celestia/src/celmath/quaternion.h

756 lines
19 KiB
C++

// quaternion.h
//
// Copyright (C) 2000-2006, Chris Laurel <claurel@shatters.net>
//
// Template-ized quaternion math library.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
#ifndef _QUATERNION_H_
#define _QUATERNION_H_
#include <limits>
#include <celmath/mathlib.h>
#include <celmath/vecmath.h>
template<class T> class Quat
{
public:
inline Quat();
inline Quat(const Quat<T>&);
inline Quat(T);
inline Quat(const Vector3<T>&);
inline Quat(T, const Vector3<T>&);
inline Quat(T, T, T, T);
inline Quat(const Matrix3<T>&);
inline Quat& operator+=(Quat);
inline Quat& operator-=(Quat);
inline Quat& operator*=(T);
Quat& operator*=(Quat);
inline Quat operator~() const; // conjugate
inline Quat operator-() const;
inline Quat operator+() const;
void setAxisAngle(Vector3<T> axis, T angle);
void getAxisAngle(Vector3<T>& axis, T& angle) const;
Matrix4<T> toMatrix4() const;
Matrix3<T> toMatrix3() const;
static Quat<T> slerp(const Quat<T>&, const Quat<T>&, T);
static Quat<T> vecToVecRotation(const Vector3<T>& v0,
const Vector3<T>& v1);
static Quat<T> matrixToQuaternion(const Matrix3<T>& m);
void rotate(Vector3<T> axis, T angle);
void xrotate(T angle);
void yrotate(T angle);
void zrotate(T angle);
bool isPure() const;
bool isReal() const;
T normalize();
static Quat<T> xrotation(T);
static Quat<T> yrotation(T);
static Quat<T> zrotation(T);
static Quat<T> lookAt(const Point3<T>& from, const Point3<T>& to, const Vector3<T>& up);
T w, x, y, z;
};
typedef Quat<float> Quatf;
typedef Quat<double> Quatd;
template<class T> Quat<T>::Quat() : w(0), x(0), y(0), z(0)
{
}
template<class T> Quat<T>::Quat(const Quat<T>& q) :
w(q.w), x(q.x), y(q.y), z(q.z)
{
}
template<class T> Quat<T>::Quat(T re) :
w(re), x(0), y(0), z(0)
{
}
// Create a 'pure' quaternion
template<class T> Quat<T>::Quat(const Vector3<T>& im) :
w(0), x(im.x), y(im.y), z(im.z)
{
}
template<class T> Quat<T>::Quat(T re, const Vector3<T>& im) :
w(re), x(im.x), y(im.y), z(im.z)
{
}
template<class T> Quat<T>::Quat(T _w, T _x, T _y, T _z) :
w(_w), x(_x), y(_y), z(_z)
{
}
// Create a quaternion from a rotation matrix
// TODO: purge this from code--it is replaced by the matrixToQuaternion()
// function.
template<class T> Quat<T>::Quat(const Matrix3<T>& m)
{
T trace = m[0][0] + m[1][1] + m[2][2];
T root;
if (trace >= (T) -1.0 + 1.0e-4f)
{
root = (T) sqrt(trace + 1);
w = (T) 0.5 * root;
root = (T) 0.5 / root;
x = (m[2][1] - m[1][2]) * root;
y = (m[0][2] - m[2][0]) * root;
z = (m[1][0] - m[0][1]) * root;
}
else
{
// Identify the largest element of the diagonal
int i = 0;
if (m[1][1] > m[i][i])
i = 1;
if (m[2][2] > m[i][i])
i = 2;
int j = (i == 2) ? 0 : i + 1;
int k = (j == 2) ? 0 : j + 1;
root = (T) sqrt(m[i][i] - m[j][j] - m[k][k] + 1);
T* xyz[3] = { &x, &y, &z };
*xyz[i] = (T) 0.5 * root;
root = (T) 0.5 / root;
w = (m[k][j] - m[j][k]) * root;
*xyz[j] = (m[j][i] + m[i][j]) * root;
*xyz[k] = (m[k][i] + m[i][k]) * root;
}
}
template<class T> Quat<T>& Quat<T>::operator+=(Quat<T> a)
{
x += a.x; y += a.y; z += a.z; w += a.w;
return *this;
}
template<class T> Quat<T>& Quat<T>::operator-=(Quat<T> a)
{
x -= a.x; y -= a.y; z -= a.z; w -= a.w;
return *this;
}
template<class T> Quat<T>& Quat<T>::operator*=(Quat<T> q)
{
*this = Quat<T>(w * q.w - x * q.x - y * q.y - z * q.z,
w * q.x + x * q.w + y * q.z - z * q.y,
w * q.y + y * q.w + z * q.x - x * q.z,
w * q.z + z * q.w + x * q.y - y * q.x);
return *this;
}
template<class T> Quat<T>& Quat<T>::operator*=(T s)
{
x *= s; y *= s; z *= s; w *= s;
return *this;
}
// conjugate operator
template<class T> Quat<T> Quat<T>::operator~() const
{
return Quat<T>(w, -x, -y, -z);
}
template<class T> Quat<T> Quat<T>::operator-() const
{
return Quat<T>(-w, -x, -y, -z);
}
template<class T> Quat<T> Quat<T>::operator+() const
{
return *this;
}
template<class T> Quat<T> operator+(Quat<T> a, Quat<T> b)
{
return Quat<T>(a.w + b.w, a.x + b.x, a.y + b.y, a.z + b.z);
}
template<class T> Quat<T> operator-(Quat<T> a, Quat<T> b)
{
return Quat<T>(a.w - b.w, a.x - b.x, a.y - b.y, a.z - b.z);
}
template<class T> Quat<T> operator*(Quat<T> a, Quat<T> b)
{
return Quat<T>(a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z,
a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y,
a.w * b.y + a.y * b.w + a.z * b.x - a.x * b.z,
a.w * b.z + a.z * b.w + a.x * b.y - a.y * b.x);
}
template<class T> Quat<T> operator*(T s, Quat<T> q)
{
return Quat<T>(s * q.w, s * q.x, s * q.y, s * q.z);
}
template<class T> Quat<T> operator*(Quat<T> q, T s)
{
return Quat<T>(s * q.w, s * q.x, s * q.y, s * q.z);
}
// equivalent to multiplying by the quaternion (0, v)
template<class T> Quat<T> operator*(Vector3<T> v, Quat<T> q)
{
return Quat<T>(-v.x * q.x - v.y * q.y - v.z * q.z,
v.x * q.w + v.y * q.z - v.z * q.y,
v.y * q.w + v.z * q.x - v.x * q.z,
v.z * q.w + v.x * q.y - v.y * q.x);
}
template<class T> Quat<T> operator/(Quat<T> q, T s)
{
return q * (1 / s);
}
template<class T> Quat<T> operator/(Quat<T> a, Quat<T> b)
{
return a * (~b / abs(b));
}
template<class T> bool operator==(Quat<T> a, Quat<T> b)
{
return a.x == b.x && a.y == b.y && a.z == b.z && a.w == b.w;
}
template<class T> bool operator!=(Quat<T> a, Quat<T> b)
{
return a.x != b.x || a.y != b.y || a.z != b.z || a.w != b.w;
}
// elementary functions
template<class T> Quat<T> conjugate(Quat<T> q)
{
return Quat<T>(q.w, -q.x, -q.y, -q.z);
}
template<class T> T norm(Quat<T> q)
{
return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
}
template<class T> T abs(Quat<T> q)
{
return (T) sqrt(norm(q));
}
template<class T> Quat<T> exp(Quat<T> q)
{
if (q.isReal())
{
return Quat<T>((T) exp(q.w));
}
else
{
T l = (T) sqrt(q.x * q.x + q.y * q.y + q.z * q.z);
T s = (T) sin(l);
T c = (T) cos(l);
T e = (T) exp(q.w);
T t = e * s / l;
return Quat<T>(e * c, t * q.x, t * q.y, t * q.z);
}
}
template<class T> Quat<T> log(Quat<T> q)
{
if (q.isReal())
{
if (q.w > 0)
{
return Quat<T>((T) log(q.w));
}
else if (q.w < 0)
{
// The log of a negative purely real quaternion has
// infinitely many values, all of the form (ln(-w), PI * I),
// where I is any unit vector. We arbitrarily choose an I
// of (1, 0, 0) here and whereever else a similar choice is
// necessary. Geometrically, the set of roots is a sphere
// of radius PI centered at ln(-w) on the real axis.
return Quat<T>((T) log(-q.w), (T) PI, 0, 0);
}
else
{
// error . . . ln(0) not defined
return Quat<T>(0);
}
}
else
{
T l = (T) sqrt(q.x * q.x + q.y * q.y + q.z * q.z);
T r = (T) sqrt(l * l + q.w * q.w);
T theta = (T) atan2(l, q.w);
T t = theta / l;
return Quat<T>((T) log(r), t * q.x, t * q.y, t * q.z);
}
}
template<class T> Quat<T> pow(Quat<T> q, T s)
{
return exp(s * log(q));
}
template<class T> Quat<T> pow(Quat<T> q, Quat<T> p)
{
return exp(p * log(q));
}
template<class T> Quat<T> sin(Quat<T> q)
{
if (q.isReal())
{
return Quat<T>((T) sin(q.w));
}
else
{
T l = (T) sqrt(q.x * q.x + q.y * q.y + q.z * q.z);
T m = q.w;
T s = (T) sin(m);
T c = (T) cos(m);
T il = 1 / l;
T e0 = (T) exp(-l);
T e1 = (T) exp(l);
T c0 = (T) -0.5 * e0 * il * c;
T c1 = (T) 0.5 * e1 * il * c;
return Quat<T>((T) 0.5 * e0 * s, c0 * q.x, c0 * q.y, c0 * q.z) +
Quat<T>((T) 0.5 * e1 * s, c1 * q.x, c1 * q.y, c1 * q.z);
}
}
template<class T> Quat<T> cos(Quat<T> q)
{
if (q.isReal())
{
return Quat<T>((T) cos(q.w));
}
else
{
T l = (T) sqrt(q.x * q.x + q.y * q.y + q.z * q.z);
T m = q.w;
T s = (T) sin(m);
T c = (T) cos(m);
T il = 1 / l;
T e0 = (T) exp(-l);
T e1 = (T) exp(l);
T c0 = (T) 0.5 * e0 * il * s;
T c1 = (T) -0.5 * e1 * il * s;
return Quat<T>((T) 0.5 * e0 * c, c0 * q.x, c0 * q.y, c0 * q.z) +
Quat<T>((T) 0.5 * e1 * c, c1 * q.x, c1 * q.y, c1 * q.z);
}
}
template<class T> Quat<T> sqrt(Quat<T> q)
{
// In general, the square root of a quaternion has two values, one
// of which is the negative of the other. However, any negative purely
// real quaternion has an infinite number of square roots.
// This function returns the positive root for positive reals and
// the root on the positive i axis for negative reals.
if (q.isReal())
{
if (q.w >= 0)
return Quat<T>((T) sqrt(q.w), 0, 0, 0);
else
return Quat<T>(0, (T) sqrt(-q.w), 0, 0);
}
else
{
T b = (T) sqrt(q.x * q.x + q.y * q.y + q.z * q.z);
T r = (T) sqrt(q.w * q.w + b * b);
if (q.w >= 0)
{
T m = (T) sqrt((T) 0.5 * (r + q.w));
T l = b / (2 * m);
T t = l / b;
return Quat<T>(m, q.x * t, q.y * t, q.z * t);
}
else
{
T l = (T) sqrt((T) 0.5 * (r - q.w));
T m = b / (2 * l);
T t = l / b;
return Quat<T>(m, q.x * t, q.y * t, q.z * t);
}
}
}
template<class T> T real(Quat<T> q)
{
return q.w;
}
template<class T> Vector3<T> imag(Quat<T> q)
{
return Vector3<T>(q.x, q.y, q.z);
}
// Quat methods
template<class T> bool Quat<T>::isReal() const
{
return (x == 0 && y == 0 && z == 0);
}
template<class T> bool Quat<T>::isPure() const
{
return w == 0;
}
template<class T> T Quat<T>::normalize()
{
T s = (T) sqrt(w * w + x * x + y * y + z * z);
T invs = (T) 1 / (T) s;
x *= invs;
y *= invs;
z *= invs;
w *= invs;
return s;
}
// Set to the unit quaternion representing an axis angle rotation. Assume
// that axis is a unit vector
template<class T> void Quat<T>::setAxisAngle(Vector3<T> axis, T angle)
{
T s, c;
Math<T>::sincos(angle * (T) 0.5, s, c);
x = s * axis.x;
y = s * axis.y;
z = s * axis.z;
w = c;
}
// Assuming that this a unit quaternion, return the in axis/angle form the
// orientation which it represents.
template<class T> void Quat<T>::getAxisAngle(Vector3<T>& axis,
T& angle) const
{
// The quaternion has the form:
// w = cos(angle/2), (x y z) = sin(angle/2)*axis
T magSquared = x * x + y * y + z * z;
if (magSquared > (T) 1e-10)
{
T s = (T) 1 / (T) sqrt(magSquared);
axis.x = x * s;
axis.y = y * s;
axis.z = z * s;
if (w <= -1 || w >= 1)
angle = 0;
else
angle = (T) acos(w) * 2;
}
else
{
// The angle is zero, so we pick an arbitrary unit axis
axis.x = 1;
axis.y = 0;
axis.z = 0;
angle = 0;
}
}
// Convert this (assumed to be normalized) quaternion to a rotation matrix
template<class T> Matrix4<T> Quat<T>::toMatrix4() const
{
T wx = w * x * 2;
T wy = w * y * 2;
T wz = w * z * 2;
T xx = x * x * 2;
T xy = x * y * 2;
T xz = x * z * 2;
T yy = y * y * 2;
T yz = y * z * 2;
T zz = z * z * 2;
return Matrix4<T>(Vector4<T>(1 - yy - zz, xy - wz, xz + wy, 0),
Vector4<T>(xy + wz, 1 - xx - zz, yz - wx, 0),
Vector4<T>(xz - wy, yz + wx, 1 - xx - yy, 0),
Vector4<T>(0, 0, 0, 1));
}
// Convert this (assumed to be normalized) quaternion to a rotation matrix
template<class T> Matrix3<T> Quat<T>::toMatrix3() const
{
T wx = w * x * 2;
T wy = w * y * 2;
T wz = w * z * 2;
T xx = x * x * 2;
T xy = x * y * 2;
T xz = x * z * 2;
T yy = y * y * 2;
T yz = y * z * 2;
T zz = z * z * 2;
return Matrix3<T>(Vector3<T>(1 - yy - zz, xy - wz, xz + wy),
Vector3<T>(xy + wz, 1 - xx - zz, yz - wx),
Vector3<T>(xz - wy, yz + wx, 1 - xx - yy));
}
template<class T> T dot(Quat<T> a, Quat<T> b)
{
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
}
/*! Spherical linear interpolation of two unit quaternions. Designed for
* interpolating rotations, so shortest path between rotations will be
* taken.
*/
template<class T> Quat<T> Quat<T>::slerp(const Quat<T>& q0,
const Quat<T>& q1,
T t)
{
const double Nlerp_Threshold = 0.99999;
T cosAngle = dot(q0, q1);
// Assuming the quaternions representat rotations, ensure that we interpolate
// through the shortest path by inverting one of the quaternions if the
// angle between them is negative.
Quat qstart;
if (cosAngle < 0)
{
qstart = -q0;
cosAngle = -cosAngle;
}
else
{
qstart = q0;
}
// Avoid precision troubles when we're near the limit of acos range and
// perform a linear interpolation followed by a normalize when interpolating
// very small angles.
if (cosAngle > (T) Nlerp_Threshold)
{
Quat<T> q = (1 - t) * qstart + t * q1;
q.normalize();
return q;
}
// Below code unnecessary since we've already inverted cosAngle if it's negative.
// It will be necessary if we change slerp to not assume that we want the shortest
// path between two rotations.
#if 0
// Because of potential rounding errors, we must clamp c to the domain of acos.
if (cosAngle < (T) -1.0)
cosAngle = (T) -1.0;
#endif
T angle = (T) acos(cosAngle);
T interpolatedAngle = t * angle;
// qstart and q2 will form an orthonormal basis in the plane of interpolation.
Quat q2 = q1 - qstart * cosAngle;
q2.normalize();
return qstart * (T) cos(interpolatedAngle) + q2 * (T) sin(interpolatedAngle);
#if 0
T s = (T) sin(angle);
T is = (T) 1.0 / s;
return q0 * ((T) sin((1 - t) * angle) * is) +
q1 * ((T) sin(t * angle) * is);
#endif
}
/*! Return a unit quaternion that representing a rotation that will
* rotation v0 to v1 about the axis perpendicular to them both. If the
* vectors point in opposite directions, there is no unique axis and
* (arbitrarily) a rotation about the x axis will be chosen.
*/
template<class T> Quat<T> Quat<T>::vecToVecRotation(const Vector3<T>& v0,
const Vector3<T>& v1)
{
// We need sine and cosine of half the angle between v0 and v1, so
// compute the vector halfway between v0 and v1. The cross product of
// half and v1 gives the imaginary part of the quaternion
// (axis * sin(angle/2)), and the dot product of half and v1 gives
// the real part.
Vector3<T> half = (v0 + v1) * (T) 0.5;
T hl = half.length();
if (hl > (T) 0.0)
{
half = half / hl; // normalize h
// The magnitude of rotAxis is the sine of half the angle between
// v0 and v1.
Vector3<T> rotAxis = half ^ v1;
T cosAngle = half * v1;
return Quat<T>(cosAngle, rotAxis.x, rotAxis.y, rotAxis.z);
}
else
{
// The vectors point in exactly opposite directions, so there is
// no unique axis of rotation. Rotating v0 180 degrees about any
// axis will map it to v1; we'll choose the x-axis.
return Quat<T>((T) 0.0, (T) 1.0, (T) 0.0, (T) 0.0);
}
}
/*! Create a quaternion from a rotation matrix
*/
template<class T> Quat<T> Quat<T>::matrixToQuaternion(const Matrix3<T>& m)
{
Quat<T> q;
T trace = m[0][0] + m[1][1] + m[2][2];
T root;
T epsilon = std::numeric_limits<T>::epsilon() * (T) 1e3;
if (trace >= epsilon - 1)
{
root = (T) sqrt(trace + 1);
q.w = (T) 0.5 * root;
root = (T) 0.5 / root;
q.x = (m[2][1] - m[1][2]) * root;
q.y = (m[0][2] - m[2][0]) * root;
q.z = (m[1][0] - m[0][1]) * root;
}
else
{
// Set i to the largest element of the diagonal
int i = 0;
if (m[1][1] > m[i][i])
i = 1;
if (m[2][2] > m[i][i])
i = 2;
int j = (i == 2) ? 0 : i + 1;
int k = (j == 2) ? 0 : j + 1;
root = (T) sqrt(m[i][i] - m[j][j] - m[k][k] + 1);
T* xyz[3] = { &q.x, &q.y, &q.z };
*xyz[i] = (T) 0.5 * root;
root = (T) 0.5 / root;
q.w = (m[k][j] - m[j][k]) * root;
*xyz[j] = (m[j][i] + m[i][j]) * root;
*xyz[k] = (m[k][i] + m[i][k]) * root;
}
return q;
}
/*! Assuming that this is a unit quaternion representing an orientation,
* apply a rotation of angle radians about the specfied axis
*/
template<class T> void Quat<T>::rotate(Vector3<T> axis, T angle)
{
Quat q;
q.setAxisAngle(axis, angle);
*this = q * *this;
}
// Assuming that this is a unit quaternion representing an orientation,
// apply a rotation of angle radians about the x-axis
template<class T> void Quat<T>::xrotate(T angle)
{
T s, c;
Math<T>::sincos(angle * (T) 0.5, s, c);
*this = Quat<T>(c, s, 0, 0) * *this;
}
// Assuming that this is a unit quaternion representing an orientation,
// apply a rotation of angle radians about the y-axis
template<class T> void Quat<T>::yrotate(T angle)
{
T s, c;
Math<T>::sincos(angle * (T) 0.5, s, c);
*this = Quat<T>(c, 0, s, 0) * *this;
}
// Assuming that this is a unit quaternion representing an orientation,
// apply a rotation of angle radians about the z-axis
template<class T> void Quat<T>::zrotate(T angle)
{
T s, c;
Math<T>::sincos(angle * (T) 0.5, s, c);
*this = Quat<T>(c, 0, 0, s) * *this;
}
template<class T> Quat<T> Quat<T>::xrotation(T angle)
{
T s, c;
Math<T>::sincos(angle * (T) 0.5, s, c);
return Quat<T>(c, s, 0, 0);
}
template<class T> Quat<T> Quat<T>::yrotation(T angle)
{
T s, c;
Math<T>::sincos(angle * (T) 0.5, s, c);
return Quat<T>(c, 0, s, 0);
}
template<class T> Quat<T> Quat<T>::zrotation(T angle)
{
T s, c;
Math<T>::sincos(angle * (T) 0.5, s, c);
return Quat<T>(c, 0, 0, s);
}
/*! Determine an orientation that will make the negative z-axis point from
* from the observer to the target, with the y-axis pointing in direction
* of the component of 'up' that is orthogonal to the z-axis.
*/
template<class T> Quat<T>
Quat<T>::lookAt(const Point3<T>& from, const Point3<T>& to, const Vector3<T>& up)
{
Vector3<T> n = to - from;
n.normalize();
Vector3<T> v = n ^ up;
v.normalize();
Vector3<T> u = v ^ n;
return Quat<T>::matrixToQuaternion(Matrix3<T>(v, u, -n));
}
#endif // _QUATERNION_H_