celestia/thirdparty/Eigen/Eigen/src/Core/util/Constants.h

243 lines
9.8 KiB
C

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_CONSTANTS_H
#define EIGEN_CONSTANTS_H
/** This value means that a quantity is not known at compile-time, and that instead the value is
* stored in some runtime variable.
*
* Explanation for the choice of this value:
* - It should be positive and larger than any reasonable compile-time-fixed number of rows or columns.
* This allows to simplify many compile-time conditions throughout Eigen.
* - It should be smaller than the sqrt of INT_MAX. Indeed, we often multiply a number of rows with a number
* of columns in order to compute a number of coefficients. Even if we guard that with an "if" checking whether
* the values are Dynamic, we still get a compiler warning "integer overflow". So the only way to get around
* it would be a meta-selector. Doing this everywhere would reduce code readability and lenghten compilation times.
* Also, disabling compiler warnings for integer overflow, sounds like a bad idea.
*
* If you wish to port Eigen to a platform where sizeof(int)==2, it is perfectly possible to set Dynamic to, say, 100.
*/
const int Dynamic = 10000;
/** This value means +Infinity; it is currently used only as the p parameter to MatrixBase::lpNorm<int>().
* The value Infinity there means the L-infinity norm.
*/
const int Infinity = -1;
/** \defgroup flags flags
* \ingroup Core_Module
*
* These are the possible bits which can be OR'ed to constitute the flags of a matrix or
* expression.
*
* It is important to note that these flags are a purely compile-time notion. They are a compile-time property of
* an expression type, implemented as enum's. They are not stored in memory at runtime, and they do not incur any
* runtime overhead.
*
* \sa MatrixBase::Flags
*/
/** \ingroup flags
*
* for a matrix, this means that the storage order is row-major.
* If this bit is not set, the storage order is column-major.
* For an expression, this determines the storage order of
* the matrix created by evaluation of that expression. */
const unsigned int RowMajorBit = 0x1;
/** \ingroup flags
*
* means the expression should be evaluated by the calling expression */
const unsigned int EvalBeforeNestingBit = 0x2;
/** \ingroup flags
*
* means the expression should be evaluated before any assignement */
const unsigned int EvalBeforeAssigningBit = 0x4;
/** \ingroup flags
*
* Short version: means the expression might be vectorized
*
* Long version: means that the coefficients can be handled by packets
* and start at a memory location whose alignment meets the requirements
* of the present CPU architecture for optimized packet access. In the fixed-size
* case, there is the additional condition that the total size of the coefficients
* array is a multiple of the packet size, so that it is possible to access all the
* coefficients by packets. In the dynamic-size case, there is no such condition
* on the total size, so it might not be possible to access the few last coeffs
* by packets.
*
* \note This bit can be set regardless of whether vectorization is actually enabled.
* To check for actual vectorizability, see \a ActualPacketAccessBit.
*/
const unsigned int PacketAccessBit = 0x8;
#ifdef EIGEN_VECTORIZE
/** \ingroup flags
*
* If vectorization is enabled (EIGEN_VECTORIZE is defined) this constant
* is set to the value \a PacketAccessBit.
*
* If vectorization is not enabled (EIGEN_VECTORIZE is not defined) this constant
* is set to the value 0.
*/
const unsigned int ActualPacketAccessBit = PacketAccessBit;
#else
const unsigned int ActualPacketAccessBit = 0x0;
#endif
/** \ingroup flags
*
* Short version: means the expression can be seen as 1D vector.
*
* Long version: means that one can access the coefficients
* of this expression by coeff(int), and coeffRef(int) in the case of a lvalue expression. These
* index-based access methods are guaranteed
* to not have to do any runtime computation of a (row, col)-pair from the index, so that it
* is guaranteed that whenever it is available, index-based access is at least as fast as
* (row,col)-based access. Expressions for which that isn't possible don't have the LinearAccessBit.
*
* If both PacketAccessBit and LinearAccessBit are set, then the
* packets of this expression can be accessed by packet(int), and writePacket(int) in the case of a
* lvalue expression.
*
* Typically, all vector expressions have the LinearAccessBit, but there is one exception:
* Product expressions don't have it, because it would be troublesome for vectorization, even when the
* Product is a vector expression. Thus, vector Product expressions allow index-based coefficient access but
* not index-based packet access, so they don't have the LinearAccessBit.
*/
const unsigned int LinearAccessBit = 0x10;
/** \ingroup flags
*
* Means that the underlying array of coefficients can be directly accessed. This means two things.
* First, references to the coefficients must be available through coeffRef(int, int). This rules out read-only
* expressions whose coefficients are computed on demand by coeff(int, int). Second, the memory layout of the
* array of coefficients must be exactly the natural one suggested by rows(), cols(), stride(), and the RowMajorBit.
* This rules out expressions such as DiagonalCoeffs, whose coefficients, though referencable, do not have
* such a regular memory layout.
*/
const unsigned int DirectAccessBit = 0x20;
/** \ingroup flags
*
* means the first coefficient packet is guaranteed to be aligned */
const unsigned int AlignedBit = 0x40;
/** \ingroup flags
*
* means all diagonal coefficients are equal to 0 */
const unsigned int ZeroDiagBit = 0x80;
/** \ingroup flags
*
* means all diagonal coefficients are equal to 1 */
const unsigned int UnitDiagBit = 0x100;
/** \ingroup flags
*
* means the matrix is selfadjoint (M=M*). */
const unsigned int SelfAdjointBit = 0x200;
/** \ingroup flags
*
* means the strictly lower triangular part is 0 */
const unsigned int UpperTriangularBit = 0x400;
/** \ingroup flags
*
* means the strictly upper triangular part is 0 */
const unsigned int LowerTriangularBit = 0x800;
/** \ingroup flags
*
* means the expression includes sparse matrices and the sparse path has to be taken. */
const unsigned int SparseBit = 0x1000;
// list of flags that are inherited by default
const unsigned int HereditaryBits = RowMajorBit
| EvalBeforeNestingBit
| EvalBeforeAssigningBit
| SparseBit;
// Possible values for the Mode parameter of part() and of extract()
const unsigned int UpperTriangular = UpperTriangularBit;
const unsigned int StrictlyUpperTriangular = UpperTriangularBit | ZeroDiagBit;
const unsigned int LowerTriangular = LowerTriangularBit;
const unsigned int StrictlyLowerTriangular = LowerTriangularBit | ZeroDiagBit;
const unsigned int SelfAdjoint = SelfAdjointBit;
// additional possible values for the Mode parameter of extract()
const unsigned int UnitUpperTriangular = UpperTriangularBit | UnitDiagBit;
const unsigned int UnitLowerTriangular = LowerTriangularBit | UnitDiagBit;
const unsigned int Diagonal = UpperTriangular | LowerTriangular;
enum { Aligned, Unaligned };
enum { ForceAligned, AsRequested };
enum { ConditionalJumpCost = 5 };
enum CornerType { TopLeft, TopRight, BottomLeft, BottomRight };
enum DirectionType { Vertical, Horizontal };
enum ProductEvaluationMode { NormalProduct, CacheFriendlyProduct, DiagonalProduct, SparseTimeSparseProduct, SparseTimeDenseProduct, DenseTimeSparseProduct };
enum {
/** \internal Equivalent to a slice vectorization for fixed-size matrices having good alignment
* and good size */
InnerVectorization,
/** \internal Vectorization path using a single loop plus scalar loops for the
* unaligned boundaries */
LinearVectorization,
/** \internal Generic vectorization path using one vectorized loop per row/column with some
* scalar loops to handle the unaligned boundaries */
SliceVectorization,
NoVectorization
};
enum {
NoUnrolling,
InnerUnrolling,
CompleteUnrolling
};
enum {
ColMajor = 0,
RowMajor = 0x1, // it is only a coincidence that this is equal to RowMajorBit -- don't rely on that
/** \internal Don't require alignment for the matrix itself (the array of coefficients, if dynamically allocated, may still be
requested to be aligned) */
DontAlign = 0,
/** \internal Align the matrix itself if it is vectorizable fixed-size */
AutoAlign = 0x2
};
enum {
IsDense = 0,
IsSparse = SparseBit,
NoDirectAccess = 0,
HasDirectAccess = DirectAccessBit
};
#endif // EIGEN_CONSTANTS_H