openpilot/selfdrive/controls/lib/lane_planner.py

96 lines
3.4 KiB
Python

from common.numpy_fast import interp
import numpy as np
from selfdrive.hardware import EON, TICI
from cereal import log
TRAJECTORY_SIZE = 33
# camera offset is meters from center car to camera
if EON:
CAMERA_OFFSET = 0.06
PATH_OFFSET = 0.0
elif TICI:
CAMERA_OFFSET = -0.04
PATH_OFFSET = -0.04
else:
CAMERA_OFFSET = 0.0
PATH_OFFSET = 0.0
class LanePlanner:
def __init__(self):
self.ll_t = np.zeros((TRAJECTORY_SIZE,))
self.ll_x = np.zeros((TRAJECTORY_SIZE,))
self.lll_y = np.zeros((TRAJECTORY_SIZE,))
self.rll_y = np.zeros((TRAJECTORY_SIZE,))
self.lane_width_estimate = 3.7
self.lane_width_certainty = 1.0
self.lane_width = 3.7
self.lll_prob = 0.
self.rll_prob = 0.
self.d_prob = 0.
self.lll_std = 0.
self.rll_std = 0.
self.l_lane_change_prob = 0.
self.r_lane_change_prob = 0.
def parse_model(self, md):
if len(md.laneLines) == 4 and len(md.laneLines[0].t) == TRAJECTORY_SIZE:
self.ll_t = (np.array(md.laneLines[1].t) + np.array(md.laneLines[2].t))/2
# left and right ll x is the same
self.ll_x = md.laneLines[1].x
# only offset left and right lane lines; offsetting path does not make sense
self.lll_y = np.array(md.laneLines[1].y) - CAMERA_OFFSET
self.rll_y = np.array(md.laneLines[2].y) - CAMERA_OFFSET
self.lll_prob = md.laneLineProbs[1]
self.rll_prob = md.laneLineProbs[2]
self.lll_std = md.laneLineStds[1]
self.rll_std = md.laneLineStds[2]
if len(md.meta.desireState):
self.l_lane_change_prob = md.meta.desireState[log.LateralPlan.Desire.laneChangeLeft]
self.r_lane_change_prob = md.meta.desireState[log.LateralPlan.Desire.laneChangeRight]
def get_d_path(self, v_ego, path_t, path_xyz):
# Reduce reliance on lanelines that are too far apart or
# will be in a few seconds
path_xyz[:,1] -= PATH_OFFSET
l_prob, r_prob = self.lll_prob, self.rll_prob
width_pts = self.rll_y - self.lll_y
prob_mods = []
for t_check in [0.0, 1.5, 3.0]:
width_at_t = interp(t_check * (v_ego + 7), self.ll_x, width_pts)
prob_mods.append(interp(width_at_t, [4.0, 5.0], [1.0, 0.0]))
mod = min(prob_mods)
l_prob *= mod
r_prob *= mod
# Reduce reliance on uncertain lanelines
l_std_mod = interp(self.lll_std, [.15, .3], [1.0, 0.0])
r_std_mod = interp(self.rll_std, [.15, .3], [1.0, 0.0])
l_prob *= l_std_mod
r_prob *= r_std_mod
# Find current lanewidth
self.lane_width_certainty += 0.05 * (l_prob * r_prob - self.lane_width_certainty)
current_lane_width = abs(self.rll_y[0] - self.lll_y[0])
self.lane_width_estimate += 0.005 * (current_lane_width - self.lane_width_estimate)
speed_lane_width = interp(v_ego, [0., 31.], [2.8, 3.5])
self.lane_width = self.lane_width_certainty * self.lane_width_estimate + \
(1 - self.lane_width_certainty) * speed_lane_width
clipped_lane_width = min(4.0, self.lane_width)
path_from_left_lane = self.lll_y + clipped_lane_width / 2.0
path_from_right_lane = self.rll_y - clipped_lane_width / 2.0
self.d_prob = l_prob + r_prob - l_prob * r_prob
lane_path_y = (l_prob * path_from_left_lane + r_prob * path_from_right_lane) / (l_prob + r_prob + 0.0001)
lane_path_y_interp = np.interp(path_t, self.ll_t, lane_path_y)
path_xyz[:,1] = self.d_prob * lane_path_y_interp + (1.0 - self.d_prob) * path_xyz[:,1]
return path_xyz