celestia/thirdparty/Eigen/Eigen/src/Core/SolveTriangular.h

298 lines
13 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_SOLVETRIANGULAR_H
#define EIGEN_SOLVETRIANGULAR_H
template<typename XprType> struct ei_is_part { enum {value=false}; };
template<typename XprType, unsigned int Mode> struct ei_is_part<Part<XprType,Mode> > { enum {value=true}; };
template<typename Lhs, typename Rhs,
int TriangularPart = (int(Lhs::Flags) & LowerTriangularBit)
? LowerTriangular
: (int(Lhs::Flags) & UpperTriangularBit)
? UpperTriangular
: -1,
int StorageOrder = ei_is_part<Lhs>::value ? -1 // this is to solve ambiguous specializations
: int(Lhs::Flags) & (RowMajorBit|SparseBit)
>
struct ei_solve_triangular_selector;
// transform a Part xpr to a Flagged xpr
template<typename Lhs, unsigned int LhsMode, typename Rhs, int UpLo, int StorageOrder>
struct ei_solve_triangular_selector<Part<Lhs,LhsMode>,Rhs,UpLo,StorageOrder>
{
static void run(const Part<Lhs,LhsMode>& lhs, Rhs& other)
{
ei_solve_triangular_selector<Flagged<Lhs,LhsMode,0>,Rhs>::run(lhs._expression(), other);
}
};
// forward substitution, row-major
template<typename Lhs, typename Rhs, int UpLo>
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,RowMajor|IsDense>
{
typedef typename Rhs::Scalar Scalar;
static void run(const Lhs& lhs, Rhs& other)
{
const bool IsLowerTriangular = (UpLo==LowerTriangular);
const int size = lhs.cols();
/* We perform the inverse product per block of 4 rows such that we perfectly match
* our optimized matrix * vector product. blockyStart represents the number of rows
* we have process first using the non-block version.
*/
int blockyStart = (std::max(size-5,0)/4)*4;
if (IsLowerTriangular)
blockyStart = size - blockyStart;
else
blockyStart -= 1;
for(int c=0 ; c<other.cols() ; ++c)
{
// process first rows using the non block version
if(!(Lhs::Flags & UnitDiagBit))
{
if (IsLowerTriangular)
other.coeffRef(0,c) = other.coeff(0,c)/lhs.coeff(0, 0);
else
other.coeffRef(size-1,c) = other.coeff(size-1, c)/lhs.coeff(size-1, size-1);
}
for(int i=(IsLowerTriangular ? 1 : size-2); IsLowerTriangular ? i<blockyStart : i>blockyStart; i += (IsLowerTriangular ? 1 : -1) )
{
Scalar tmp = other.coeff(i,c)
- (IsLowerTriangular ? ((lhs.row(i).start(i)) * other.col(c).start(i)).coeff(0,0)
: ((lhs.row(i).end(size-i-1)) * other.col(c).end(size-i-1)).coeff(0,0));
if (Lhs::Flags & UnitDiagBit)
other.coeffRef(i,c) = tmp;
else
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
}
// now let's process the remaining rows 4 at once
for(int i=blockyStart; IsLowerTriangular ? i<size : i>0; )
{
int startBlock = i;
int endBlock = startBlock + (IsLowerTriangular ? 4 : -4);
/* Process the i cols times 4 rows block, and keep the result in a temporary vector */
// FIXME use fixed size block but take care to small fixed size matrices...
Matrix<Scalar,Dynamic,1> btmp(4);
if (IsLowerTriangular)
btmp = lhs.block(startBlock,0,4,i) * other.col(c).start(i);
else
btmp = lhs.block(i-3,i+1,4,size-1-i) * other.col(c).end(size-1-i);
/* Let's process the 4x4 sub-matrix as usual.
* btmp stores the diagonal coefficients used to update the remaining part of the result.
*/
{
Scalar tmp = other.coeff(startBlock,c)-btmp.coeff(IsLowerTriangular?0:3);
if (Lhs::Flags & UnitDiagBit)
other.coeffRef(i,c) = tmp;
else
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
}
i += IsLowerTriangular ? 1 : -1;
for (;IsLowerTriangular ? i<endBlock : i>endBlock; i += IsLowerTriangular ? 1 : -1)
{
int remainingSize = IsLowerTriangular ? i-startBlock : startBlock-i;
Scalar tmp = other.coeff(i,c)
- btmp.coeff(IsLowerTriangular ? remainingSize : 3-remainingSize)
- ( lhs.row(i).segment(IsLowerTriangular ? startBlock : i+1, remainingSize)
* other.col(c).segment(IsLowerTriangular ? startBlock : i+1, remainingSize)).coeff(0,0);
if (Lhs::Flags & UnitDiagBit)
other.coeffRef(i,c) = tmp;
else
other.coeffRef(i,c) = tmp/lhs.coeff(i,i);
}
}
}
}
};
// Implements the following configurations:
// - inv(LowerTriangular, ColMajor) * Column vector
// - inv(LowerTriangular,UnitDiag,ColMajor) * Column vector
// - inv(UpperTriangular, ColMajor) * Column vector
// - inv(UpperTriangular,UnitDiag,ColMajor) * Column vector
template<typename Lhs, typename Rhs, int UpLo>
struct ei_solve_triangular_selector<Lhs,Rhs,UpLo,ColMajor|IsDense>
{
typedef typename Rhs::Scalar Scalar;
typedef typename ei_packet_traits<Scalar>::type Packet;
enum { PacketSize = ei_packet_traits<Scalar>::size };
static void run(const Lhs& lhs, Rhs& other)
{
static const bool IsLowerTriangular = (UpLo==LowerTriangular);
const int size = lhs.cols();
for(int c=0 ; c<other.cols() ; ++c)
{
/* let's perform the inverse product per block of 4 columns such that we perfectly match
* our optimized matrix * vector product. blockyEnd represents the number of rows
* we can process using the block version.
*/
int blockyEnd = (std::max(size-5,0)/4)*4;
if (!IsLowerTriangular)
blockyEnd = size-1 - blockyEnd;
for(int i=IsLowerTriangular ? 0 : size-1; IsLowerTriangular ? i<blockyEnd : i>blockyEnd;)
{
/* Let's process the 4x4 sub-matrix as usual.
* btmp stores the diagonal coefficients used to update the remaining part of the result.
*/
int startBlock = i;
int endBlock = startBlock + (IsLowerTriangular ? 4 : -4);
Matrix<Scalar,4,1> btmp;
for (;IsLowerTriangular ? i<endBlock : i>endBlock;
i += IsLowerTriangular ? 1 : -1)
{
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(i,c) /= lhs.coeff(i,i);
int remainingSize = IsLowerTriangular ? endBlock-i-1 : i-endBlock-1;
if (remainingSize>0)
other.col(c).segment((IsLowerTriangular ? i : endBlock) + 1, remainingSize) -=
other.coeffRef(i,c)
* Block<Lhs,Dynamic,1>(lhs, (IsLowerTriangular ? i : endBlock) + 1, i, remainingSize, 1);
btmp.coeffRef(IsLowerTriangular ? i-startBlock : remainingSize) = -other.coeffRef(i,c);
}
/* Now we can efficiently update the remaining part of the result as a matrix * vector product.
* NOTE in order to reduce both compilation time and binary size, let's directly call
* the fast product implementation. It is equivalent to the following code:
* other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
* * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
*/
// FIXME this is cool but what about conjugate/adjoint expressions ? do we want to evaluate them ?
// this is a more general problem though.
ei_cache_friendly_product_colmajor_times_vector(
IsLowerTriangular ? size-endBlock : endBlock+1,
&(lhs.const_cast_derived().coeffRef(IsLowerTriangular ? endBlock : 0, IsLowerTriangular ? startBlock : endBlock+1)),
lhs.stride(),
btmp, &(other.coeffRef(IsLowerTriangular ? endBlock : 0, c)));
// if (IsLowerTriangular)
// other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
// * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
// else
// other.col(c).end(size-endBlock) += (lhs.block(endBlock, startBlock, size-endBlock, endBlock-startBlock)
// * other.col(c).block(startBlock,endBlock-startBlock)).lazy();
}
/* Now we have to process the remaining part as usual */
int i;
for(i=blockyEnd; IsLowerTriangular ? i<size-1 : i>0; i += (IsLowerTriangular ? 1 : -1) )
{
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(i,c) /= lhs.coeff(i,i);
/* NOTE we cannot use lhs.col(i).end(size-i-1) because Part::coeffRef gets called by .col() to
* get the address of the start of the row
*/
if(IsLowerTriangular)
other.col(c).end(size-i-1) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, i+1,i, size-i-1,1);
else
other.col(c).start(i) -= other.coeffRef(i,c) * Block<Lhs,Dynamic,1>(lhs, 0,i, i, 1);
}
if(!(Lhs::Flags & UnitDiagBit))
other.coeffRef(i,c) /= lhs.coeff(i,i);
}
}
};
/** "in-place" version of MatrixBase::solveTriangular() where the result is written in \a other
*
* \nonstableyet
*
* The parameter is only marked 'const' to make the C++ compiler accept a temporary expression here.
* This function will const_cast it, so constness isn't honored here.
*
* See MatrixBase:solveTriangular() for the details.
*/
template<typename Derived>
template<typename OtherDerived>
void MatrixBase<Derived>::solveTriangularInPlace(const MatrixBase<OtherDerived>& _other) const
{
MatrixBase<OtherDerived>& other = _other.const_cast_derived();
ei_assert(derived().cols() == derived().rows());
ei_assert(derived().cols() == other.rows());
ei_assert(!(Flags & ZeroDiagBit));
ei_assert(Flags & (UpperTriangularBit|LowerTriangularBit));
enum { copy = ei_traits<OtherDerived>::Flags & RowMajorBit };
typedef typename ei_meta_if<copy,
typename ei_plain_matrix_type_column_major<OtherDerived>::type, OtherDerived&>::ret OtherCopy;
OtherCopy otherCopy(other.derived());
ei_solve_triangular_selector<Derived, typename ei_unref<OtherCopy>::type>::run(derived(), otherCopy);
if (copy)
other = otherCopy;
}
/** \returns the product of the inverse of \c *this with \a other, \a *this being triangular.
*
* \nonstableyet
*
* This function computes the inverse-matrix matrix product inverse(\c *this) * \a other.
* The matrix \c *this must be triangular and invertible (i.e., all the coefficients of the
* diagonal must be non zero). It works as a forward (resp. backward) substitution if \c *this
* is an upper (resp. lower) triangular matrix.
*
* It is required that \c *this be marked as either an upper or a lower triangular matrix, which
* can be done by marked(), and that is automatically the case with expressions such as those returned
* by extract().
*
* \addexample SolveTriangular \label How to solve a triangular system (aka. how to multiply the inverse of a triangular matrix by another one)
*
* Example: \include MatrixBase_marked.cpp
* Output: \verbinclude MatrixBase_marked.out
*
* This function is essentially a wrapper to the faster solveTriangularInPlace() function creating
* a temporary copy of \a other, calling solveTriangularInPlace() on the copy and returning it.
* Therefore, if \a other is not needed anymore, it is quite faster to call solveTriangularInPlace()
* instead of solveTriangular().
*
* For users coming from BLAS, this function (and more specifically solveTriangularInPlace()) offer
* all the operations supported by the \c *TRSV and \c *TRSM BLAS routines.
*
* \b Tips: to perform a \em "right-inverse-multiply" you can simply transpose the operation, e.g.:
* \code
* M * T^1 <=> T.transpose().solveTriangularInPlace(M.transpose());
* \endcode
*
* \sa solveTriangularInPlace(), marked(), extract()
*/
template<typename Derived>
template<typename OtherDerived>
typename ei_plain_matrix_type_column_major<OtherDerived>::type
MatrixBase<Derived>::solveTriangular(const MatrixBase<OtherDerived>& other) const
{
typename ei_plain_matrix_type_column_major<OtherDerived>::type res(other);
solveTriangularInPlace(res);
return res;
}
#endif // EIGEN_SOLVETRIANGULAR_H