020_XTAL_FREQ * nlpf * 2766) +
(1000 * f3db / 2)) / (1000 * f3db);
}
if (mlpf_new > mlpf_max)
mlpf_new = mlpf_max;
ts2020_writereg(fe, 0x04, mlpf_new);
ts2020_writereg(fe, 0x06, nlpf);
ts2020_writereg(fe, 0x51, 0x1b);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x04);
ts2020_writereg(fe, 0x50, 0x00);
msleep(5);
/* unknown */
ts2020_writereg(fe, 0x51, 0x1e);
ts2020_writereg(fe, 0x51, 0x1f);
ts2020_writereg(fe, 0x50, 0x01);
ts2020_writereg(fe, 0x50, 0x00);
msleep(60);
return 0;
}
static int ts2020_release(struct dvb_frontend *fe)
{
struct ts2020_state *state = fe->tuner_priv;
fe->tuner_priv = NULL;
kfree(state);
return 0;
}
static int ts2020_get_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
u16 sig_reading, sig_strength;
u8 rfgain, bbgain;
rfgain = ts2020_readreg(fe, 0x3d) & 0x1f;
bbgain = ts2020_readreg(fe, 0x21) & 0x1f;
if (rfgain > 15)
rfgain = 15;
if (bbgain > 13)
bbgain = 13;
sig_reading = rfgain * 2 + bbgain * 3;
sig_strength = 40 + (64 - sig_reading) * 50 / 64 ;
/* cook the value to be suitable for szap-s2 human readable output */
*signal_strength = sig_strength * 1000;
return 0;
}
static struct dvb_tuner_ops ts2020_ops = {
.info = {
.name = "Montage Technology TS2020 Silicon Tuner",
.frequency_min = 950000,
.frequency_max = 2150000,
},
.init = ts2020_init,
.release = ts2020_release,
.set_params = ts2020_set_params,
.get_frequency = ts2020_get_frequency,
.get_rf_strength = ts2020_get_signal_strength
};
struct dvb_frontend *ts2020_attach(struct dvb_frontend *fe,
const struct ts2020_config *config, struct i2c_adapter *i2c)
{
struct ts2020_state *state = NULL;
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct ts2020_state), GFP_KERNEL);
if (!state)
return NULL;
/* setup the state */
state->tuner_address = config->tuner_address;
state->i2c = i2c;
fe->tuner_priv = state;
fe->ops.tuner_ops = ts2020_ops;
fe->ops.read_signal_strength = fe->ops.tuner_ops.get_rf_strength;
return fe;
}
EXPORT_SYMBOL(ts2020_attach);
MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>");
MODULE_DESCRIPTION("Montage Technology TS2020 - Silicon tuner driver module");
MODULE_LICENSE("GPL");