celestia/thirdparty/Eigen/Eigen/src/Core/util/Meta.h

184 lines
7.9 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr>
// Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#ifndef EIGEN_META_H
#define EIGEN_META_H
/** \internal
* \file Meta.h
* This file contains generic metaprogramming classes which are not specifically related to Eigen.
* \note In case you wonder, yes we're aware that Boost already provides all these features,
* we however don't want to add a dependency to Boost.
*/
struct ei_meta_true { enum { ret = 1 }; };
struct ei_meta_false { enum { ret = 0 }; };
template<bool Condition, typename Then, typename Else>
struct ei_meta_if { typedef Then ret; };
template<typename Then, typename Else>
struct ei_meta_if <false, Then, Else> { typedef Else ret; };
template<typename T, typename U> struct ei_is_same_type { enum { ret = 0 }; };
template<typename T> struct ei_is_same_type<T,T> { enum { ret = 1 }; };
template<typename T> struct ei_unref { typedef T type; };
template<typename T> struct ei_unref<T&> { typedef T type; };
template<typename T> struct ei_unpointer { typedef T type; };
template<typename T> struct ei_unpointer<T*> { typedef T type; };
template<typename T> struct ei_unpointer<T*const> { typedef T type; };
template<typename T> struct ei_unconst { typedef T type; };
template<typename T> struct ei_unconst<const T> { typedef T type; };
template<typename T> struct ei_unconst<T const &> { typedef T & type; };
template<typename T> struct ei_unconst<T const *> { typedef T * type; };
template<typename T> struct ei_cleantype { typedef T type; };
template<typename T> struct ei_cleantype<const T> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_cleantype<const T&> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_cleantype<T&> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_cleantype<const T*> { typedef typename ei_cleantype<T>::type type; };
template<typename T> struct ei_cleantype<T*> { typedef typename ei_cleantype<T>::type type; };
/** \internal
* Convenient struct to get the result type of a unary or binary functor.
*
* It supports both the current STL mechanism (using the result_type member) as well as
* upcoming next STL generation (using a templated result member).
* If none of these members is provided, then the type of the first argument is returned. FIXME, that behavior is a pretty bad hack.
*/
template<typename T> struct ei_result_of {};
struct ei_has_none {int a[1];};
struct ei_has_std_result_type {int a[2];};
struct ei_has_tr1_result {int a[3];};
template<typename Func, typename ArgType, int SizeOf=sizeof(ei_has_none)>
struct ei_unary_result_of_select {typedef ArgType type;};
template<typename Func, typename ArgType>
struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_std_result_type)> {typedef typename Func::result_type type;};
template<typename Func, typename ArgType>
struct ei_unary_result_of_select<Func, ArgType, sizeof(ei_has_tr1_result)> {typedef typename Func::template result<Func(ArgType)>::type type;};
template<typename Func, typename ArgType>
struct ei_result_of<Func(ArgType)> {
template<typename T>
static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType)>::type const * = 0);
static ei_has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename ei_unary_result_of_select<Func, ArgType, FunctorType>::type type;
};
template<typename Func, typename ArgType0, typename ArgType1, int SizeOf=sizeof(ei_has_none)>
struct ei_binary_result_of_select {typedef ArgType0 type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_std_result_type)>
{typedef typename Func::result_type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_binary_result_of_select<Func, ArgType0, ArgType1, sizeof(ei_has_tr1_result)>
{typedef typename Func::template result<Func(ArgType0,ArgType1)>::type type;};
template<typename Func, typename ArgType0, typename ArgType1>
struct ei_result_of<Func(ArgType0,ArgType1)> {
template<typename T>
static ei_has_std_result_type testFunctor(T const *, typename T::result_type const * = 0);
template<typename T>
static ei_has_tr1_result testFunctor(T const *, typename T::template result<T(ArgType0,ArgType1)>::type const * = 0);
static ei_has_none testFunctor(...);
// note that the following indirection is needed for gcc-3.3
enum {FunctorType = sizeof(testFunctor(static_cast<Func*>(0)))};
typedef typename ei_binary_result_of_select<Func, ArgType0, ArgType1, FunctorType>::type type;
};
/** \internal In short, it computes int(sqrt(\a Y)) with \a Y an integer.
* Usage example: \code ei_meta_sqrt<1023>::ret \endcode
*/
template<int Y,
int InfX = 0,
int SupX = ((Y==1) ? 1 : Y/2),
bool Done = ((SupX-InfX)<=1 ? true : ((SupX*SupX <= Y) && ((SupX+1)*(SupX+1) > Y))) >
// use ?: instead of || just to shut up a stupid gcc 4.3 warning
class ei_meta_sqrt
{
enum {
MidX = (InfX+SupX)/2,
TakeInf = MidX*MidX > Y ? 1 : 0,
NewInf = int(TakeInf) ? InfX : int(MidX),
NewSup = int(TakeInf) ? int(MidX) : SupX
};
public:
enum { ret = ei_meta_sqrt<Y,NewInf,NewSup>::ret };
};
template<int Y, int InfX, int SupX>
class ei_meta_sqrt<Y, InfX, SupX, true> { public: enum { ret = (SupX*SupX <= Y) ? SupX : InfX }; };
/** \internal determines whether the product of two numeric types is allowed and what the return type is */
template<typename T, typename U> struct ei_scalar_product_traits
{
// dummy general case where T and U aren't compatible -- not allowed anyway but we catch it elsewhere
//enum { Cost = NumTraits<T>::MulCost };
typedef T ReturnType;
};
template<typename T> struct ei_scalar_product_traits<T,T>
{
//enum { Cost = NumTraits<T>::MulCost };
typedef T ReturnType;
};
template<typename T> struct ei_scalar_product_traits<T,std::complex<T> >
{
//enum { Cost = 2*NumTraits<T>::MulCost };
typedef std::complex<T> ReturnType;
};
template<typename T> struct ei_scalar_product_traits<std::complex<T>, T>
{
//enum { Cost = 2*NumTraits<T>::MulCost };
typedef std::complex<T> ReturnType;
};
// FIXME quick workaround around current limitation of ei_result_of
template<typename Scalar, typename ArgType0, typename ArgType1>
struct ei_result_of<ei_scalar_product_op<Scalar>(ArgType0,ArgType1)> {
typedef typename ei_scalar_product_traits<typename ei_cleantype<ArgType0>::type, typename ei_cleantype<ArgType1>::type>::ReturnType type;
};
#endif // EIGEN_META_H