farmbot-arduino-firmware/src/StepperControl.cpp

543 lines
14 KiB
C++

#include "StepperControl.h"
#include "TimerOne.h"
static StepperControl* instance;
StepperControl * StepperControl::getInstance() {
if (!instance) {
instance = new StepperControl();
};
return instance;
}
;
const int MOVEMENT_INTERRUPT_SPEED = 100; // Interrupt cycle in micro seconds
StepperControl::StepperControl() {
axisX = StepperControlAxis();
axisY = StepperControlAxis();
axisZ = StepperControlAxis();
axisX.label = 'X';
axisY.label = 'Y';
axisZ.label = 'Z';
axisX.loadPinNumbers(X_STEP_PIN, X_DIR_PIN, X_ENABLE_PIN, X_MIN_PIN, X_MAX_PIN);
axisY.loadPinNumbers(Y_STEP_PIN, Y_DIR_PIN, Y_ENABLE_PIN, Y_MIN_PIN, Y_MAX_PIN);
axisZ.loadPinNumbers(Z_STEP_PIN, Z_DIR_PIN, Z_ENABLE_PIN, Z_MIN_PIN, Z_MAX_PIN);
loadMotorSettings();
}
/**
* xDest - destination X in steps
* yDest - destination Y in steps
* zDest - destination Z in steps
* maxStepsPerSecond - maximum number of steps per second
* maxAccelerationStepsPerSecond - maximum number of acceleration in steps per second
*/
int StepperControl::moveToCoords( long xDest, long yDest, long zDest,
unsigned int xMaxSpd, unsigned int yMaxSpd, unsigned int zMaxSpd,
bool xHome, bool yHome, bool zHome) {
unsigned long currentMillis = 0;
unsigned long timeStart = millis();
int incomingByte = 0;
int error = 0;
// load motor settings
loadMotorSettings();
// if a speed is given in the command, use that instead of the config speed
if (xMaxSpd > 0 && xMaxSpd < speedMax[0]) {
speedMax[0] = xMaxSpd;
}
if (yMaxSpd > 0 && yMaxSpd < speedMax[1]) {
speedMax[1] = yMaxSpd;
}
if (zMaxSpd > 0 && zMaxSpd < speedMax[2]) {
speedMax[2] = zMaxSpd;
}
axisX.setMaxSpeed(speedMax[0]);
axisY.setMaxSpeed(speedMax[1]);
axisZ.setMaxSpeed(speedMax[2]);
// Load coordinates into axis class
long sourcePoint[3] = {0,0,0};
sourcePoint[0] = CurrentState::getInstance()->getX();
sourcePoint[1] = CurrentState::getInstance()->getY();
sourcePoint[2] = CurrentState::getInstance()->getZ();
long currentPoint[3] = {0,0,0};
currentPoint[0] = CurrentState::getInstance()->getX();
currentPoint[1] = CurrentState::getInstance()->getY();
currentPoint[2] = CurrentState::getInstance()->getZ();
long destinationPoint[3]= {0,0,0};
destinationPoint[0] = xDest;
destinationPoint[1] = yDest;
destinationPoint[2] = zDest;
// Load coordinates into motor control
axisX.loadCoordinates(currentPoint[0],destinationPoint[0],xHome);
axisY.loadCoordinates(currentPoint[1],destinationPoint[1],yHome);
axisZ.loadCoordinates(currentPoint[2],destinationPoint[2],zHome);
// Prepare for movement
storeEndStops();
reportEndStops();
axisX.setDirectionAxis();
axisY.setDirectionAxis();
axisZ.setDirectionAxis();
enableMotors();
// Start movement
axisActive[0] = true;
axisActive[1] = true;
axisActive[2] = true;
axisX.checkMovement();
axisY.checkMovement();
axisZ.checkMovement();
Timer1.start();
// Let the interrupt handle all the movements
while (axisActive[0] || axisActive[1] || axisActive[2]) {
delay(1);
axisActive[0] = axisX.isAxisActive();
axisActive[1] = axisY.isAxisActive();
axisActive[2] = axisZ.isAxisActive();
storeEndStops();
// Check timeouts
if (axisActive[0] == true && ((millis() >= timeStart && millis() - timeStart > timeOut[0] * 1000) || (millis() < timeStart && millis() > timeOut[0] * 1000))) {
error = 1;
}
if (axisActive[1] == true && ((millis() >= timeStart && millis() - timeStart > timeOut[0] * 1000) || (millis() < timeStart && millis() > timeOut[0] * 1000))) {
error = 1;
}
if (axisActive[2] == true && ((millis() >= timeStart && millis() - timeStart > timeOut[0] * 1000) || (millis() < timeStart && millis() > timeOut[0] * 1000))) {
error = 1;
}
// Check if there is an emergency stop command
if (Serial.available() > 0) {
incomingByte = Serial.read();
if (incomingByte == 69 || incomingByte == 101) {
error = 1;
}
}
if (error == 1) {
Serial.print("R99 error\n");
Timer1.stop();
axisActive[0] = false;
axisActive[1] = false;
axisActive[2] = false;
}
// Periodically send message still active
currentMillis++;
if (currentMillis % 2500 == 0)
{
Serial.print("R04\n");
}
}
Serial.print("R99 stopped\n");
Timer1.stop();
disableMotors();
currentPoint[0] = axisX.currentPoint();
currentPoint[1] = axisY.currentPoint();
currentPoint[2] = axisZ.currentPoint();
CurrentState::getInstance()->setX(currentPoint[0]);
CurrentState::getInstance()->setY(currentPoint[1]);
CurrentState::getInstance()->setZ(currentPoint[2]);
storeEndStops();
reportEndStops();
reportPosition();
return error;
}
//
// Calibration
//
int StepperControl::calibrateAxis(int axis) {
// Load motor settings
loadMotorSettings();
//unsigned long timeStart = millis();
bool movementDone = false;
int paramValueInt = 0;
int stepsCount = 0;
int incomingByte = 0;
int error = 0;
bool invertEndStops = false;
int parEndInv;
int parNbrStp;
// Prepare for movement
storeEndStops();
reportEndStops();
// Select the right axis
StepperControlAxis calibAxis;
switch (axis) {
case 0:
calibAxis = axisX;
parEndInv = MOVEMENT_INVERT_ENDPOINTS_X;
parNbrStp = MOVEMENT_AXIS_NR_STEPS_X;
invertEndStops = endStInv[0];
break;
case 1:
calibAxis = axisY;
parEndInv = MOVEMENT_INVERT_ENDPOINTS_Y;;
parNbrStp = MOVEMENT_AXIS_NR_STEPS_Y;
invertEndStops = endStInv[0];
break;
case 2:
calibAxis = axisZ;
parEndInv = MOVEMENT_INVERT_ENDPOINTS_Z;
parNbrStp = MOVEMENT_AXIS_NR_STEPS_Z;
invertEndStops = endStInv[0];
break;
default:
Serial.print("R99 Calibration error: invalid axis selected\n");
return 1;
}
// Preliminary checks
if (calibAxis.endStopMin() || calibAxis.endStopMax()) {
Serial.print("R99 Calibration error: end stop active before start\n");
return 1;
}
Serial.print("R99");
Serial.print(" axis ");
Serial.print(calibAxis.label);
Serial.print(" calibration start");
Serial.print("\n");
// Move towards home
calibAxis.enableMotor();
calibAxis.setDirectionHome();
stepsCount = 0;
movementDone = false;
while (!movementDone && error == 0) {
// Check if there is an emergency stop command
if (Serial.available() > 0) {
incomingByte = Serial.read();
if (incomingByte == 69 || incomingByte == 101) {
movementDone = true;
error = 1;
}
}
// Move until the end stop for home position is reached
if ((!calibAxis.endStopMin() && !calibAxis.endStopMax()) && !movementDone) {
calibAxis.setMotorStep();
delayMicroseconds(1000000 / speedMin[axis] /2);
stepsCount++;
if (stepsCount % (speedMin[axis] * 3) == 0)
{
// Periodically send message still active
Serial.print("R04\n");
}
calibAxis.resetMotorStep();
delayMicroseconds(1000000 / speedMin[axis] /2);
} else {
movementDone = true;
// If end stop for home is active, set the position to zero
if (calibAxis.endStopMax())
{
invertEndStops = true;
}
}
}
Serial.print("R99");
Serial.print(" axis ");
Serial.print(calibAxis.label);
Serial.print(" at first end stop");
Serial.print("\n");
// Report back the end stop setting
if (error == 0) {
if (invertEndStops) {
paramValueInt = 1;
} else {
paramValueInt = 0;
}
Serial.print("R23");
Serial.print(" ");
Serial.print("P");
Serial.print(parEndInv);
Serial.print(" ");
Serial.print("V");
Serial.print(paramValueInt);
Serial.print("\n");
}
// Store the status of the system
storeEndStops();
reportEndStops();
// Move into the other direction now, and measure the number of steps
stepsCount = 0;
movementDone = false;
calibAxis.setDirectionAway();
while (!movementDone && error == 0) {
// Check if there is an emergency stop command
if (Serial.available() > 0) {
incomingByte = Serial.read();
if (incomingByte == 69 || incomingByte == 101) {
movementDone = true;
error = 1;
}
}
// Move until the end stop at the other side of the axis is reached
if (((!invertEndStops && !calibAxis.endStopMax()) || (invertEndStops && !calibAxis.endStopMin())) && !movementDone) {
calibAxis.setMotorStep();
stepsCount++;
delayMicroseconds(1000000 / speedMin[axis] /2);
if (stepsCount % (speedMin[axis] * 3) == 0)
{
// Periodically send message still active
Serial.print("R04\n");
}
calibAxis.resetMotorStep();
delayMicroseconds(1000000 / speedMin[axis] /2);
} else {
movementDone = true;
}
}
Serial.print("R99");
Serial.print(" axis ");
Serial.print(calibAxis.label);
Serial.print(" at second end stop");
Serial.print("\n");
// Report back the end stop setting
if (error == 0) {
Serial.print("R23");
Serial.print(" ");
Serial.print("P");
Serial.print(parNbrStp);
Serial.print(" ");
Serial.print("V");
Serial.print(stepsCount);
Serial.print("\n");
}
calibAxis.disableMotor();
storeEndStops();
reportEndStops();
switch (axis) {
case 0:
CurrentState::getInstance()->setX(stepsCount);
break;
case 1:
CurrentState::getInstance()->setY(stepsCount);
break;
case 2:
CurrentState::getInstance()->setZ(stepsCount);
break;
}
reportPosition();
return error;
}
// Handle movement by checking each axis
void StepperControl::handleMovementInterrupt(void){
axisX.checkTiming();
axisY.checkTiming();
axisZ.checkTiming();
}
bool interruptBusy = false;
void handleMovementInterruptTest(void) {
if (interruptBusy == false) {
interruptBusy = true;
StepperControl::getInstance()->handleMovementInterrupt();
//blinkLed();
interruptBusy = false;
}
}
// Start the interrupt used for moviing
// Interrupt management code library written by Paul Stoffregen
void StepperControl::initInterrupt() {
//Timer1.attachInterrupt(StepperControl::getInstance()->handleMovementInterrupt);
Timer1.attachInterrupt(handleMovementInterruptTest);
Timer1.initialize(MOVEMENT_INTERRUPT_SPEED);
Timer1.stop();
}
unsigned long StepperControl::getMaxLength(unsigned long lengths[3]) {
unsigned long max = lengths[0];
for (int i = 1; i < 3; i++) {
if (lengths[i] > max) {
max = lengths[i];
}
}
return max;
}
void StepperControl::enableMotors() {
axisX.enableMotor();
axisY.enableMotor();
axisZ.enableMotor();
delay(100);
}
void StepperControl::disableMotors() {
axisX.disableMotor();
axisY.disableMotor();
axisZ.disableMotor();
delay(100);
}
bool StepperControl::endStopsReached() {
if ( axisX.endStopsReached() ||
axisY.endStopsReached() ||
axisZ.endStopsReached()) {
return true;
}
return false;
}
void StepperControl::reportEndStops() {
CurrentState::getInstance()->printEndStops();
}
void StepperControl::reportPosition(){
CurrentState::getInstance()->printPosition();
}
void StepperControl::storeEndStops() {
CurrentState::getInstance()->storeEndStops();
}
/**
* water is dosed by setting the pin for the water high for a number of miliseconds
*
*/
//void StepperControl::doseWaterByTime(long time) {
// digitalWrite(HEATER_1_PIN, HIGH);
// delay(time);
// digitalWrite(HEATER_1_PIN, LOW);
//}
void StepperControl::loadMotorSettings() {
// Load settings
homeIsUp[0] = ParameterList::getInstance()->getValue(MOVEMENT_HOME_UP_X);
homeIsUp[1] = ParameterList::getInstance()->getValue(MOVEMENT_HOME_UP_Y);
homeIsUp[2] = ParameterList::getInstance()->getValue(MOVEMENT_HOME_UP_Z);
speedMax[0] = ParameterList::getInstance()->getValue(MOVEMENT_MAX_SPD_X);
speedMax[1] = ParameterList::getInstance()->getValue(MOVEMENT_MAX_SPD_Y);
speedMax[2] = ParameterList::getInstance()->getValue(MOVEMENT_MAX_SPD_Z);
speedMin[0] = ParameterList::getInstance()->getValue(MOVEMENT_MIN_SPD_X);
speedMin[1] = ParameterList::getInstance()->getValue(MOVEMENT_MIN_SPD_Y);
speedMin[2] = ParameterList::getInstance()->getValue(MOVEMENT_MIN_SPD_Z);
stepsAcc[0] = ParameterList::getInstance()->getValue(MOVEMENT_STEPS_ACC_DEC_X);
stepsAcc[1] = ParameterList::getInstance()->getValue(MOVEMENT_STEPS_ACC_DEC_Y);
stepsAcc[2] = ParameterList::getInstance()->getValue(MOVEMENT_STEPS_ACC_DEC_Z);
motorInv[0] = ParameterList::getInstance()->getValue(MOVEMENT_INVERT_MOTOR_X);
motorInv[1] = ParameterList::getInstance()->getValue(MOVEMENT_INVERT_MOTOR_Y);
motorInv[2] = ParameterList::getInstance()->getValue(MOVEMENT_INVERT_MOTOR_Z);
endStInv[0] = ParameterList::getInstance()->getValue(MOVEMENT_INVERT_ENDPOINTS_X);
endStInv[1] = ParameterList::getInstance()->getValue(MOVEMENT_INVERT_ENDPOINTS_Y);
endStInv[2] = ParameterList::getInstance()->getValue(MOVEMENT_INVERT_ENDPOINTS_Z);
timeOut[0] = ParameterList::getInstance()->getValue(MOVEMENT_TIMEOUT_X);
timeOut[1] = ParameterList::getInstance()->getValue(MOVEMENT_TIMEOUT_X);
timeOut[2] = ParameterList::getInstance()->getValue(MOVEMENT_TIMEOUT_X);
axisX.loadMotorSettings(speedMax[0], speedMin[0], stepsAcc[0], timeOut[0], homeIsUp[0], motorInv[0], endStInv[0], MOVEMENT_INTERRUPT_SPEED);
axisY.loadMotorSettings(speedMax[1], speedMin[1], stepsAcc[1], timeOut[1], homeIsUp[1], motorInv[1], endStInv[1], MOVEMENT_INTERRUPT_SPEED);
axisZ.loadMotorSettings(speedMax[2], speedMin[2], stepsAcc[2], timeOut[2], homeIsUp[2], motorInv[2], endStInv[2], MOVEMENT_INTERRUPT_SPEED);
}