openpilot/selfdrive/modeld/thneed/thneed.cc

596 lines
19 KiB
C++

#include "selfdrive/modeld/thneed/thneed.h"
#include <dlfcn.h>
#include <errno.h>
#include <string.h>
#include <sys/mman.h>
#include <cassert>
#include <map>
#include <string>
#include "selfdrive/common/clutil.h"
#include "selfdrive/common/timing.h"
//#define RUN_DISASSEMBLER
//#define RUN_OPTIMIZER
Thneed *g_thneed = NULL;
int g_fd = -1;
map<pair<cl_kernel, int>, string> g_args;
map<pair<cl_kernel, int>, int> g_args_size;
map<cl_program, string> g_program_source;
void hexdump(uint32_t *d, int len) {
assert((len%4) == 0);
printf(" dumping %p len 0x%x\n", d, len);
for (int i = 0; i < len/4; i++) {
if (i != 0 && (i%0x10) == 0) printf("\n");
printf("%8x ", d[i]);
}
printf("\n");
}
// *********** ioctl interceptor ***********
extern "C" {
int (*my_ioctl)(int filedes, unsigned long request, void *argp) = NULL;
#undef ioctl
int ioctl(int filedes, unsigned long request, void *argp) {
request &= 0xFFFFFFFF; // needed on QCOM2
if (my_ioctl == NULL) my_ioctl = reinterpret_cast<decltype(my_ioctl)>(dlsym(RTLD_NEXT, "ioctl"));
Thneed *thneed = g_thneed;
// save the fd
if (request == IOCTL_KGSL_GPUOBJ_ALLOC) g_fd = filedes;
// note that this runs always, even without a thneed object
if (request == IOCTL_KGSL_DRAWCTXT_CREATE) {
struct kgsl_drawctxt_create *create = (struct kgsl_drawctxt_create *)argp;
create->flags &= ~KGSL_CONTEXT_PRIORITY_MASK;
create->flags |= 1 << KGSL_CONTEXT_PRIORITY_SHIFT; // priority from 1-15, 1 is max priority
printf("IOCTL_KGSL_DRAWCTXT_CREATE: creating context with flags 0x%x\n", create->flags);
}
if (thneed != NULL) {
if (request == IOCTL_KGSL_GPU_COMMAND) {
struct kgsl_gpu_command *cmd = (struct kgsl_gpu_command *)argp;
if (thneed->record & THNEED_RECORD) {
thneed->timestamp = cmd->timestamp;
thneed->context_id = cmd->context_id;
thneed->cmds.push_back(unique_ptr<CachedCommand>(new CachedCommand(thneed, cmd)));
}
if (thneed->record & THNEED_DEBUG) {
printf("IOCTL_KGSL_GPU_COMMAND(%2zu): flags: 0x%lx context_id: %u timestamp: %u numcmds: %d numobjs: %d\n",
thneed->cmds.size(),
cmd->flags,
cmd->context_id, cmd->timestamp, cmd->numcmds, cmd->numobjs);
}
} else if (request == IOCTL_KGSL_GPUOBJ_SYNC) {
struct kgsl_gpuobj_sync *cmd = (struct kgsl_gpuobj_sync *)argp;
struct kgsl_gpuobj_sync_obj *objs = (struct kgsl_gpuobj_sync_obj *)(cmd->objs);
if (thneed->record & THNEED_DEBUG) {
printf("IOCTL_KGSL_GPUOBJ_SYNC count:%d ", cmd->count);
for (int i = 0; i < cmd->count; i++) {
printf(" -- offset:0x%lx len:0x%lx id:%d op:%d ", objs[i].offset, objs[i].length, objs[i].id, objs[i].op);
}
printf("\n");
}
if (thneed->record & THNEED_RECORD) {
thneed->cmds.push_back(unique_ptr<CachedSync>(new
CachedSync(thneed, string((char *)objs, sizeof(struct kgsl_gpuobj_sync_obj)*cmd->count))));
}
} else if (request == IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID) {
struct kgsl_device_waittimestamp_ctxtid *cmd = (struct kgsl_device_waittimestamp_ctxtid *)argp;
if (thneed->record & THNEED_DEBUG) {
printf("IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID: context_id: %d timestamp: %d timeout: %d\n",
cmd->context_id, cmd->timestamp, cmd->timeout);
}
} else if (request == IOCTL_KGSL_SETPROPERTY) {
if (thneed->record & THNEED_DEBUG) {
struct kgsl_device_getproperty *prop = (struct kgsl_device_getproperty *)argp;
printf("IOCTL_KGSL_SETPROPERTY: 0x%x sizebytes:%zu\n", prop->type, prop->sizebytes);
if (thneed->record & THNEED_VERBOSE_DEBUG) {
hexdump((uint32_t *)prop->value, prop->sizebytes);
if (prop->type == KGSL_PROP_PWR_CONSTRAINT) {
struct kgsl_device_constraint *constraint = (struct kgsl_device_constraint *)prop->value;
hexdump((uint32_t *)constraint->data, constraint->size);
}
}
}
} else if (request == IOCTL_KGSL_DRAWCTXT_CREATE || request == IOCTL_KGSL_DRAWCTXT_DESTROY) {
// this happens
} else if (request == IOCTL_KGSL_GPUOBJ_ALLOC || request == IOCTL_KGSL_GPUOBJ_FREE) {
// this happens
} else {
if (thneed->record & THNEED_DEBUG) {
printf("other ioctl %lx\n", request);
}
}
}
int ret = my_ioctl(filedes, request, argp);
if (ret != 0) printf("ioctl returned %d with errno %d\n", ret, errno);
return ret;
}
}
// *********** GPUMalloc ***********
GPUMalloc::GPUMalloc(int size, int fd) {
struct kgsl_gpuobj_alloc alloc;
memset(&alloc, 0, sizeof(alloc));
alloc.size = size;
alloc.flags = 0x10000a00;
ioctl(fd, IOCTL_KGSL_GPUOBJ_ALLOC, &alloc);
void *addr = mmap64(NULL, alloc.mmapsize, 0x3, 0x1, fd, alloc.id*0x1000);
assert(addr != MAP_FAILED);
base = (uint64_t)addr;
remaining = size;
}
GPUMalloc::~GPUMalloc() {
// TODO: free the GPU malloced area
}
void *GPUMalloc::alloc(int size) {
void *ret = (void*)base;
size = (size+0xff) & (~0xFF);
assert(size <= remaining);
remaining -= size;
base += size;
return ret;
}
// *********** CachedSync, at the ioctl layer ***********
void CachedSync::exec() {
struct kgsl_gpuobj_sync cmd;
cmd.objs = (uint64_t)data.data();
cmd.obj_len = data.length();
cmd.count = data.length() / sizeof(struct kgsl_gpuobj_sync_obj);
int ret = ioctl(thneed->fd, IOCTL_KGSL_GPUOBJ_SYNC, &cmd);
assert(ret == 0);
}
// *********** CachedCommand, at the ioctl layer ***********
CachedCommand::CachedCommand(Thneed *lthneed, struct kgsl_gpu_command *cmd) {
thneed = lthneed;
assert(cmd->numsyncs == 0);
memcpy(&cache, cmd, sizeof(cache));
if (cmd->numcmds > 0) {
cmds = make_unique<struct kgsl_command_object[]>(cmd->numcmds);
memcpy(cmds.get(), (void *)cmd->cmdlist, sizeof(struct kgsl_command_object)*cmd->numcmds);
cache.cmdlist = (uint64_t)cmds.get();
for (int i = 0; i < cmd->numcmds; i++) {
void *nn = thneed->ram->alloc(cmds[i].size);
memcpy(nn, (void*)cmds[i].gpuaddr, cmds[i].size);
cmds[i].gpuaddr = (uint64_t)nn;
}
}
if (cmd->numobjs > 0) {
objs = make_unique<struct kgsl_command_object[]>(cmd->numobjs);
memcpy(objs.get(), (void *)cmd->objlist, sizeof(struct kgsl_command_object)*cmd->numobjs);
cache.objlist = (uint64_t)objs.get();
for (int i = 0; i < cmd->numobjs; i++) {
void *nn = thneed->ram->alloc(objs[i].size);
memset(nn, 0, objs[i].size);
objs[i].gpuaddr = (uint64_t)nn;
}
}
kq = thneed->ckq;
thneed->ckq.clear();
}
void CachedCommand::exec() {
cache.timestamp = ++thneed->timestamp;
int ret = ioctl(thneed->fd, IOCTL_KGSL_GPU_COMMAND, &cache);
if (thneed->record & THNEED_DEBUG) printf("CachedCommand::exec got %d\n", ret);
if (thneed->record & THNEED_VERBOSE_DEBUG) {
for (auto &it : kq) {
it->debug_print(false);
}
#ifdef RUN_DISASSEMBLER
// assuming 2 commands
disassemble(0);
disassemble(1);
#endif
}
assert(ret == 0);
}
// *********** Thneed ***********
Thneed::Thneed(bool do_clinit) {
if (do_clinit) clinit();
assert(g_fd != -1);
fd = g_fd;
ram = make_unique<GPUMalloc>(0x80000, fd);
record = THNEED_RECORD;
timestamp = -1;
g_thneed = this;
}
void Thneed::stop() {
find_inputs_outputs();
printf("Thneed::stop: recorded %lu commands\n", cmds.size());
record = 0;
}
void Thneed::find_inputs_outputs() {
cl_int err;
if (inputs.size() > 0) return;
// save the global inputs/outputs
for (auto &k : kq) {
for (int i = 0; i < k->num_args; i++) {
if (k->name == "zero_pad_image_float" && k->arg_names[i] == "input") {
cl_mem aa = *(cl_mem*)(k->args[i].data());
size_t sz;
clGetMemObjectInfo(aa, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
input_sizes.push_back(sz);
void *ret = clEnqueueMapBuffer(command_queue, aa, CL_TRUE, CL_MAP_WRITE, 0, sz, 0, NULL, NULL, &err);
assert(err == CL_SUCCESS);
inputs.push_back(ret);
}
if (k->name == "image2d_to_buffer_float" && k->arg_names[i] == "output") {
output = *(cl_mem*)(k->args[i].data());
}
}
}
}
void Thneed::copy_inputs(float **finputs) {
//cl_int ret;
for (int idx = 0; idx < inputs.size(); ++idx) {
if (record & THNEED_DEBUG) printf("copying %lu -- %p -> %p\n", input_sizes[idx], finputs[idx], inputs[idx]);
memcpy(inputs[idx], finputs[idx], input_sizes[idx]);
}
}
void Thneed::copy_output(float *foutput) {
if (output != NULL) {
size_t sz;
clGetMemObjectInfo(output, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
if (record & THNEED_DEBUG) printf("copying %lu for output %p -> %p\n", sz, output, foutput);
clEnqueueReadBuffer(command_queue, output, CL_TRUE, 0, sz, foutput, 0, NULL, NULL);
} else {
printf("CAUTION: model output is NULL, does it have no outputs?\n");
}
}
void Thneed::wait() {
struct kgsl_device_waittimestamp_ctxtid wait;
wait.context_id = context_id;
wait.timestamp = timestamp;
wait.timeout = -1;
uint64_t tb = nanos_since_boot();
int wret = ioctl(fd, IOCTL_KGSL_DEVICE_WAITTIMESTAMP_CTXTID, &wait);
uint64_t te = nanos_since_boot();
if (record & THNEED_DEBUG) printf("wait %d after %lu us\n", wret, (te-tb)/1000);
}
void Thneed::execute(float **finputs, float *foutput, bool slow) {
uint64_t tb, te;
if (record & THNEED_DEBUG) tb = nanos_since_boot();
// ****** copy inputs
copy_inputs(finputs);
// ****** set power constraint
int ret;
struct kgsl_device_constraint_pwrlevel pwrlevel;
pwrlevel.level = KGSL_CONSTRAINT_PWR_MAX;
struct kgsl_device_constraint constraint;
constraint.type = KGSL_CONSTRAINT_PWRLEVEL;
constraint.context_id = context_id;
constraint.data = (void*)&pwrlevel;
constraint.size = sizeof(pwrlevel);
struct kgsl_device_getproperty prop;
prop.type = KGSL_PROP_PWR_CONSTRAINT;
prop.value = (void*)&constraint;
prop.sizebytes = sizeof(constraint);
ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop);
assert(ret == 0);
// ****** run commands
int i = 0;
for (auto &it : cmds) {
++i;
if (record & THNEED_DEBUG) printf("run %2d @ %7lu us: ", i, (nanos_since_boot()-tb)/1000);
it->exec();
if ((i == cmds.size()) || slow) wait();
}
// ****** copy outputs
copy_output(foutput);
// ****** unset power constraint
constraint.type = KGSL_CONSTRAINT_NONE;
constraint.data = NULL;
constraint.size = 0;
ret = ioctl(fd, IOCTL_KGSL_SETPROPERTY, &prop);
assert(ret == 0);
if (record & THNEED_DEBUG) {
te = nanos_since_boot();
printf("model exec in %lu us\n", (te-tb)/1000);
}
}
void Thneed::clinit() {
device_id = cl_get_device_id(CL_DEVICE_TYPE_DEFAULT);
context = CL_CHECK_ERR(clCreateContext(NULL, 1, &device_id, NULL, NULL, &err));
//cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, CL_QUEUE_PROFILING_ENABLE, 0};
cl_command_queue_properties props[3] = {CL_QUEUE_PROPERTIES, 0, 0};
command_queue = CL_CHECK_ERR(clCreateCommandQueueWithProperties(context, device_id, props, &err));
printf("Thneed::clinit done\n");
}
cl_int Thneed::clexec() {
printf("Thneed::clexec: running %lu queued kernels\n", kq.size());
for (auto &k : kq) {
if (record & THNEED_RECORD) ckq.push_back(k);
cl_int ret = k->exec();
assert(ret == CL_SUCCESS);
}
return clFinish(command_queue);
}
// *********** OpenCL interceptor ***********
cl_int thneed_clSetKernelArg(cl_kernel kernel, cl_uint arg_index, size_t arg_size, const void *arg_value) {
g_args_size[make_pair(kernel, arg_index)] = arg_size;
if (arg_value != NULL) {
g_args[make_pair(kernel, arg_index)] = string((char*)arg_value, arg_size);
} else {
g_args[make_pair(kernel, arg_index)] = string("");
}
cl_int ret = clSetKernelArg(kernel, arg_index, arg_size, arg_value);
return ret;
}
cl_int thneed_clEnqueueNDRangeKernel(cl_command_queue command_queue,
cl_kernel kernel,
cl_uint work_dim,
const size_t *global_work_offset,
const size_t *global_work_size,
const size_t *local_work_size,
cl_uint num_events_in_wait_list,
const cl_event *event_wait_list,
cl_event *event) {
Thneed *thneed = g_thneed;
// SNPE doesn't use these
assert(num_events_in_wait_list == 0);
assert(global_work_offset == NULL);
assert(event_wait_list == NULL);
cl_int ret = 0;
if (thneed != NULL && thneed->record & THNEED_RECORD) {
if (thneed->context == NULL) {
thneed->command_queue = command_queue;
clGetKernelInfo(kernel, CL_KERNEL_CONTEXT, sizeof(thneed->context), &thneed->context, NULL);
clGetContextInfo(thneed->context, CL_CONTEXT_DEVICES, sizeof(thneed->device_id), &thneed->device_id, NULL);
}
// if we are recording, we don't actually enqueue the kernel
thneed->kq.push_back(unique_ptr<CLQueuedKernel>(new CLQueuedKernel(thneed, kernel, work_dim, global_work_size, local_work_size)));
*event = NULL;
} else {
ret = clEnqueueNDRangeKernel(command_queue, kernel, work_dim,
global_work_offset, global_work_size, local_work_size,
num_events_in_wait_list, event_wait_list, event);
}
return ret;
}
cl_int thneed_clFinish(cl_command_queue command_queue) {
Thneed *thneed = g_thneed;
if (thneed != NULL && thneed->record & THNEED_RECORD) {
#ifdef RUN_OPTIMIZER
thneed->optimize();
#endif
return thneed->clexec();
} else {
return clFinish(command_queue);
}
}
cl_program thneed_clCreateProgramWithSource(cl_context context, cl_uint count, const char **strings, const size_t *lengths, cl_int *errcode_ret) {
assert(count == 1);
cl_program ret = clCreateProgramWithSource(context, count, strings, lengths, errcode_ret);
g_program_source[ret] = strings[0];
return ret;
}
void *dlsym(void *handle, const char *symbol) {
#if defined(QCOM) || defined(QCOM2)
void *(*my_dlsym)(void *handle, const char *symbol) = (void *(*)(void *handle, const char *symbol))((uintptr_t)dlopen + DLSYM_OFFSET);
#else
#error "Unsupported platform for thneed"
#endif
if (memcmp("REAL_", symbol, 5) == 0) {
return my_dlsym(handle, symbol+5);
} else if (strcmp("clFinish", symbol) == 0) {
return (void*)thneed_clFinish;
} else if (strcmp("clEnqueueNDRangeKernel", symbol) == 0) {
return (void*)thneed_clEnqueueNDRangeKernel;
} else if (strcmp("clSetKernelArg", symbol) == 0) {
return (void*)thneed_clSetKernelArg;
} else if (strcmp("clCreateProgramWithSource", symbol) == 0) {
return (void*)thneed_clCreateProgramWithSource;
} else {
return my_dlsym(handle, symbol);
}
}
// *********** CLQueuedKernel ***********
CLQueuedKernel::CLQueuedKernel(Thneed *lthneed,
cl_kernel _kernel,
cl_uint _work_dim,
const size_t *_global_work_size,
const size_t *_local_work_size) {
thneed = lthneed;
kernel = _kernel;
work_dim = _work_dim;
assert(work_dim <= 3);
for (int i = 0; i < work_dim; i++) {
global_work_size[i] = _global_work_size[i];
local_work_size[i] = _local_work_size[i];
}
char _name[0x100];
clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME, sizeof(_name), _name, NULL);
name = string(_name);
clGetKernelInfo(kernel, CL_KERNEL_NUM_ARGS, sizeof(num_args), &num_args, NULL);
// get args
for (int i = 0; i < num_args; i++) {
char arg_name[0x100];
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
arg_names.push_back(string(arg_name));
clGetKernelArgInfo(kernel, i, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_name), arg_name, NULL);
arg_types.push_back(string(arg_name));
args.push_back(g_args[make_pair(kernel, i)]);
args_size.push_back(g_args_size[make_pair(kernel, i)]);
}
// get program
clGetKernelInfo(kernel, CL_KERNEL_PROGRAM, sizeof(program), &program, NULL);
}
int CLQueuedKernel::get_arg_num(const char *search_arg_name) {
for (int i = 0; i < num_args; i++) {
if (arg_names[i] == search_arg_name) return i;
}
printf("failed to find %s in %s\n", search_arg_name, name.c_str());
assert(false);
}
cl_int CLQueuedKernel::exec() {
if (kernel == NULL) {
kernel = clCreateKernel(program, name.c_str(), NULL);
arg_names.clear();
arg_types.clear();
for (int j = 0; j < num_args; j++) {
char arg_name[0x100];
clGetKernelArgInfo(kernel, j, CL_KERNEL_ARG_NAME, sizeof(arg_name), arg_name, NULL);
arg_names.push_back(string(arg_name));
clGetKernelArgInfo(kernel, j, CL_KERNEL_ARG_TYPE_NAME, sizeof(arg_name), arg_name, NULL);
arg_types.push_back(string(arg_name));
cl_int ret;
if (args[j].size() != 0) {
assert(args[j].size() == args_size[j]);
ret = thneed_clSetKernelArg(kernel, j, args[j].size(), args[j].data());
} else {
ret = thneed_clSetKernelArg(kernel, j, args_size[j], NULL);
}
assert(ret == CL_SUCCESS);
}
}
if (thneed->record & THNEED_DEBUG) {
debug_print(thneed->record & THNEED_VERBOSE_DEBUG);
}
return clEnqueueNDRangeKernel(thneed->command_queue,
kernel, work_dim, NULL, global_work_size, local_work_size, 0, NULL, NULL);
}
void CLQueuedKernel::debug_print(bool verbose) {
printf("%p %56s -- ", kernel, name.c_str());
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", global_work_size[i]);
}
printf(" -- ");
for (int i = 0; i < work_dim; i++) {
printf("%4zu ", local_work_size[i]);
}
printf("\n");
if (verbose) {
for (int i = 0; i < num_args; i++) {
string arg = args[i];
printf(" %s %s", arg_types[i].c_str(), arg_names[i].c_str());
void *arg_value = (void*)arg.data();
int arg_size = arg.size();
if (arg_size == 0) {
printf(" (size) %d", args_size[i]);
} else if (arg_size == 1) {
printf(" = %d", *((char*)arg_value));
} else if (arg_size == 2) {
printf(" = %d", *((short*)arg_value));
} else if (arg_size == 4) {
if (arg_types[i] == "float") {
printf(" = %f", *((float*)arg_value));
} else {
printf(" = %d", *((int*)arg_value));
}
} else if (arg_size == 8) {
cl_mem val = (cl_mem)(*((uintptr_t*)arg_value));
printf(" = %p", val);
if (val != NULL) {
if (arg_types[i] == "image2d_t" || arg_types[i] == "image1d_t") {
cl_image_format format;
size_t width, height, depth, array_size, row_pitch, slice_pitch;
cl_mem buf;
clGetImageInfo(val, CL_IMAGE_FORMAT, sizeof(format), &format, NULL);
assert(format.image_channel_order == CL_RGBA);
assert(format.image_channel_data_type == CL_HALF_FLOAT);
clGetImageInfo(val, CL_IMAGE_WIDTH, sizeof(width), &width, NULL);
clGetImageInfo(val, CL_IMAGE_HEIGHT, sizeof(height), &height, NULL);
clGetImageInfo(val, CL_IMAGE_ROW_PITCH, sizeof(row_pitch), &row_pitch, NULL);
clGetImageInfo(val, CL_IMAGE_DEPTH, sizeof(depth), &depth, NULL);
clGetImageInfo(val, CL_IMAGE_ARRAY_SIZE, sizeof(array_size), &array_size, NULL);
clGetImageInfo(val, CL_IMAGE_SLICE_PITCH, sizeof(slice_pitch), &slice_pitch, NULL);
assert(depth == 0);
assert(array_size == 0);
assert(slice_pitch == 0);
clGetImageInfo(val, CL_IMAGE_BUFFER, sizeof(buf), &buf, NULL);
size_t sz;
clGetMemObjectInfo(buf, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
printf(" image %zu x %zu rp %zu @ %p buffer %zu", width, height, row_pitch, buf, sz);
} else {
size_t sz;
clGetMemObjectInfo(val, CL_MEM_SIZE, sizeof(sz), &sz, NULL);
printf(" buffer %zu", sz);
}
}
}
printf("\n");
}
}
}