celestia/src/celengine/image.cpp

949 lines
23 KiB
C++

// image.cpp
//
// Copyright (C) 2001, Chris Laurel
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
#include <fstream>
#ifndef TARGET_OS_MAC
#define JPEG_SUPPORT
#define PNG_SUPPORT
#endif
#ifdef TARGET_OS_MAC
#include <unistd.h>
#include "CGBuffer.h"
#ifndef PNG_SUPPORT
#include <Quicktime/ImageCompression.h>
#include <QuickTime/QuickTimeComponents.h>
#endif
#endif
#ifndef _WIN32
#ifndef TARGET_OS_MAC
#include <config.h>
#endif /* ! TARGET_OS_MAC */
#endif /* ! _WIN32 */
#include "image.h"
#ifdef JPEG_SUPPORT
#include <cstring> /* for memcpy */
#ifndef PNG_SUPPORT
#include "setjmp.h"
#endif // PNG_SUPPORT
extern "C" {
#ifdef _WIN32
#include "jpeglib.h"
#else
#include <cstdio>
#include <jpeglib.h>
#endif
}
#endif // JPEG_SUPPORT
#ifdef PNG_SUPPORT // PNG_SUPPORT
#include "png.h"
#include <celutil/debug.h>
#include <celutil/util.h>
#include <celutil/filetype.h>
#include "gl.h"
#include "glext.h"
#include "celestia.h"
#include <cassert>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
// Define png_jmpbuf() in case we are using a pre-1.0.6 version of libpng
#ifndef png_jmpbuf
#define png_jmpbuf(png_ptr) png_ptr->jmpbuf
#endif // PNG_SUPPORT
// Define various expansion transformations for old versions of libpng
#if PNG_LIBPNG_VER < 10004
#define png_set_palette_to_rgb(p) png_set_expand(p)
#define png_set_gray_1_2_4_to_8(p) png_set_expand(p)
#define png_set_tRNS_to_alpha(p) png_set_expand(p)
#endif // PNG_LIBPNG_VER < 10004
#endif // PNG_SUPPORT
// All rows are padded to a size that's a multiple of 4 bytes
static int pad(int n)
{
return (n + 3) & ~0x3;
}
static int formatComponents(int fmt)
{
switch (fmt)
{
case GL_RGBA:
case GL_BGRA_EXT:
return 4;
case GL_RGB:
case GL_BGR_EXT:
return 3;
case GL_LUMINANCE_ALPHA:
case GL_DSDT_NV:
return 2;
case GL_ALPHA:
case GL_LUMINANCE:
return 1;
// Compressed formats
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
return 3;
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
return 4;
// Unknown format
default:
return 0;
}
}
static int calcMipLevelSize(int fmt, int w, int h, int mip)
{
w = max(w >> mip, 1);
h = max(h >> mip, 1);
switch (fmt)
{
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
// 4x4 blocks, 8 bytes per block
return ((w + 3) / 4) * ((h + 3) / 4) * 8;
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
// 4x4 blocks, 16 bytes per block
return ((w + 3) / 4) * ((h + 3) / 4) * 16;
default:
return h * pad(w * formatComponents(fmt));
}
}
Image::Image(int fmt, int w, int h, int mip) :
width(w),
height(h),
mipLevels(mip),
format(fmt),
pixels(NULL)
{
components = formatComponents(fmt);
assert(components != 0);
pitch = pad(w * components);
size = 1;
for (int i = 0; i < mipLevels; i++)
size += calcMipLevelSize(fmt, w, h, i);
pixels = new unsigned char[size];
}
Image::~Image()
{
if (pixels != NULL)
delete[] pixels;
}
int Image::getWidth() const
{
return width;
}
int Image::getHeight() const
{
return height;
}
int Image::getPitch() const
{
return pitch;
}
int Image::getMipLevelCount() const
{
return mipLevels;
}
int Image::getSize() const
{
return size;
}
int Image::getFormat() const
{
return format;
}
int Image::getComponents() const
{
return components;
}
unsigned char* Image::getPixels()
{
return pixels;
}
unsigned char* Image::getPixelRow(int mip, int row)
{
/*int w = max(width >> mip, 1); Unused*/
int h = max(height >> mip, 1);
if (mip >= mipLevels || row >= h)
return NULL;
// Row addressing of compressed textures is not allowed
if (isCompressed())
return NULL;
return getMipLevel(mip) + row * pitch;
}
unsigned char* Image::getPixelRow(int row)
{
return getPixelRow(0, row);
}
unsigned char* Image::getMipLevel(int mip)
{
if (mip >= mipLevels)
return NULL;
int offset = 0;
for (int i = 0; i < mip; i++)
offset += calcMipLevelSize(format, width, height, i);
return pixels + offset;
}
int Image::getMipLevelSize(int mip) const
{
if (mip >= mipLevels)
return 0;
else
return calcMipLevelSize(format, width, height, mip);
}
bool Image::isCompressed() const
{
switch (format)
{
case GL_COMPRESSED_RGBA_S3TC_DXT1_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
return true;
default:
return false;
}
}
bool Image::hasAlpha() const
{
switch (format)
{
case GL_COMPRESSED_RGBA_S3TC_DXT3_EXT:
case GL_COMPRESSED_RGBA_S3TC_DXT5_EXT:
case GL_RGBA:
case GL_BGRA_EXT:
case GL_LUMINANCE_ALPHA:
case GL_ALPHA:
return true;
default:
return false;
}
}
// Convert an input height map to a normal map. Ideally, a single channel
// input should be used. If not, the first color channel of the input image
// is the one only one used when generating normals. This produces the
// expected results for grayscale values in RGB images.
Image* Image::computeNormalMap(float scale, bool wrap) const
{
// Can't do anything with compressed input; there are probably some other
// formats that should be rejected as well . . .
if (isCompressed())
return NULL;
Image* normalMap = new Image(GL_RGBA, width, height);
if (normalMap == NULL)
return NULL;
unsigned char* nmPixels = normalMap->getPixels();
int nmPitch = normalMap->getPitch();
// Compute normals using differences between adjacent texels.
for (int i = 0; i < height; i++)
{
for (int j = 0; j < width; j++)
{
int i0 = i;
int j0 = j;
int i1 = i - 1;
int j1 = j - 1;
if (i1 < 0)
{
if (wrap)
{
i1 = height - 1;
}
else
{
i0++;
i1++;
}
}
if (j1 < 0)
{
if (wrap)
{
j1 = width - 1;
}
else
{
j0++;
j1++;
}
}
int h00 = (int) pixels[i0 * pitch + j0 * components];
int h10 = (int) pixels[i0 * pitch + j1 * components];
int h01 = (int) pixels[i1 * pitch + j0 * components];
float dx = (float) (h10 - h00) * (1.0f / 255.0f) * scale;
float dy = (float) (h01 - h00) * (1.0f / 255.0f) * scale;
float mag = (float) sqrt(dx * dx + dy * dy + 1.0f);
float rmag = 1.0f / mag;
int n = i * nmPitch + j * 4;
nmPixels[n] = (unsigned char) (128 + 127 * dx * rmag);
nmPixels[n + 1] = (unsigned char) (128 + 127 * dy * rmag);
nmPixels[n + 2] = (unsigned char) (128 + 127 * rmag);
nmPixels[n + 3] = 255;
}
}
return normalMap;
}
Image* LoadImageFromFile(const string& filename)
{
ContentType type = DetermineFileType(filename);
Image* img = NULL;
clog << _("Loading image from file ") << filename << '\n';
switch (type)
{
case Content_JPEG:
img = LoadJPEGImage(filename);
break;
case Content_BMP:
img = LoadBMPImage(filename);
break;
case Content_PNG:
img = LoadPNGImage(filename);
break;
case Content_DDS:
case Content_DXT5NormalMap:
img = LoadDDSImage(filename);
break;
default:
clog << filename << _(": unrecognized or unsupported image file type.\n");
break;
}
return img;
}
#ifdef JPEG_SUPPORT
struct my_error_mgr
{
struct jpeg_error_mgr pub; // "public" fields
jmp_buf setjmp_buffer; // for return to caller
};
typedef struct my_error_mgr *my_error_ptr;
METHODDEF(void) my_error_exit(j_common_ptr cinfo)
{
// cinfo->err really points to a my_error_mgr struct, so coerce pointer
my_error_ptr myerr = (my_error_ptr) cinfo->err;
// Always display the message.
// We could postpone this until after returning, if we chose.
(*cinfo->err->output_message) (cinfo);
// Return control to the setjmp point
longjmp(myerr->setjmp_buffer, 1);
}
#endif // JPEG_SUPPORT
Image* LoadJPEGImage(const string& filename, int)
{
#ifdef JPEG_SUPPORT
Image* img = NULL;
// This struct contains the JPEG decompression parameters and pointers to
// working space (which is allocated as needed by the JPEG library).
struct jpeg_decompress_struct cinfo;
// We use our private extension JPEG error handler.
// Note that this struct must live as long as the main JPEG parameter
// struct, to avoid dangling-pointer problems.
struct my_error_mgr jerr;
// More stuff
JSAMPARRAY buffer; // Output row buffer
int row_stride; // physical row width in output buffer
long cont;
// In this example we want to open the input file before doing anything else,
// so that the setjmp() error recovery below can assume the file is open.
// VERY IMPORTANT: use "b" option to fopen() if you are on a machine that
// requires it in order to read binary files.
FILE *in;
in = fopen(filename.c_str(), "rb");
if (in == NULL)
return NULL;
// Step 1: allocate and initialize JPEG decompression object
// We set up the normal JPEG error routines, then override error_exit.
cinfo.err = jpeg_std_error(&jerr.pub);
jerr.pub.error_exit = my_error_exit;
// Establish the setjmp return context for my_error_exit to use.
if (setjmp(jerr.setjmp_buffer))
{
// If we get here, the JPEG code has signaled an error.
// We need to clean up the JPEG object, close the input file, and return.
jpeg_destroy_decompress(&cinfo);
fclose(in);
if (img != NULL)
delete img;
return NULL;
}
// Now we can initialize the JPEG decompression object.
jpeg_create_decompress(&cinfo);
// Step 2: specify data source (eg, a file)
jpeg_stdio_src(&cinfo, in);
// Step 3: read file parameters with jpeg_read_header()
(void) jpeg_read_header(&cinfo, TRUE);
// We can ignore the return value from jpeg_read_header since
// (a) suspension is not possible with the stdio data source, and
// (b) we passed TRUE to reject a tables-only JPEG file as an error.
// Step 4: set parameters for decompression
// In this example, we don't need to change any of the defaults set by
// jpeg_read_header(), so we do nothing here.
// Step 5: Start decompressor
(void) jpeg_start_decompress(&cinfo);
// We can ignore the return value since suspension is not possible
// with the stdio data source.
// We may need to do some setup of our own at this point before reading
// the data. After jpeg_start_decompress() we have the correct scaled
// output image dimensions available, as well as the output colormap
// if we asked for color quantization.
// In this example, we need to make an output work buffer of the right size.
// JSAMPLEs per row in output buffer
row_stride = cinfo.output_width * cinfo.output_components;
// Make a one-row-high sample array that will go away when done with image
buffer = (*cinfo.mem->alloc_sarray)
((j_common_ptr) & cinfo, JPOOL_IMAGE, row_stride, 1);
// Step 6: while (scan lines remain to be read)
// jpeg_read_scanlines(...);
// Here we use the library's state variable cinfo.output_scanline as the
// loop counter, so that we don't have to keep track ourselves.
int format = GL_RGB;
if (cinfo.output_components == 1)
format = GL_LUMINANCE;
img = new Image(format, cinfo.image_width, cinfo.image_height);
// cont = cinfo.output_height - 1;
cont = 0;
while (cinfo.output_scanline < cinfo.output_height)
{
// jpeg_read_scanlines expects an array of pointers to scanlines.
// Here the array is only one element long, but you could ask for
// more than one scanline at a time if that's more convenient.
(void) jpeg_read_scanlines(&cinfo, buffer, 1);
// Assume put_scanline_someplace wants a pointer and sample count.
// put_scanline_someplace(buffer[0], row_stride);
memcpy(img->getPixelRow(cont), buffer[0], row_stride);
cont++;
}
// Step 7: Finish decompression
(void) jpeg_finish_decompress(&cinfo);
// We can ignore the return value since suspension is not possible
// with the stdio data source.
// Step 8: Release JPEG decompression object
// This is an important step since it will release a good deal of memory.
jpeg_destroy_decompress(&cinfo);
// After finish_decompress, we can close the input file.
// Here we postpone it until after no more JPEG errors are possible,
// so as to simplify the setjmp error logic above. (Actually, I don't
// think that jpeg_destroy can do an error exit, but why assume anything...
fclose(in);
// At this point you may want to check to see whether any corrupt-data
// warnings occurred (test whether jerr.pub.num_warnings is nonzero).
return img;
#elif TARGET_OS_MAC
Image* img = NULL;
CGBuffer* cgJpegImage;
size_t img_w, img_h, img_d;
cgJpegImage = new CGBuffer(filename.c_str());
if (cgJpegImage == NULL) {
char tempcwd[2048];
getcwd(tempcwd, sizeof(tempcwd));
DPRINTF(0, "CGBuffer :: Error opening JPEG image file %s/%s\n", tempcwd, filename.c_str());
delete cgJpegImage;
return NULL;
}
if (!cgJpegImage->LoadJPEG()) {
char tempcwd[2048];
getcwd(tempcwd, sizeof(tempcwd));
DPRINTF(0, "CGBuffer :: Error loading JPEG image file %s/%s\n", tempcwd, filename.c_str());
delete cgJpegImage;
return NULL;
}
cgJpegImage->Render();
img_w = (size_t) cgJpegImage->image_size.width;
img_h = (size_t) cgJpegImage->image_size.height;
img_d = (size_t) ((cgJpegImage->image_depth == 8) ? 1 : 4);
// DPRINTF(0,"cgJpegImage :: %d x %d x %d [%d] bpp\n", img_w, img_h, (size_t)cgJpegImage->image_depth, img_d);
#ifdef MACOSX_ALPHA_JPEGS
int format = (img_d == 1) ? GL_LUMINANCE : GL_RGBA;
#else
int format = (img_d == 1) ? GL_LUMINANCE : GL_RGB;
#endif
img = new Image(format, img_w, img_h);
if (img == NULL || img->getPixels() == NULL) {
DPRINTF(0, "Could not create image\n");
delete cgJpegImage;
return NULL;
}
// following code flips image and skips alpha byte if no alpha support
unsigned char* bout = (unsigned char*) img->getPixels();
unsigned char* bin = (unsigned char*) cgJpegImage->buffer->data;
unsigned int bcount = img_w * img_h * img_d;
unsigned int i = 0;
bin += bcount+(img_w*img_d); // start one row past end
for (i=0; i<bcount; ++i)
{
// at end of row, move back two rows
if ( (i % (img_w * img_d)) == 0 ) bin -= 2*(img_w * img_d);
#ifndef MACOSX_ALPHA_JPEGS
if (( (img_d != 1) && !((i&3)^3) )) // skip extra byte
{
++bin;
} else
#endif // !MACOSX_ALPHA_JPEGS
*bout++ = *bin++;
}
delete cgJpegImage;
return img;
#else
return NULL;
#endif // JPEG_SUPPORT
}
#ifdef PNG_SUPPORT
void PNGReadData(png_structp png_ptr, png_bytep data, png_size_t length)
{
FILE* fp = (FILE*) png_get_io_ptr(png_ptr);
fread((void*) data, 1, length, fp);
}
#endif
Image* LoadPNGImage(const string& filename)
{
#ifndef PNG_SUPPORT
return NULL;
#else
char header[8];
png_structp png_ptr;
png_infop info_ptr;
png_uint_32 width, height;
int bit_depth, color_type, interlace_type;
FILE* fp = NULL;
Image* img = NULL;
png_bytep* row_pointers = NULL;
fp = fopen(filename.c_str(), "rb");
if (fp == NULL)
{
clog << _("Error opening image file ") << filename << '\n';
return NULL;
}
fread(header, 1, sizeof(header), fp);
if (png_sig_cmp((unsigned char*) header, 0, sizeof(header)))
{
clog << _("Error: ") << filename << _(" is not a PNG file.\n");
fclose(fp);
return NULL;
}
png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING,
NULL, NULL, NULL);
if (png_ptr == NULL)
{
fclose(fp);
return NULL;
}
info_ptr = png_create_info_struct(png_ptr);
if (info_ptr == NULL)
{
fclose(fp);
png_destroy_read_struct(&png_ptr, (png_infopp) NULL, (png_infopp) NULL);
return NULL;
}
if (setjmp(png_jmpbuf(png_ptr)))
{
fclose(fp);
if (img != NULL)
delete img;
png_destroy_read_struct(&png_ptr, &info_ptr, (png_infopp) NULL);
clog << _("Error reading PNG image file ") << filename << '\n';
return NULL;
}
// png_init_io(png_ptr, fp);
png_set_read_fn(png_ptr, (void*) fp, PNGReadData);
png_set_sig_bytes(png_ptr, sizeof(header));
png_read_info(png_ptr, info_ptr);
png_get_IHDR(png_ptr, info_ptr,
&width, &height, &bit_depth,
&color_type, &interlace_type,
NULL, NULL);
GLenum glformat = GL_RGB;
switch (color_type)
{
case PNG_COLOR_TYPE_GRAY:
glformat = GL_LUMINANCE;
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
glformat = GL_LUMINANCE_ALPHA;
break;
case PNG_COLOR_TYPE_RGB:
glformat = GL_RGB;
break;
case PNG_COLOR_TYPE_PALETTE:
case PNG_COLOR_TYPE_RGB_ALPHA:
glformat = GL_RGBA;
break;
default:
// badness
break;
}
img = new Image(glformat, width, height);
if (img == NULL)
{
fclose(fp);
png_destroy_read_struct(&png_ptr, &info_ptr, (png_infopp) NULL);
return NULL;
}
// TODO: consider using paletted textures if they're available
if (color_type == PNG_COLOR_TYPE_PALETTE)
{
png_set_palette_to_rgb(png_ptr);
}
if (color_type == PNG_COLOR_TYPE_GRAY && bit_depth < 8)
{
png_set_expand_gray_1_2_4_to_8(png_ptr);
}
if (png_get_valid(png_ptr, info_ptr, PNG_INFO_tRNS))
{
png_set_tRNS_to_alpha(png_ptr);
}
// TODO: consider passing images with < 8 bits/component to
// GL without expanding
if (bit_depth == 16)
png_set_strip_16(png_ptr);
else if (bit_depth < 8)
png_set_packing(png_ptr);
row_pointers = new png_bytep[height];
for (unsigned int i = 0; i < height; i++)
row_pointers[i] = (png_bytep) img->getPixelRow(i);
png_read_image(png_ptr, row_pointers);
delete[] row_pointers;
png_read_end(png_ptr, NULL);
png_destroy_read_struct(&png_ptr, &info_ptr, NULL);
fclose(fp);
return img;
#endif
}
// BMP file definitions--can't use windows.h because we might not be
// built on Windows!
typedef struct
{
unsigned char b;
unsigned char m;
unsigned int size;
unsigned int reserved;
unsigned int offset;
} BMPFileHeader;
typedef struct
{
unsigned int size;
int width;
int height;
unsigned short planes;
unsigned short bpp;
unsigned int compression;
unsigned int imageSize;
int widthPPM;
int heightPPM;
unsigned int colorsUsed;
unsigned int colorsImportant;
} BMPImageHeader;
static int readInt(ifstream& in)
{
unsigned char b[4];
in.read(reinterpret_cast<char*>(b), 4);
return ((int) b[3] << 24) + ((int) b[2] << 16)
+ ((int) b[1] << 8) + (int) b[0];
}
static short readShort(ifstream& in)
{
unsigned char b[2];
in.read(reinterpret_cast<char*>(b), 2);
return ((short) b[1] << 8) + (short) b[0];
}
static Image* LoadBMPImage(ifstream& in)
{
BMPFileHeader fileHeader;
BMPImageHeader imageHeader;
unsigned char* pixels;
in >> fileHeader.b;
in >> fileHeader.m;
fileHeader.size = readInt(in);
fileHeader.reserved = readInt(in);
fileHeader.offset = readInt(in);
if (fileHeader.b != 'B' || fileHeader.m != 'M')
return NULL;
imageHeader.size = readInt(in);
imageHeader.width = readInt(in);
imageHeader.height = readInt(in);
imageHeader.planes = readShort(in);
imageHeader.bpp = readShort(in);
imageHeader.compression = readInt(in);
imageHeader.imageSize = readInt(in);
imageHeader.widthPPM = readInt(in);
imageHeader.heightPPM = readInt(in);
imageHeader.colorsUsed = readInt(in);
imageHeader.colorsImportant = readInt(in);
if (imageHeader.width <= 0 || imageHeader.height <= 0)
return NULL;
// We currently don't support compressed BMPs
if (imageHeader.compression != 0)
return NULL;
// We don't handle 1-, 2-, or 4-bpp images
if (imageHeader.bpp != 8 && imageHeader.bpp != 24 && imageHeader.bpp != 32)
return NULL;
unsigned char* palette = NULL;
if (imageHeader.bpp == 8)
{
printf("Reading %d color palette\n", imageHeader.colorsUsed);
palette = new unsigned char[imageHeader.colorsUsed * 4];
in.read(reinterpret_cast<char*>(palette), imageHeader.colorsUsed * 4);
}
in.seekg(fileHeader.offset, ios::beg);
unsigned int bytesPerRow =
(imageHeader.width * imageHeader.bpp / 8 + 1) & ~1;
unsigned int imageBytes = bytesPerRow * imageHeader.height;
// slurp the image data
pixels = new unsigned char[imageBytes];
in.read(reinterpret_cast<char*>(pixels), imageBytes);
// check for truncated file
Image* img = new Image(GL_RGB, imageHeader.width, imageHeader.height);
if (img == NULL)
{
delete[] pixels;
return NULL;
}
// Copy the image and perform any necessary conversions
for (int y = 0; y < imageHeader.height; y++)
{
unsigned char* src = &pixels[y * bytesPerRow];
unsigned char* dst = img->getPixelRow(y);
switch (imageHeader.bpp)
{
case 8:
{
for (int x = 0; x < imageHeader.width; x++)
{
unsigned char* color = palette + (*src << 2);
dst[0] = color[2];
dst[1] = color[1];
dst[2] = color[0];
src++;
dst += 3;
}
}
break;
case 24:
{
for (int x = 0; x < imageHeader.width; x++)
{
dst[0] = src[2];
dst[1] = src[1];
dst[2] = src[0];
src += 3;
dst += 3;
}
}
break;
case 32:
{
for (int x = 0; x < imageHeader.width; x++)
{
dst[0] = src[2];
dst[1] = src[1];
dst[2] = src[0];
src += 4;
dst += 3;
}
}
break;
}
}
delete[] pixels;
return img;
}
Image* LoadBMPImage(const string& filename)
{
ifstream bmpFile(filename.c_str(), ios::in | ios::binary);
if (bmpFile.good())
{
Image* img = LoadBMPImage(bmpFile);
bmpFile.close();
return img;
}
else
{
return NULL;
}
}