celestia/src/cel3ds/3dsread.cpp

644 lines
18 KiB
C++

// 3dsread.cpp
//
// Copyright (C) 2000, Chris Laurel <claurel@shatters.net>
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <fstream>
#include <iostream>
#include <string>
#include <utility>
#include <Eigen/Core>
#include <celutil/binaryread.h>
#include <celutil/logger.h>
#include "3dsmodel.h"
#include "3dsread.h"
namespace celutil = celestia::util;
using celestia::util::GetLogger;
namespace
{
constexpr std::int32_t READ_FAILURE = -1;
constexpr std::int32_t UNKNOWN_CHUNK = -2;
enum class M3DChunkType : std::uint16_t
{
Null = 0x0000,
Version = 0x0002,
ColorFloat = 0x0010,
Color24 = 0x0011,
LinColorF = 0x0013,
IntPercentage = 0x0030,
FloatPercentage = 0x0031,
MasterScale = 0x0100,
BackgroundColor = 0x1200,
Meshdata = 0x3d3d,
MeshVersion = 0x3d3e,
NamedObject = 0x4000,
TriangleMesh = 0x4100,
PointArray = 0x4110,
PointFlagArray = 0x4111,
FaceArray = 0x4120,
MeshMaterialGroup = 0x4130,
MeshTextureCoords = 0x4140,
MeshSmoothGroup = 0x4150,
MeshMatrix = 0x4160,
Magic = 0x4d4d,
MaterialName = 0xa000,
MaterialAmbient = 0xa010,
MaterialDiffuse = 0xa020,
MaterialSpecular = 0xa030,
MaterialShininess = 0xa040,
MaterialShin2Pct = 0xa041,
MaterialTransparency = 0xa050,
MaterialXpfall = 0xa052,
MaterialRefblur = 0xa053,
MaterialSelfIllum = 0xa084,
MaterialWiresize = 0xa087,
MaterialXpfallin = 0xa08a,
MaterialShading = 0xa100,
MaterialTexmap = 0xa200,
MaterialMapname = 0xa300,
MaterialEntry = 0xafff,
Kfdata = 0xb000,
};
template<typename T>
using ProcessChunkFunc = std::int32_t (*)(std::istream&, M3DChunkType, std::int32_t, T&);
std::int32_t readString(std::istream& in, std::string& value)
{
constexpr std::size_t maxLength = 1024;
char s[maxLength];
for (std::size_t count = 0; count < maxLength; count++)
{
in.read(s + count, 1);
if (!in.good()) { return READ_FAILURE; }
if (s[count] == '\0')
{
value = s;
return count + 1;
}
}
return READ_FAILURE;
}
bool readChunkType(std::istream& in, M3DChunkType& chunkType)
{
std::uint16_t value;
if (!celutil::readLE<std::uint16_t>(in, value)) { return false; }
chunkType = static_cast<M3DChunkType>(value);
return true;
}
template<typename T>
std::int32_t read3DSChunk(std::istream& in,
ProcessChunkFunc<T> chunkFunc,
T& obj)
{
M3DChunkType chunkType;
if (!readChunkType(in, chunkType)) { return READ_FAILURE; }
std::int32_t chunkSize;
if (!celutil::readLE<std::int32_t>(in, chunkSize) || chunkSize < 6) { return READ_FAILURE; }
std::int32_t contentSize = chunkSize - 6;
std::int32_t processedSize = chunkFunc(in, chunkType, contentSize, obj);
switch (processedSize)
{
case READ_FAILURE:
return READ_FAILURE;
case UNKNOWN_CHUNK:
in.ignore(contentSize);
return in.good() ? chunkSize : READ_FAILURE;
default:
if (processedSize != contentSize)
{
GetLogger()->error("Chunk type {:04x}, expected {} bytes but read {}\n",
static_cast<int>(chunkType), contentSize, processedSize);
return READ_FAILURE;
}
return chunkSize;
}
}
template<typename T>
std::int32_t read3DSChunks(std::istream& in,
std::int32_t nBytes,
ProcessChunkFunc<T> chunkFunc,
T& obj)
{
std::int32_t bytesRead = 0;
while (bytesRead < nBytes)
{
std::int32_t chunkSize = read3DSChunk(in, chunkFunc, obj);
if (chunkSize < 0) {
GetLogger()->error("Failed to read 3DS chunk\n");
return READ_FAILURE;
}
bytesRead += chunkSize;
}
if (bytesRead != nBytes)
{
GetLogger()->error("Multiple chunks, expected {} bytes but read {}\n", nBytes, bytesRead);
return READ_FAILURE;
}
return bytesRead;
}
std::int32_t readColor(std::istream& in, M3DColor& color)
{
std::uint8_t r, g, b;
if (!celutil::readLE<std::uint8_t>(in, r)
|| !celutil::readLE<std::uint8_t>(in, g)
|| !celutil::readLE<std::uint8_t>(in, b))
{
return READ_FAILURE;
}
color = {static_cast<float>(r) / 255.0f,
static_cast<float>(g) / 255.0f,
static_cast<float>(b) / 255.0f};
return 3;
}
std::int32_t readFloatColor(std::istream& in, M3DColor& color)
{
float r, g, b;
if (!celutil::readLE<float>(in, r)
|| !celutil::readLE<float>(in, g)
|| !celutil::readLE<float>(in, b))
{
return READ_FAILURE;
}
color = { r, g, b };
return static_cast<std::int32_t>(3 * sizeof(float));
}
std::int32_t readMeshMatrix(std::istream& in, Eigen::Matrix4f& m)
{
float elements[12];
for (std::size_t i = 0; i < 12; ++i)
{
if (!celutil::readLE<float>(in, elements[i])) { return READ_FAILURE; }
}
m << elements[0], elements[1], elements[2], 0,
elements[3], elements[4], elements[5], 0,
elements[6], elements[7], elements[8], 0,
elements[9], elements[10], elements[11], 1;
return static_cast<std::int32_t>(12 * sizeof(float));
}
std::int32_t readPointArray(std::istream& in, M3DTriangleMesh& triMesh)
{
std::uint16_t nPoints;
if (!celutil::readLE<std::uint16_t>(in, nPoints)) { return READ_FAILURE; }
std::int32_t bytesRead = static_cast<std::int32_t>(sizeof(nPoints));
for (int i = 0; i < static_cast<int>(nPoints); i++)
{
float x, y, z;
if (!celutil::readLE<float>(in, x)
|| !celutil::readLE<float>(in, y)
|| !celutil::readLE<float>(in, z))
{
return READ_FAILURE;
}
bytesRead += static_cast<std::int32_t>(3 * sizeof(float));
triMesh.addVertex(Eigen::Vector3f(x, y, z));
}
return bytesRead;
}
std::int32_t readTextureCoordArray(std::istream& in, M3DTriangleMesh& triMesh)
{
std::int32_t bytesRead = 0;
std::uint16_t nPoints;
if (!celutil::readLE<std::uint16_t>(in, nPoints)) { return READ_FAILURE; }
bytesRead += static_cast<std::int32_t>(sizeof(nPoints));
for (int i = 0; i < static_cast<int>(nPoints); i++)
{
float u, v;
if (!celutil::readLE<float>(in, u) || !celutil::readLE<float>(in, v))
{
return READ_FAILURE;
}
bytesRead += static_cast<std::int32_t>(2 * sizeof(float));
triMesh.addTexCoord(Eigen::Vector2f(u, -v));
}
return bytesRead;
}
std::int32_t processFaceArrayChunk(std::istream& in,
M3DChunkType chunkType,
std::int32_t /*contentSize*/,
M3DTriangleMesh& triMesh)
{
std::int32_t bytesRead = 0;
std::uint16_t nFaces;
switch (chunkType)
{
case M3DChunkType::MeshMaterialGroup:
{
M3DMeshMaterialGroup matGroup;
bytesRead = readString(in, matGroup.materialName);
if (bytesRead == READ_FAILURE || !celutil::readLE<std::uint16_t>(in, nFaces))
{
return READ_FAILURE;
}
bytesRead += static_cast<std::int32_t>(sizeof(nFaces));
for (std::uint16_t i = 0; i < nFaces; i++)
{
std::uint16_t faceIndex;
if (!celutil::readLE<std::uint16_t>(in, faceIndex)) { return READ_FAILURE; }
bytesRead += static_cast<std::int32_t>(sizeof(faceIndex));
matGroup.faces.push_back(faceIndex);
}
triMesh.addMeshMaterialGroup(std::move(matGroup));
return bytesRead;
}
case M3DChunkType::MeshSmoothGroup:
nFaces = triMesh.getFaceCount();
for (std::uint16_t i = 0; i < nFaces; i++)
{
std::int32_t groups;
if (!celutil::readLE<std::int32_t>(in, groups) || groups < 0){ return READ_FAILURE; }
bytesRead += static_cast<std::int32_t>(sizeof(groups));
triMesh.addSmoothingGroups(static_cast<std::uint32_t>(groups));
}
return bytesRead;
default:
return UNKNOWN_CHUNK;
}
}
std::int32_t readFaceArray(std::istream& in, M3DTriangleMesh& triMesh, std::int32_t contentSize)
{
std::uint16_t nFaces;
if (!celutil::readLE<std::uint16_t>(in, nFaces)) { return READ_FAILURE; }
std::int32_t bytesRead = static_cast<std::int32_t>(sizeof(nFaces));
for (int i = 0; i < static_cast<int>(nFaces); i++)
{
std::uint16_t v0, v1, v2, flags;
if (!celutil::readLE<std::uint16_t>(in, v0)
|| !celutil::readLE<std::uint16_t>(in, v1)
|| !celutil::readLE<std::uint16_t>(in, v2)
|| !celutil::readLE<std::uint16_t>(in, flags))
{
return READ_FAILURE;
}
bytesRead += static_cast<std::int32_t>(4 * sizeof(std::uint16_t));
triMesh.addFace(v0, v1, v2);
}
if (bytesRead > contentSize) { return READ_FAILURE; }
if (bytesRead < contentSize)
{
std::int32_t trailingSize = read3DSChunks(in,
contentSize - bytesRead,
processFaceArrayChunk,
triMesh);
bytesRead += trailingSize;
}
return bytesRead;
}
std::int32_t processTriMeshChunk(std::istream& in,
M3DChunkType chunkType,
std::int32_t contentSize,
M3DTriangleMesh& triMesh)
{
switch (chunkType)
{
case M3DChunkType::PointArray:
return readPointArray(in, triMesh);
case M3DChunkType::MeshTextureCoords:
return readTextureCoordArray(in, triMesh);
case M3DChunkType::FaceArray:
return readFaceArray(in, triMesh, contentSize);
case M3DChunkType::MeshMatrix:
{
Eigen::Matrix4f matrix;
std::int32_t bytesRead = readMeshMatrix(in, matrix);
if (bytesRead < 0) { return READ_FAILURE; }
triMesh.setMatrix(matrix);
return bytesRead;
}
default:
return UNKNOWN_CHUNK;
}
}
std::int32_t processModelChunk(std::istream& in,
M3DChunkType chunkType,
std::int32_t contentSize,
M3DModel& model)
{
if (chunkType == M3DChunkType::TriangleMesh)
{
M3DTriangleMesh triMesh;
std::int32_t bytesRead = read3DSChunks(in, contentSize, processTriMeshChunk, triMesh);
if (bytesRead == READ_FAILURE) { return READ_FAILURE; }
model.addTriMesh(std::move(triMesh));
return bytesRead;
}
return UNKNOWN_CHUNK;
}
std::int32_t processColorChunk(std::istream& in,
M3DChunkType chunkType,
std::int32_t /*contentSize*/,
M3DColor& color)
{
switch (chunkType)
{
case M3DChunkType::Color24:
return readColor(in, color);
case M3DChunkType::ColorFloat:
return readFloatColor(in, color);
default:
return UNKNOWN_CHUNK;
}
}
std::int32_t processPercentageChunk(std::istream& in,
M3DChunkType chunkType,
std::int32_t /*contentSize*/,
float& percent)
{
switch (chunkType)
{
case M3DChunkType::IntPercentage:
{
std::int16_t value;
if (!celutil::readLE<std::int16_t>(in, value)) { return READ_FAILURE; }
percent = static_cast<float>(value);
return sizeof(value);
}
case M3DChunkType::FloatPercentage:
return celutil::readLE<float>(in, percent) ? sizeof(float) : READ_FAILURE;
default:
return UNKNOWN_CHUNK;
}
}
std::int32_t processTexmapChunk(std::istream& in,
M3DChunkType chunkType,
std::int32_t /*contentSize*/,
M3DMaterial& material)
{
if (chunkType == M3DChunkType::MaterialMapname)
{
std::string name;
std::int32_t bytesRead = readString(in, name);
if (bytesRead < 0) { return READ_FAILURE; }
material.setTextureMap(name);
return bytesRead;
}
return UNKNOWN_CHUNK;
}
std::int32_t processMaterialChunk(std::istream& in,
M3DChunkType chunkType,
std::int32_t contentSize,
M3DMaterial& material)
{
std::int32_t bytesRead;
std::string name;
M3DColor color;
float t;
switch (chunkType)
{
case M3DChunkType::MaterialName:
bytesRead = readString(in, name);
if (bytesRead < 0) { return READ_FAILURE; }
material.setName(std::move(name));
return bytesRead;
case M3DChunkType::MaterialAmbient:
bytesRead = read3DSChunks(in, contentSize, processColorChunk, color);
if (bytesRead < 0) { return READ_FAILURE; }
material.setAmbientColor(color);
return bytesRead;
case M3DChunkType::MaterialDiffuse:
bytesRead = read3DSChunks(in, contentSize, processColorChunk, color);
if (bytesRead < 0) { return READ_FAILURE; }
material.setDiffuseColor(color);
return bytesRead;
case M3DChunkType::MaterialSpecular:
bytesRead = read3DSChunks(in, contentSize, processColorChunk, color);
if (bytesRead < 0) { return READ_FAILURE; }
material.setSpecularColor(color);
return bytesRead;
case M3DChunkType::MaterialShininess:
bytesRead = read3DSChunks(in, contentSize, processPercentageChunk, t);
if (bytesRead < 0) { return READ_FAILURE; }
material.setShininess(t);
return bytesRead;
case M3DChunkType::MaterialTransparency:
bytesRead = read3DSChunks(in, contentSize, processPercentageChunk, t);
if (bytesRead < 0) { return READ_FAILURE; }
material.setOpacity(1.0f - t / 100.0f);
return bytesRead;
case M3DChunkType::MaterialTexmap:
return read3DSChunks(in, contentSize, processTexmapChunk, material);
default:
return UNKNOWN_CHUNK;
}
}
std::int32_t processSceneChunk(std::istream& in,
M3DChunkType chunkType,
std::int32_t contentSize,
M3DScene& scene)
{
switch (chunkType)
{
case M3DChunkType::NamedObject:
{
std::string name;
std::int32_t bytesRead = readString(in, name);
if (bytesRead < 0) { return READ_FAILURE; }
M3DModel model;
model.setName(name);
std::int32_t chunksSize = read3DSChunks(in,
contentSize - bytesRead,
processModelChunk,
model);
if (chunksSize < 0) { return READ_FAILURE; }
scene.addModel(std::move(model));
return bytesRead + chunksSize;
}
case M3DChunkType::MaterialEntry:
{
M3DMaterial material;
std::int32_t bytesRead = read3DSChunks(in,
contentSize,
processMaterialChunk,
material);
if (bytesRead < 0) { return READ_FAILURE; }
scene.addMaterial(std::move(material));
return bytesRead;
}
case M3DChunkType::BackgroundColor:
{
M3DColor color;
std::int32_t bytesRead = read3DSChunks(in, contentSize, processColorChunk, color);
if (bytesRead < 0) { return READ_FAILURE; }
scene.setBackgroundColor(color);
return bytesRead;
}
default:
return UNKNOWN_CHUNK;
}
}
std::int32_t processTopLevelChunk(std::istream& in,
M3DChunkType chunkType,
std::int32_t contentSize,
M3DScene& scene)
{
if (chunkType == M3DChunkType::Meshdata)
{
return read3DSChunks(in, contentSize, processSceneChunk, scene);
}
return UNKNOWN_CHUNK;
}
} // end namespace
std::unique_ptr<M3DScene> Read3DSFile(std::istream& in)
{
M3DChunkType chunkType;
if (!readChunkType(in, chunkType) || chunkType != M3DChunkType::Magic)
{
GetLogger()->error("Read3DSFile: Wrong magic number in header\n");
return nullptr;
}
std::int32_t chunkSize;
if (!celutil::readLE<std::int32_t>(in, chunkSize) || chunkSize < 6)
{
GetLogger()->error("Read3DSFile: Error reading 3DS file top level chunk size\n");
return nullptr;
}
GetLogger()->verbose("3DS file, {} bytes\n", chunkSize + 6);
auto scene = std::make_unique<M3DScene>();
std::int32_t contentSize = chunkSize - 6;
std::int32_t bytesRead = read3DSChunks(in, contentSize, processTopLevelChunk, *scene);
if (bytesRead < 0) { return nullptr; }
if (bytesRead != contentSize)
{
return nullptr;
}
return scene;
}
std::unique_ptr<M3DScene> Read3DSFile(const fs::path& filename)
{
std::ifstream in(filename.string(), std::ios::in | std::ios::binary);
if (!in.good())
{
GetLogger()->error("Read3DSFile: Error opening {}\n", filename);
return nullptr;
}
std::unique_ptr<M3DScene> scene = Read3DSFile(in);
in.close();
return scene;
}
#if 0
int main(int argc, char* argv[])
{
if (argc != 2)
{
cerr << "Usage: 3dsread <filename>\n";
exit(1);
}
ifstream in(argv[1], ios::in | ios::binary);
if (!in.good())
{
cerr << "Error opening " << argv[1] << '\n';
exit(1);
}
else
{
read3DSFile(in);
in.close();
}
return 0;
}
#endif