Add error checking to 3DS loader

pull/1149/head
Andrew Tribick 2021-10-29 22:48:09 +02:00 committed by ajtribick
parent 71bfec795c
commit f3e5444003
2 changed files with 315 additions and 257 deletions

View File

@ -130,12 +130,12 @@ class M3DScene
M3DScene() = default;
~M3DScene();
M3DModel* getModel(uint32_t) const;
uint32_t getModelCount() const;
M3DModel* getModel(std::uint32_t) const;
std::uint32_t getModelCount() const;
void addModel(M3DModel*);
M3DMaterial* getMaterial(uint32_t) const;
uint32_t getMaterialCount() const;
M3DMaterial* getMaterial(std::uint32_t) const;
std::uint32_t getMaterialCount() const;
void addMaterial(M3DMaterial*);
M3DColor getBackgroundColor() const;

View File

@ -7,90 +7,94 @@
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
#include <cstddef>
#include <cstdint>
#include <fstream>
#include <iostream>
#include <memory>
#include <string>
#include <Eigen/Core>
#include <fmt/ostream.h>
#include "celutil/bytes.h"
#include "celutil/debug.h"
#include "3dschunk.h"
#include "3dsmodel.h"
#include "3dsread.h"
namespace
{
constexpr std::int32_t READ_FAILURE = -1;
constexpr std::int32_t UNKNOWN_CHUNK = -2;
template<typename T>
using ProcessChunkFunc = bool (*)(std::istream &, std::uint16_t, std::int32_t, T*);
using ProcessChunkFunc = std::int32_t (*)(std::istream &, std::uint16_t, std::int32_t, T*);
std::int32_t readInt(std::istream& in)
bool readInt(std::istream& in, std::int32_t& value)
{
std::int32_t ret;
in.read((char *) &ret, sizeof(std::int32_t));
LE_TO_CPU_INT32(ret, ret);
return ret;
in.read(reinterpret_cast<char*>(&value), sizeof(std::int32_t));
if (!in.good()) { return false; }
LE_TO_CPU_INT32(value, value);
return true;
}
std::int16_t readShort(std::istream& in)
bool readShort(std::istream& in, std::int16_t& value)
{
std::int16_t ret;
in.read((char *) &ret, sizeof(std::int16_t));
LE_TO_CPU_INT16(ret, ret);
return ret;
in.read(reinterpret_cast<char*>(&value), sizeof(std::int16_t));
if (!in.good()) { return false; }
LE_TO_CPU_INT16(value, value);
return true;
}
std::uint16_t readUshort(std::istream& in)
bool readUshort(std::istream& in, std::uint16_t& value)
{
std::uint16_t ret;
in.read((char *) &ret, sizeof(std::uint16_t));
LE_TO_CPU_INT16(ret, ret);
return ret;
in.read(reinterpret_cast<char*>(&value), sizeof(std::uint16_t));
if (!in.good()) { return false; }
LE_TO_CPU_INT16(value, value);
return true;
}
float readFloat(std::istream& in)
bool readFloat(std::istream& in, float& value)
{
float f;
in.read((char*) &f, sizeof(float));
LE_TO_CPU_FLOAT(f, f);
return f;
in.read(reinterpret_cast<char*>(&value), sizeof(float));
if (!in.good()) { return false; }
LE_TO_CPU_FLOAT(value, value);
return true;
}
char readChar(std::istream& in)
bool readUchar(std::istream& in, unsigned char& value)
{
char c;
in.read(&c, 1);
return c;
in.get(c);
if (!in.good()) { return false; }
value = static_cast<unsigned char>(c);
return true;
}
std::string readString(std::istream& in)
std::int32_t readString(std::istream& in, std::string& value)
{
char s[1024];
int maxLength = sizeof(s);
constexpr std::size_t maxLength = 1024;
char s[maxLength];
for (int count = 0; count < maxLength; count++)
for (std::size_t count = 0; count < maxLength; count++)
{
in.read(s + count, 1);
if (!in.good()) { return READ_FAILURE; }
if (s[count] == '\0')
break;
{
value = s;
return count + 1;
}
}
return std::string(s);
}
void skipBytes(std::istream& in, int count)
{
char c;
while (count-- > 0)
in.get(c);
return READ_FAILURE;
}
@ -99,285 +103,325 @@ std::int32_t read3DSChunk(std::istream& in,
ProcessChunkFunc<T> chunkFunc,
T* obj)
{
std::uint16_t chunkType = readUshort(in);
std::int32_t chunkSize = readInt(in);
std::uint16_t chunkType;
if (!readUshort(in, chunkType)) { return READ_FAILURE; }
std::int32_t chunkSize;
if (!readInt(in, chunkSize) || chunkSize < 6) { return READ_FAILURE; }
std::int32_t contentSize = chunkSize - 6;
bool chunkWasRead = chunkFunc(in, chunkType, contentSize, obj);
if (!chunkWasRead)
std::int32_t processedSize = chunkFunc(in, chunkType, contentSize, obj);
switch (processedSize)
{
skipBytes(in, contentSize);
case READ_FAILURE:
return READ_FAILURE;
case UNKNOWN_CHUNK:
in.ignore(contentSize);
return in.good() ? chunkSize : READ_FAILURE;
default:
if (processedSize != contentSize)
{
fmt::print(std::clog, "Chunk type {:04x}, expected {} bytes but read {}\n", chunkType, contentSize, processedSize);
return READ_FAILURE;
}
return chunkSize;
}
return chunkSize;
}
template<typename T>
int read3DSChunks(std::istream& in,
int nBytes,
ProcessChunkFunc<T> chunkFunc,
T* obj)
std::int32_t read3DSChunks(std::istream& in,
std::int32_t nBytes,
ProcessChunkFunc<T> chunkFunc,
T* obj)
{
int bytesRead = 0;
std::int32_t bytesRead = 0;
while (bytesRead < nBytes)
bytesRead += read3DSChunk(in, chunkFunc, obj);
{
std::int32_t chunkSize = read3DSChunk(in, chunkFunc, obj);
if (chunkSize < 0) {
fmt::print(std::clog, "Failed to read 3DS chunk\n");
return READ_FAILURE;
}
bytesRead += chunkSize;
}
if (bytesRead != nBytes)
std::cout << "Expected " << nBytes << " bytes but read " << bytesRead << '\n';
{
fmt::print(std::clog, "Multiple chunks, expected {} bytes but read {}\n", nBytes, bytesRead);
return READ_FAILURE;
}
return bytesRead;
}
M3DColor readColor(std::istream& in/*, int nBytes*/)
std::int32_t readColor(std::istream& in, M3DColor& color)
{
auto r = (unsigned char) readChar(in);
auto g = (unsigned char) readChar(in);
auto b = (unsigned char) readChar(in);
unsigned char r, g, b;
if (!readUchar(in, r) || !readUchar(in, g) || !readUchar(in, b)) { return READ_FAILURE; }
return {(float) r / 255.0f,
(float) g / 255.0f,
(float) b / 255.0f};
color = {static_cast<float>(r) / 255.0f,
static_cast<float>(g) / 255.0f,
static_cast<float>(b) / 255.0f};
return 3;
}
M3DColor readFloatColor(std::istream& in/*, int nBytes*/)
std::int32_t readFloatColor(std::istream& in, M3DColor& color)
{
float r = readFloat(in);
float g = readFloat(in);
float b = readFloat(in);
float r, g, b;
if (!readFloat(in, r) || !readFloat(in, g) || !readFloat(in, b)) { return READ_FAILURE; }
return {(float) r / 255.0f,
(float) g / 255.0f,
(float) b / 255.0f};
color = { r, g, b };
return static_cast<std::int32_t>(3 * sizeof(float));
}
Eigen::Matrix4f readMeshMatrix(std::istream& in/*, int nBytes*/)
std::int32_t readMeshMatrix(std::istream& in, Eigen::Matrix4f& m)
{
float m00 = readFloat(in);
float m01 = readFloat(in);
float m02 = readFloat(in);
float m10 = readFloat(in);
float m11 = readFloat(in);
float m12 = readFloat(in);
float m20 = readFloat(in);
float m21 = readFloat(in);
float m22 = readFloat(in);
float m30 = readFloat(in);
float m31 = readFloat(in);
float m32 = readFloat(in);
#if 0
cout << m00 << " " << m01 << " " << m02 << '\n';
cout << m10 << " " << m11 << " " << m12 << '\n';
cout << m20 << " " << m21 << " " << m22 << '\n';
cout << m30 << " " << m31 << " " << m32 << '\n';
#endif
Eigen::Matrix4f m;
m << m00, m01, m02, 0,
m10, m11, m12, 0,
m20, m21, m22, 0,
m30, m31, m32, 1;
return m;
}
void readPointArray(std::istream& in, M3DTriangleMesh* triMesh)
{
std::uint16_t nPoints = readUshort(in);
for (int i = 0; i < (int) nPoints; i++)
float elements[12];
for (std::size_t i = 0; i < 12; ++i)
{
float x = readFloat(in);
float y = readFloat(in);
float z = readFloat(in);
if (!readFloat(in, elements[i])) { return READ_FAILURE; }
}
m << elements[0], elements[1], elements[2], 0,
elements[3], elements[4], elements[5], 0,
elements[6], elements[7], elements[8], 0,
elements[9], elements[10], elements[11], 1;
return static_cast<std::int32_t>(12 * sizeof(float));
}
std::int32_t readPointArray(std::istream& in, M3DTriangleMesh* triMesh)
{
std::uint16_t nPoints;
if (!readUshort(in, nPoints)) { return READ_FAILURE; }
std::int32_t bytesRead = static_cast<int>(sizeof(nPoints));
for (int i = 0; i < static_cast<int>(nPoints); i++)
{
float x, y, z;
if (!readFloat(in, x) || !readFloat(in, y) || !readFloat(in, z)) { return READ_FAILURE; }
bytesRead += static_cast<int>(3 * sizeof(float));
triMesh->addVertex(Eigen::Vector3f(x, y, z));
}
return bytesRead;
}
void readTextureCoordArray(std::istream& in, M3DTriangleMesh* triMesh)
std::int32_t readTextureCoordArray(std::istream& in, M3DTriangleMesh* triMesh)
{
std::uint16_t nPoints = readUshort(in);
std::int32_t bytesRead = 0;
for (int i = 0; i < (int) nPoints; i++)
std::uint16_t nPoints;
if (!readUshort(in, nPoints)) { return READ_FAILURE; }
bytesRead += static_cast<int>(sizeof(nPoints));
for (int i = 0; i < static_cast<int>(nPoints); i++)
{
float u = readFloat(in);
float v = readFloat(in);
float u, v;
if (!readFloat(in, u) || !readFloat(in, v)) { return READ_FAILURE; }
bytesRead += static_cast<int>(2 * sizeof(float));
triMesh->addTexCoord(Eigen::Vector2f(u, -v));
}
return bytesRead;
}
bool processFaceArrayChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t /*contentSize*/,
M3DTriangleMesh* triMesh)
std::int32_t processFaceArrayChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t /*contentSize*/,
M3DTriangleMesh* triMesh)
{
std::int32_t bytesRead = 0;
std::uint16_t nFaces;
M3DMeshMaterialGroup* matGroup;
std::unique_ptr<M3DMeshMaterialGroup> matGroup;
switch (chunkType)
{
case M3DCHUNK_MESH_MATERIAL_GROUP:
matGroup = new M3DMeshMaterialGroup();
matGroup = std::make_unique<M3DMeshMaterialGroup>();
matGroup->materialName = readString(in);
nFaces = readUshort(in);
bytesRead = readString(in, matGroup->materialName);
if (bytesRead == READ_FAILURE || !readUshort(in, nFaces)) { return READ_FAILURE; }
bytesRead += static_cast<int>(sizeof(nFaces));
for (std::uint16_t i = 0; i < nFaces; i++)
{
std::uint16_t faceIndex = readUshort(in);
std::uint16_t faceIndex;
if (!readUshort(in, faceIndex)) { return READ_FAILURE; }
bytesRead += static_cast<int>(sizeof(faceIndex));
matGroup->faces.push_back(faceIndex);
}
triMesh->addMeshMaterialGroup(matGroup);
triMesh->addMeshMaterialGroup(matGroup.release());
return bytesRead;
return true;
case M3DCHUNK_MESH_SMOOTH_GROUP:
nFaces = triMesh->getFaceCount();
for (std::uint16_t i = 0; i < nFaces; i++)
{
auto groups = (std::uint32_t) readInt(in);
triMesh->addSmoothingGroups(groups);
std::int32_t groups;
if (!readInt(in, groups) || groups < 0) { return READ_FAILURE; }
bytesRead += static_cast<int>(sizeof(groups));
triMesh->addSmoothingGroups(static_cast<std::uint32_t>(groups));
}
return true;
return bytesRead;
default:
return UNKNOWN_CHUNK;
}
return false;
}
void readFaceArray(std::istream& in, M3DTriangleMesh* triMesh, std::int32_t contentSize)
std::int32_t readFaceArray(std::istream& in, M3DTriangleMesh* triMesh, std::int32_t contentSize)
{
std::uint16_t nFaces = readUshort(in);
std::uint16_t nFaces;
if (!readUshort(in, nFaces)) { return READ_FAILURE; }
std::int32_t bytesRead = static_cast<int>(sizeof(nFaces));
for (int i = 0; i < (int) nFaces; i++)
for (int i = 0; i < static_cast<int>(nFaces); i++)
{
std::uint16_t v0 = readUshort(in);
std::uint16_t v1 = readUshort(in);
std::uint16_t v2 = readUshort(in);
/*uint16_t flags = */ readUshort(in);
std::uint16_t v0, v1, v2, flags;
if (!readUshort(in, v0) || !readUshort(in, v1) || !readUshort(in, v2) || !readUshort(in, flags))
{
return READ_FAILURE;
}
bytesRead += static_cast<int>(4 * sizeof(std::uint16_t));
triMesh->addFace(v0, v1, v2);
}
std::int32_t bytesLeft = contentSize - (8 * nFaces + 2);
if (bytesLeft > 0)
if (bytesRead > contentSize) { return READ_FAILURE; }
if (bytesRead < contentSize)
{
read3DSChunks(in,
bytesLeft,
processFaceArrayChunk,
triMesh);
std::int32_t trailingSize = read3DSChunks(in,
contentSize - bytesRead,
processFaceArrayChunk,
triMesh);
bytesRead += trailingSize;
}
return bytesRead;
}
bool processTriMeshChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DTriangleMesh* triMesh)
std::int32_t processTriMeshChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DTriangleMesh* triMesh)
{
switch (chunkType)
{
case M3DCHUNK_POINT_ARRAY:
readPointArray(in, triMesh);
return true;
return readPointArray(in, triMesh);
case M3DCHUNK_MESH_TEXTURE_COORDS:
readTextureCoordArray(in, triMesh);
return true;
return readTextureCoordArray(in, triMesh);
case M3DCHUNK_FACE_ARRAY:
readFaceArray(in, triMesh, contentSize);
return true;
return readFaceArray(in, triMesh, contentSize);
case M3DCHUNK_MESH_MATRIX:
triMesh->setMatrix(readMeshMatrix(in/*, contentSize*/));
return true;
{
Eigen::Matrix4f matrix;
std::int32_t bytesRead = readMeshMatrix(in, matrix);
if (bytesRead < 0) { return READ_FAILURE; }
triMesh->setMatrix(matrix);
return bytesRead;
}
default:
return UNKNOWN_CHUNK;
}
return false;
}
bool processModelChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DModel* model)
std::int32_t processModelChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DModel* model)
{
if (chunkType == M3DCHUNK_TRIANGLE_MESH)
{
auto* triMesh = new M3DTriangleMesh();
read3DSChunks(in, contentSize, processTriMeshChunk, triMesh);
model->addTriMesh(triMesh);
return true;
auto triMesh = std::make_unique<M3DTriangleMesh>();
std::int32_t bytesRead = read3DSChunks(in, contentSize, processTriMeshChunk, triMesh.get());
if (bytesRead == READ_FAILURE) { return READ_FAILURE; }
model->addTriMesh(triMesh.release());
return bytesRead;
}
return false;
return UNKNOWN_CHUNK;
}
bool processColorChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t /*contentSize*/,
M3DColor* color)
std::int32_t processColorChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t /*contentSize*/,
M3DColor* color)
{
switch (chunkType)
{
case M3DCHUNK_COLOR_24:
*color = readColor(in/*, contentSize*/);
return true;
return readColor(in, *color);
case M3DCHUNK_COLOR_FLOAT:
*color = readFloatColor(in/*, contentSize*/);
return true;
return readFloatColor(in, *color);
default:
return UNKNOWN_CHUNK;
}
return false;
}
static bool processPercentageChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t /*contentSize*/,
float* percent)
std::int32_t processPercentageChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t /*contentSize*/,
float* percent)
{
switch (chunkType)
{
case M3DCHUNK_INT_PERCENTAGE:
*percent = readShort(in);
return true;
{
std::int16_t value;
if (!readShort(in, value)) { return READ_FAILURE; }
*percent = static_cast<float>(value);
return sizeof(value);
}
case M3DCHUNK_FLOAT_PERCENTAGE:
*percent = readFloat(in);
return true;
return readFloat(in, *percent) ? sizeof(float) : READ_FAILURE;
default:
return UNKNOWN_CHUNK;
}
return false;
}
static bool processTexmapChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t /*contentSize*/,
M3DMaterial* material)
std::int32_t processTexmapChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t /*contentSize*/,
M3DMaterial* material)
{
if (chunkType == M3DCHUNK_MATERIAL_MAPNAME)
{
std::string name = readString(in);
std::string name;
std::int32_t bytesRead = readString(in, name);
if (bytesRead < 0) { return READ_FAILURE; }
material->setTextureMap(name);
return true;
return bytesRead;
}
return false;
return UNKNOWN_CHUNK;
}
bool processMaterialChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DMaterial* material)
std::int32_t processMaterialChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DMaterial* material)
{
std::int32_t bytesRead;
std::string name;
M3DColor color;
float t;
@ -385,92 +429,101 @@ bool processMaterialChunk(std::istream& in,
switch (chunkType)
{
case M3DCHUNK_MATERIAL_NAME:
name = readString(in);
bytesRead = readString(in, name);
if (bytesRead < 0) { return READ_FAILURE; }
material->setName(name);
return true;
return bytesRead;
case M3DCHUNK_MATERIAL_AMBIENT:
read3DSChunks(in, contentSize, processColorChunk, &color);
bytesRead = read3DSChunks(in, contentSize, processColorChunk, &color);
if (bytesRead < 0) { return READ_FAILURE; }
material->setAmbientColor(color);
return true;
return bytesRead;
case M3DCHUNK_MATERIAL_DIFFUSE:
read3DSChunks(in, contentSize, processColorChunk, &color);
bytesRead = read3DSChunks(in, contentSize, processColorChunk, &color);
if (bytesRead < 0) { return READ_FAILURE; }
material->setDiffuseColor(color);
return true;
return bytesRead;
case M3DCHUNK_MATERIAL_SPECULAR:
read3DSChunks(in, contentSize, processColorChunk, &color);
bytesRead = read3DSChunks(in, contentSize, processColorChunk, &color);
if (bytesRead < 0) { return READ_FAILURE; }
material->setSpecularColor(color);
return true;
return bytesRead;
case M3DCHUNK_MATERIAL_SHININESS:
read3DSChunks(in, contentSize, processPercentageChunk, &t);
bytesRead = read3DSChunks(in, contentSize, processPercentageChunk, &t);
if (bytesRead < 0) { return READ_FAILURE; }
material->setShininess(t);
return true;
return bytesRead;
case M3DCHUNK_MATERIAL_TRANSPARENCY:
read3DSChunks(in, contentSize, processPercentageChunk, &t);
bytesRead = read3DSChunks(in, contentSize, processPercentageChunk, &t);
if (bytesRead < 0) { return READ_FAILURE; }
material->setOpacity(1.0f - t / 100.0f);
return true;
return bytesRead;
case M3DCHUNK_MATERIAL_TEXMAP:
read3DSChunks(in, contentSize, processTexmapChunk, material);
return true;
return read3DSChunks(in, contentSize, processTexmapChunk, material);
default:
return UNKNOWN_CHUNK;
}
return false;
}
bool processSceneChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DScene* scene)
std::int32_t processSceneChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DScene* scene)
{
M3DModel* model;
M3DMaterial* material;
std::int32_t bytesRead, chunksSize;
std::unique_ptr<M3DModel> model;
std::unique_ptr<M3DMaterial> material;
M3DColor color;
std::string name;
switch (chunkType)
{
case M3DCHUNK_NAMED_OBJECT:
name = readString(in);
model = new M3DModel();
bytesRead = readString(in, name);
if (bytesRead < 0) { return READ_FAILURE; }
model = std::make_unique<M3DModel>();
model->setName(name);
read3DSChunks(in,
contentSize - (name.length() + 1),
processModelChunk,
model);
scene->addModel(model);
chunksSize = read3DSChunks(in,
contentSize - bytesRead,
processModelChunk,
model.get());
if (chunksSize < 0) { return READ_FAILURE; }
scene->addModel(model.release());
return true;
return bytesRead + chunksSize;
case M3DCHUNK_MATERIAL_ENTRY:
material = new M3DMaterial();
read3DSChunks(in,
contentSize,
processMaterialChunk,
material);
scene->addMaterial(material);
material = std::make_unique<M3DMaterial>();
bytesRead = read3DSChunks(in,
contentSize,
processMaterialChunk,
material.get());
if (bytesRead < 0) { return READ_FAILURE; }
scene->addMaterial(material.release());
return true;
return bytesRead;
case M3DCHUNK_BACKGROUND_COLOR:
read3DSChunks(in, contentSize, processColorChunk, &color);
bytesRead = read3DSChunks(in, contentSize, processColorChunk, &color);
if (bytesRead < 0) { return READ_FAILURE; }
scene->setBackgroundColor(color);
return true;
return bytesRead;
default:
return false;
return UNKNOWN_CHUNK;
}
}
bool processTopLevelChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DScene* scene)
std::int32_t processTopLevelChunk(std::istream& in,
std::uint16_t chunkType,
std::int32_t contentSize,
M3DScene* scene)
{
if (chunkType == M3DCHUNK_MESHDATA)
{
read3DSChunks(in, contentSize, processSceneChunk, scene);
return true;
return read3DSChunks(in, contentSize, processSceneChunk, scene);
}
return false;
return UNKNOWN_CHUNK;
}
} // end namespace
@ -478,28 +531,33 @@ bool processTopLevelChunk(std::istream& in,
M3DScene* Read3DSFile(std::istream& in)
{
std::uint16_t chunkType = readUshort(in);
if (chunkType != M3DCHUNK_MAGIC)
std::uint16_t chunkType;
if (!readUshort(in, chunkType) || chunkType != M3DCHUNK_MAGIC)
{
DPRINTF(LOG_LEVEL_ERROR, "Read3DSFile: Wrong magic number in header\n");
fmt::print(std::clog, "Read3DSFile: Wrong magic number in header\n");
return nullptr;
}
std::int32_t chunkSize = readInt(in);
if (in.bad())
std::int32_t chunkSize;
if (!readInt(in, chunkSize) || chunkSize < 6)
{
DPRINTF(LOG_LEVEL_ERROR, "Read3DSFile: Error reading 3DS file.\n");
fmt::print(std::clog, "Read3DSFile: Error reading 3DS file top level chunk size\n");
return nullptr;
}
DPRINTF(LOG_LEVEL_INFO, "3DS file, %d bytes\n", chunkSize);
fmt::print(std::clog, "3DS file, {} bytes\n", chunkSize + 6);
auto* scene = new M3DScene();
auto scene = std::make_unique<M3DScene>();
std::int32_t contentSize = chunkSize - 6;
read3DSChunks(in, contentSize, processTopLevelChunk, scene);
std::int32_t bytesRead = read3DSChunks(in, contentSize, processTopLevelChunk, scene.get());
if (bytesRead < 0) { return nullptr; }
if (bytesRead != contentSize)
{
return nullptr;
}
return scene;
return scene.release();
}
@ -508,7 +566,7 @@ M3DScene* Read3DSFile(const fs::path& filename)
std::ifstream in(filename.string(), std::ios::in | std::ios::binary);
if (!in.good())
{
DPRINTF(LOG_LEVEL_ERROR, "Read3DSFile: Error opening %s\n", filename);
fmt::print(std::clog, "Read3DSFile: Error opening {}\n", filename);
return nullptr;
}