karoo_gp/modules/karoo_gp_base_class.py

2561 lines
110 KiB
Python

# Karoo GP Base Class
# Define the methods and global variables used by Karoo GP
# by Kai Staats, MSc with TensorFlow support provided by Iurii Milovanov; see LICENSE.md
# version 2.3 for Python 3.6
'''
A NOTE TO THE NEWBIE, EXPERT, AND BRAVE
Even if you are highly experienced in Genetic Programming, it is recommended that you review the 'Karoo User Guide' before running
this application. While your computer will not burst into flames nor will the sun collapse into a black hole if you do not, you will
likely find more enjoyment of this particular flavour of GP with a little understanding of its intent and design.
'''
import sys
import os
import csv
import time
import numpy as np
import sklearn.metrics as skm
#import sklearn.cross_validation as skcv # Python 2.7
import sklearn.model_selection as skcv
from sympy import sympify
from datetime import datetime
from collections import OrderedDict
import karoo_gp_pause as menu
# np.random.seed(1000) # for reproducibility
### TensorFlow Imports and Definitions ###
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1"
import tensorflow as tf
import ast
import operator as op
operators = {ast.Add: tf.add, # e.g., a + b
ast.Sub: tf.subtract, # e.g., a - b
ast.Mult: tf.multiply, # e.g., a * b
ast.Div: tf.divide, # e.g., a / b
ast.Pow: tf.pow, # e.g., a ** 2
ast.USub: tf.negative, # e.g., -a
ast.And: tf.logical_and, # e.g., a and b
ast.Or: tf.logical_or, # e.g., a or b
ast.Not: tf.logical_not, # e.g., not a
ast.Eq: tf.equal, # e.g., a == b
ast.NotEq: tf.not_equal, # e.g., a != b
ast.Lt: tf.less, # e.g., a < b
ast.LtE: tf.less_equal, # e.g., a <= b
ast.Gt: tf.greater, # e.g., a > b
ast.GtE: tf.greater_equal, # e.g., a >= 1
'abs': tf.abs, # e.g., abs(a)
'sign': tf.sign, # e.g., sign(a)
'square': tf.square, # e.g., square(a)
'sqrt': tf.sqrt, # e.g., sqrt(a)
'pow': tf.pow, # e.g., pow(a, b)
'log': tf.log, # e.g., log(a)
'log1p': tf.log1p, # e.g., log1p(a)
'cos': tf.cos, # e.g., cos(a)
'sin': tf.sin, # e.g., sin(a)
'tan': tf.tan, # e.g., tan(a)
'acos': tf.acos, # e.g., acos(a)
'asin': tf.asin, # e.g., asin(a)
'atan': tf.atan, # e.g., atan(a)
}
np.set_printoptions(linewidth = 320) # set the terminal to print 320 characters before line-wrapping in order to view Trees
class Base_GP(object):
'''
This Base_BP class contains all methods for Karoo GP. Method names are differentiated from global variable names
(defined below) by the prefix 'fx_' followed by an object and action, as in fx_display_tree(), with a few
expections, such as fx_fitness_gene_pool().
The method categories (denoted by +++ banners +++) are as follows:
fx_karoo_ Methods to Run Karoo GP
fx_data_ Methods to Load and Archive Data
fx_init_ Methods to Construct the 1st Generation
fx_eval_ Methods to Evaluate a Tree
fx_fitness_ Methods to Train and Test a Tree for Fitness
fx_nextgen_ Methods to Construct the next Generation
fx_evolve_ Methods to Evolve a Population
fx_display_ Methods to Visualize a Tree
Error checks are quickly located by searching for 'ERROR!'
'''
def __init__(self):
'''
### Global variables used for data management ###
self.data_train store train data for processing in TF
self.data_test store test data for processing in TF
self.tf_device set TF computation backend device (CPU or GPU)
self.tf_device_log employed for TensorFlow debugging
self.data_train_cols number of cols in the TRAINING data - see fx_data_load()
self.data_train_rows number of rows in the TRAINING data - see fx_data_load()
self.data_test_cols number of cols in the TEST data - see fx_data_load()
self.data_test_rows number of rows in the TEST data - see fx_data_load()
self.functions user defined functions (operators) from the associated files/[functions].csv
self.terminals user defined variables (operands) from the top row of the associated [data].csv
self.coeff user defined coefficients (NOT YET IN USE)
self.fitness_type fitness type
self.datetime date-time stamp of when the unique directory is created
self.path full path to the unique directory created with each run
self.dataset local path and dataset filename
### Global variables used for evolutionary management ###
self.population_a the root generation from which Trees are chosen for mutation and reproduction
self.population_b the generation constructed from gp.population_a (recyled)
self.gene_pool once-per-generation assessment of trees that meet min and max boundary conditions
self.gen_id simple n + 1 increment
self.fitness_type set in fx_data_load() as either a minimising or maximising function
self.tree axis-1, 13 element Numpy array that defines each Tree, stored in 'gp.population'
self.pop_* 13 variables that define each Tree - see fx_init_tree_initialise()
'''
self.algo_raw = [] # the raw expression generated by Sympy per Tree -- CONSIDER MAKING THIS VARIABLE LOCAL
self.algo_sym = [] # the expression generated by Sympy per Tree -- CONSIDER MAKING THIS VARIABLE LOCAL
self.fittest_dict = {} # all Trees which share the best fitness score
self.gene_pool = [] # store all Tree IDs for use by Tournament
self.class_labels = 0 # the number of true class labels (data_y)
return
#+++++++++++++++++++++++++++++++++++++++++++++
# Methods to Run Karoo GP |
#+++++++++++++++++++++++++++++++++++++++++++++
def fx_karoo_gp(self, kernel, tree_type, tree_depth_base, tree_depth_max, tree_depth_min, tree_pop_max, gen_max, tourn_size, filename, evolve_repro, evolve_point, evolve_branch, evolve_cross, display, precision, swim, mode):
'''
This method enables the engagement of the entire Karoo GP application. Instead of returning the user to the pause
menu, this script terminates at the command-line, providing support for bash and chron job execution.
Calld by: user script karoo_gp.py
Arguments required: (see below)
'''
### PART 1 - set global variables to those local values passed from the user script ###
self.kernel = kernel # fitness function
# tree_type is passed between methods to construct specific trees
# tree_depth_base is passed between methods to construct specific trees
self.tree_depth_max = tree_depth_max # maximum Tree depth for the entire run; limits bloat
self.tree_depth_min = tree_depth_min # minimum number of nodes
self.tree_pop_max = tree_pop_max # maximum number of Trees per generation
self.gen_max = gen_max # maximum number of generations
self.tourn_size = tourn_size # number of Trees selected for each tournament
# filename is passed between methods to work with specific populations
self.evolve_repro = evolve_repro # quantity of a population generated through Reproduction
self.evolve_point = evolve_point # quantity of a population generated through Point Mutation
self.evolve_branch = evolve_branch # quantity of a population generated through Branch Mutation
self.evolve_cross = evolve_cross # quantity of a population generated through Crossover
self.display = display # display mode is set to (s)ilent # level of on-screen feedback
self.precision = precision # the number of floating points for the round function in 'fx_fitness_eval'
self.swim = swim # pass along the gene_pool restriction methodology
# mode is engaged at the end of the run, below
### PART 2 - construct first generation of Trees ###
self.fx_data_load(filename)
self.gen_id = 1 # set initial generation ID
self.population_a = ['Karoo GP by Kai Staats, Generation ' + str(self.gen_id)] # initialise population_a to host the first generation
self.population_b = ['placeholder'] # initialise population_b to satisfy fx_karoo_pause()
self.fx_init_construct(tree_type, tree_depth_base) # construct the first population of Trees
if self.kernel == 'p': # terminate here for Play mode
self.fx_display_tree(self.tree) # print the current Tree
self.fx_data_tree_write(self.population_a, 'a') # save this one Tree to disk
sys.exit()
elif self.gen_max == 1: # terminate here if constructing just one generation
self.fx_data_tree_write(self.population_a, 'a') # save this single population to disk
print ('\n We have constructed a single, stochastic population of', self.tree_pop_max,'Trees, and saved to disk')
sys.exit()
else: print ('\n We have constructed the first, stochastic population of', self.tree_pop_max,'Trees')
### PART 3 - evaluate first generation of Trees ###
print ('\n Evaluate the first generation of Trees ...')
self.fx_fitness_gym(self.population_a) # generate expression, evaluate fitness, compare fitness
self.fx_data_tree_write(self.population_a, 'a') # save the first generation of Trees to disk
### PART 4 - evolve multiple generations of Trees ###
menu = 1
while menu != 0: # this allows the user to add generations mid-run and not get buried in nested iterations
for self.gen_id in range(self.gen_id + 1, self.gen_max + 1): # evolve additional generations of Trees
print ('\n Evolve a population of Trees for Generation', self.gen_id, '...')
self.population_b = ['Karoo GP by Kai Staats - Evolving Generation'] # initialise population_b to host the next generation
self.fx_fitness_gene_pool() # generate the viable gene pool (compares against gp.tree_depth_min)
self.fx_nextgen_reproduce() # method 1 - Reproduction
self.fx_nextgen_point_mutate() # method 2 - Point Mutation
self.fx_nextgen_branch_mutate() # method 3 - Branch Mutation
self.fx_nextgen_crossover() # method 4 - Crossover
self.fx_eval_generation() # evaluate all Trees in a single generation
self.population_a = self.fx_evolve_pop_copy(self.population_b, ['Karoo GP by Kai Staats - Generation ' + str(self.gen_id)])
if mode == 's': menu = 0 # (s)erver mode - termination with completiont of prescribed run
else: # (d)esktop mode - user is given an option to quit, review, and/or modify parameters; 'add' generations continues the run
print ('\n\t\033[32m Enter \033[1m?\033[0;0m\033[32m to review your options or \033[1mq\033[0;0m\033[32muit\033[0;0m')
menu = self.fx_karoo_pause()
self.fx_karoo_terminate() # archive populations and return to karoo_gp.py for a clean exit
return
def fx_karoo_pause_refer(self):
'''
Enables (g)eneration, (i)nteractive, and (d)e(b)ug display modes to offer the (pause) menu at each prompt.
See fx_karoo_pause() for an explanation of the value being passed.
Called by: the functions called by PART 4 of fx_karoo_gp()
Arguments required: none
'''
menu = 1
while menu == 1: menu = self.fx_karoo_pause()
return
def fx_karoo_pause(self):
'''
Pause the program execution and engage the user, providing a number of options.
Called by: fx_karoo_pause_refer
Arguments required: [0,1,2] where (0) refers to an end-of-run; (1) refers to any use of the (pause) menu from
within the run, and anticipates ENTER as an escape from the menu to continue the run; and (2) refers to an
'ERROR!' for which the user may want to archive data before terminating. At this point in time, (2) is
associated with each error but does not provide any special options).
'''
### PART 1 - reset and pack values to send to menu.pause ###
menu_dict = {'input_a':'',
'input_b':0,
'display':self.display,
'tree_depth_max':self.tree_depth_max,
'tree_depth_min':self.tree_depth_min,
'tree_pop_max':self.tree_pop_max,
'gen_id':self.gen_id,
'gen_max':self.gen_max,
'tourn_size':self.tourn_size,
'evolve_repro':self.evolve_repro,
'evolve_point':self.evolve_point,
'evolve_branch':self.evolve_branch,
'evolve_cross':self.evolve_cross,
'fittest_dict':self.fittest_dict,
'pop_a_len':len(self.population_a),
'pop_b_len':len(self.population_b),
'path':self.path}
menu_dict = menu.pause(menu_dict) # call the external function menu.pause
### PART 2 - unpack values returned from menu.pause ###
input_a = menu_dict['input_a']
input_b = menu_dict['input_b']
self.display = menu_dict['display']
self.tree_depth_min = menu_dict['tree_depth_min']
self.gen_max = menu_dict['gen_max']
self.tourn_size = menu_dict['tourn_size']
self.evolve_repro = menu_dict['evolve_repro']
self.evolve_point = menu_dict['evolve_point']
self.evolve_branch = menu_dict['evolve_branch']
self.evolve_cross = menu_dict['evolve_cross']
### PART 3 - execute the user queries returned from menu.pause ###
if input_a == 'esc': return 2 # breaks out of the fx_karoo_gp() or fx_karoo_pause_refer() loop
elif input_a == 'eval': # evaluate a Tree against the TEST data
self.fx_eval_poly(self.population_b[input_b]) # generate the raw and sympified expression for the given Tree using SymPy
#print ('\n\t\033[36mTree', input_b, 'yields (raw):', self.algo_raw, '\033[0;0m') # print the raw expression
print ('\n\t\033[36mTree', input_b, 'yields (sym):\033[1m', self.algo_sym, '\033[0;0m') # print the sympified expression
result = self.fx_fitness_eval(str(self.algo_sym), self.data_test, get_pred_labels = True) # might change to algo_raw evaluation
if self.kernel == 'c': self.fx_fitness_test_classify(result) # TF tested 2017 02/02
elif self.kernel == 'r': self.fx_fitness_test_regress(result)
elif self.kernel == 'm': self.fx_fitness_test_match(result)
# elif self.kernel == '[other]': # use others as a template
elif input_a == 'print_a': # print a Tree from population_a
self.fx_display_tree(self.population_a[input_b])
elif input_a == 'print_b': # print a Tree from population_b
self.fx_display_tree(self.population_b[input_b])
elif input_a == 'pop_a': # list all Trees in population_a
print ('')
for tree_id in range(1, len(self.population_a)):
self.fx_eval_poly(self.population_a[tree_id]) # extract the expression
print ('\t\033[36m Tree', self.population_a[tree_id][0][1], 'yields (sym):\033[1m', self.algo_sym, '\033[0;0m')
elif input_a == 'pop_b': # list all Trees in population_b
print ('')
for tree_id in range(1, len(self.population_b)):
self.fx_eval_poly(self.population_b[tree_id]) # extract the expression
print ('\t\033[36m Tree', self.population_b[tree_id][0][1], 'yields (sym):\033[1m', self.algo_sym, '\033[0;0m')
elif input_a == 'load': # load population_s to replace population_a
self.fx_data_recover(self.filename['s']) # NEED TO replace 's' with a user defined filename
elif input_a == 'write': # write the evolving population_b to disk
self.fx_data_tree_write(self.population_b, 'b')
print ('\n\t All current members of the evolving population_b saved to karoo_gp/runs/[date-time]/population_b.csv')
elif input_a == 'add': # check for added generations, then exit fx_karoo_pause and continue the run
self.gen_max = self.gen_max + input_b # if input_b > 0: self.gen_max = self.gen_max + input_b - REMOVED 2019 06/05
elif input_a == 'quit': self.fx_karoo_terminate() # archive populations and exit
return 1
def fx_karoo_terminate(self):
'''
Terminates the evolutionary run (if yet in progress), saves parameters and data to disk, and cleanly returns
the user to karoo_gp.py and the command line.
Called by: fx_karoo_gp() and fx_karoo_pause_refer()
Arguments required: none
'''
self.fx_data_params_write()
target = open(self.filename['f'], 'w'); target.close() # initialize the .csv file for the final population
self.fx_data_tree_write(self.population_b, 'f') # save the final generation of Trees to disk
print ('\n\t\033[32m Your Trees and runtime parameters are archived in karoo_gp/runs/[date-time]/\033[0;0m')
print ('\n\033[3m "It is not the strongest of the species that survive, nor the most intelligent,\033[0;0m')
print ('\033[3m but the one most responsive to change."\033[0;0m --Charles Darwin\n')
print ('\033[3m Congrats!\033[0;0m Your Karoo GP run is complete.\n')
sys.exit()
return
#+++++++++++++++++++++++++++++++++++++++++++++
# Methods to Load and Archive Data |
#+++++++++++++++++++++++++++++++++++++++++++++
def fx_data_load(self, filename):
'''
The data and function .csv files are loaded according to the fitness function kernel selected by the user. An
alternative dataset may be loaded at launch, by appending a command line argument. The data is then split into
both TRAINING and TEST segments in order to validate the success of the GP training run. Datasets less than
10 rows will not be split, rather copied in full to both TRAINING and TEST as it is assumed you are conducting
a system validation run, as with the built-in MATCH kernel and associated dataset.
Called by: fx_karoo_gp
Arguments required: filename (of the dataset)
'''
### PART 1 - load the associated data set, operators, operands, fitness type, and coefficients ###
# full_path = os.path.realpath(__file__); cwd = os.path.dirname(full_path) # for user Marco Cavaglia
cwd = os.getcwd()
data_dict = {'c':cwd + '/files/data_CLASSIFY.csv', 'r':cwd + '/files/data_REGRESS.csv', 'm':cwd + '/files/data_MATCH.csv', 'p':cwd + '/files/data_PLAY.csv'}
if len(sys.argv) == 1: # load data from the default karoo_gp/files/ directory
data_x = np.loadtxt(data_dict[self.kernel], skiprows = 1, delimiter = ',', dtype = float); data_x = data_x[:,0:-1] # load all but the right-most column
data_y = np.loadtxt(data_dict[self.kernel], skiprows = 1, usecols = (-1,), delimiter = ',', dtype = float) # load only right-most column (class labels)
header = open(data_dict[self.kernel],'r') # open file to be read (below)
self.dataset = data_dict[self.kernel] # copy the name only
elif len(sys.argv) == 2: # load an external data file
data_x = np.loadtxt(sys.argv[1], skiprows = 1, delimiter = ',', dtype = float); data_x = data_x[:,0:-1] # load all but the right-most column
data_y = np.loadtxt(sys.argv[1], skiprows = 1, usecols = (-1,), delimiter = ',', dtype = float) # load only right-most column (class labels)
header = open(sys.argv[1],'r') # open file to be read (below)
self.dataset = sys.argv[1] # copy the name only
elif len(sys.argv) > 2: # receive filename and additional arguments from karoo_gp.py via argparse
data_x = np.loadtxt(filename, skiprows = 1, delimiter = ',', dtype = float); data_x = data_x[:,0:-1] # load all but the right-most column
data_y = np.loadtxt(filename, skiprows = 1, usecols = (-1,), delimiter = ',', dtype = float) # load only right-most column (class labels)
header = open(filename,'r') # open file to be read (below)
self.dataset = filename # copy the name only
fitt_dict = {'c':'max', 'r':'min', 'm':'max', 'p':''}
self.fitness_type = fitt_dict[self.kernel] # load fitness type
func_dict = {'c':cwd + '/files/operators_CLASSIFY.csv', 'r':cwd + '/files/operators_REGRESS.csv', 'm':cwd + '/files/operators_MATCH.csv', 'p':cwd + '/files/operators_PLAY.csv'}
self.functions = np.loadtxt(func_dict[self.kernel], delimiter=',', skiprows=1, dtype = str) # load the user defined functions (operators)
self.terminals = header.readline().split(','); self.terminals[-1] = self.terminals[-1].replace('\n','') # load the user defined terminals (operands)
self.class_labels = len(np.unique(data_y)) # load the user defined true labels for classification or solutions for regression
#self.coeff = np.loadtxt(cwd + '/files/coefficients.csv', delimiter=',', skiprows=1, dtype = str) # load the user defined coefficients - NOT USED YET
### PART 2 - from the dataset, extract TRAINING and TEST data ###
if len(data_x) < 11: # for small datasets we will not split them into TRAINING and TEST components
data_train = np.c_[data_x, data_y]
data_test = np.c_[data_x, data_y]
else: # if larger than 10, we run the data through the SciKit Learn's 'random split' function
x_train, x_test, y_train, y_test = skcv.train_test_split(data_x, data_y, test_size = 0.2) # 80/20 TRAIN/TEST split
data_x, data_y = [], [] # clear from memory
data_train = np.c_[x_train, y_train] # recombine each row of data with its associated class label (right column)
x_train, y_train = [], [] # clear from memory
data_test = np.c_[x_test, y_test] # recombine each row of data with its associated class label (right column)
x_test, y_test = [], [] # clear from memory
self.data_train_cols = len(data_train[0,:]) # qty count
self.data_train_rows = len(data_train[:,0]) # qty count
self.data_test_cols = len(data_test[0,:]) # qty count
self.data_test_rows = len(data_test[:,0]) # qty count
### PART 3 - load TRAINING and TEST data for TensorFlow processing - tested 2017 02/02
self.data_train = data_train # Store train data for processing in TF
self.data_test = data_test # Store test data for processing in TF
self.tf_device = "/gpu:0" # Set TF computation backend device (CPU or GPU); gpu:n = 1st, 2nd, or ... GPU device
self.tf_device_log = False # TF device usage logging (for debugging)
### PART 4 - create a unique directory and initialise all .csv files ###
self.datetime = datetime.now().strftime('%Y-%m-%d_%H-%M-%S')
self.path = os.path.join(cwd, 'runs/', filename.split('.')[0] + '_' + self.datetime + '/') # generate a unique directory name
if not os.path.isdir(self.path): os.makedirs(self.path) # make a unique directory
self.filename = {} # a dictionary to hold .csv filenames
self.filename.update( {'a':self.path + 'population_a.csv'} )
target = open(self.filename['a'], 'w'); target.close() # initialise a .csv file for population 'a' (foundation)
self.filename.update( {'b':self.path + 'population_b.csv'} )
target = open(self.filename['b'], 'w'); target.close() # initialise a .csv file for population 'b' (evolving)
self.filename.update( {'f':self.path + 'population_f.csv'} )
target = open(self.filename['f'], 'w'); target.close() # initialise a .csv file for the final population (test)
self.filename.update( {'s':self.path + 'population_s.csv'} )
target = open(self.filename['s'], 'w'); target.close() # initialise a .csv file to manually load (seed)
return
def fx_data_recover(self, population):
'''
This method is used to load a saved population of Trees, as invoked through the (pause) menu where population_r
replaces population_a in the karoo_gp/runs/[date-time]/ directory.
Called by: fx_karoo_pause
Arguments required: population (filename['s'])
'''
with open(population, 'rb') as csv_file:
target = csv.reader(csv_file, delimiter=',')
n = 0 # track row count
for row in target:
print ('row', row)
n = n + 1
if n == 1: pass # skip first empty row
elif n == 2:
self.population_a = [row] # write header to population_a
else:
if row == []:
self.tree = np.array([[]]) # initialise Tree array
else:
if self.tree.shape[1] == 0:
self.tree = np.append(self.tree, [row], axis = 1) # append first row to Tree
else:
self.tree = np.append(self.tree, [row], axis = 0) # append subsequent rows to Tree
if self.tree.shape[0] == 13:
self.population_a.append(self.tree) # append complete Tree to population list
print ('\n', self.population_a)
return
def fx_data_tree_clean(self, tree):
'''
This method aesthetically cleans the Tree array, removing redundant data.
Called by: fx_data_tree_append, fx_evolve_branch_copy
Arguments required: tree
'''
tree[0][2:] = '' # A little clean-up to make things look pretty :)
tree[1][2:] = '' # Ignore the man behind the curtain!
tree[2][2:] = '' # Yes, I am a bit OCD ... but you *know* you appreciate clean arrays.
return tree
def fx_data_tree_append(self, tree):
'''
Append Tree array to the foundation Population.
Called by: fx_init_construct
Arguments required: tree
'''
self.fx_data_tree_clean(tree) # clean 'tree' prior to storing
self.population_a.append(tree) # append 'tree' to population list
return
def fx_data_tree_write(self, population, key):
'''
Save population_* to disk.
Called by: fx_karoo_gp, fx_eval_generation
Arguments required: population, key
'''
with open(self.filename[key], 'a') as csv_file:
target = csv.writer(csv_file, delimiter=',')
if self.gen_id != 1: target.writerows(['']) # empty row before each generation
target.writerows([['Karoo GP by Kai Staats', 'Generation:', str(self.gen_id)]])
for tree in range(1, len(population)):
target.writerows(['']) # empty row before each Tree
for row in range(0, 13): # increment through each row in the array Tree
target.writerows([population[tree][row]])
return
def fx_data_params_write(self): # tested 2017 02/13; argument 'app' removed to simplify termination 2019 06/08
'''
Save run-time configuration parameters to disk.
Called by: fx_karoo_gp, fx_karoo_pause
Arguments required: app
'''
file = open(self.path + 'log_config.txt', 'w')
file.write('Karoo GP')
file.write('\n launched: ' + str(self.datetime))
file.write('\n dataset: ' + str(self.dataset))
file.write('\n')
file.write('\n kernel: ' + str(self.kernel))
file.write('\n precision: ' + str(self.precision))
file.write('\n')
# file.write('tree type: ' + tree_type)
# file.write('tree depth base: ' + str(tree_depth_base))
file.write('\n tree depth max: ' + str(self.tree_depth_max))
file.write('\n min node count: ' + str(self.tree_depth_min))
file.write('\n')
file.write('\n genetic operator Reproduction: ' + str(self.evolve_repro))
file.write('\n genetic operator Point Mutation: ' + str(self.evolve_point))
file.write('\n genetic operator Branch Mutation: ' + str(self.evolve_branch))
file.write('\n genetic operator Crossover: ' + str(self.evolve_cross))
file.write('\n')
file.write('\n tournament size: ' + str(self.tourn_size))
file.write('\n population: ' + str(self.tree_pop_max))
file.write('\n number of generations: ' + str(self.gen_id))
file.write('\n\n')
file.close()
file = open(self.path + 'log_test.txt', 'w')
file.write('Karoo GP')
file.write('\n launched: ' + str(self.datetime))
file.write('\n dataset: ' + str(self.dataset))
file.write('\n')
if len(self.fittest_dict) > 0:
fitness_best = 0
fittest_tree = 0
# revised method, re-evaluating all Trees from stored fitness score
for tree_id in range(1, len(self.population_b)):
fitness = float(self.population_b[tree_id][12][1])
if self.kernel == 'c': # display best fit Trees for the CLASSIFY kernel
if fitness >= fitness_best: # find the Tree with Maximum fitness score
fitness_best = fitness; fittest_tree = tree_id # set best fitness Tree
elif self.kernel == 'r': # display best fit Trees for the REGRESSION kernel
if fitness_best == 0: fitness_best = fitness # set the baseline first time through
if fitness <= fitness_best: # find the Tree with Minimum fitness score
fitness_best = fitness; fittest_tree = tree_id # set best fitness Tree
elif self.kernel == 'm': # display best fit Trees for the MATCH kernel
if fitness == self.data_train_rows: # find the Tree with a perfect match for all data rows
fitness_best = fitness; fittest_tree = tree_id # set best fitness Tree
# elif self.kernel == '[other]': # use others as a template
# print ('fitness_best:', fitness_best, 'fittest_tree:', fittest_tree)
# test the most fit Tree and write to the .txt log
self.fx_eval_poly(self.population_b[int(fittest_tree)]) # generate the raw and sympified expression for the given Tree using SymPy
expr = str(self.algo_sym) # get simplified expression and process it by TF - tested 2017 02/02
result = self.fx_fitness_eval(expr, self.data_test, get_pred_labels = True)
file.write('\n\n Tree ' + str(fittest_tree) + ' is the most fit, with expression:')
file.write('\n\n ' + str(self.algo_sym))
if self.kernel == 'c':
file.write('\n\n Classification fitness score: {}'.format(result['fitness']))
file.write('\n\n Precision-Recall report:\n {}'.format(skm.classification_report(result['solution'], result['pred_labels'][0])))
file.write('\n Confusion matrix:\n {}'.format(skm.confusion_matrix(result['solution'], result['pred_labels'][0])))
elif self.kernel == 'r':
MSE, fitness = skm.mean_squared_error(result['result'], result['solution']), result['fitness']
file.write('\n\n Regression fitness score: {}'.format(fitness))
file.write('\n Mean Squared Error: {}'.format(MSE))
elif self.kernel == 'm':
file.write('\n\n Matching fitness score: {}'.format(result['fitness']))
# elif self.kernel == '[other]': # use others as a template
else: file.write('\n\n There were no evolved solutions generated in this run... your species has gone extinct!')
file.write('\n\n')
file.close()
return
#+++++++++++++++++++++++++++++++++++++++++++++
# Methods to Construct the 1st Generation |
#+++++++++++++++++++++++++++++++++++++++++++++
def fx_init_construct(self, tree_type, tree_depth_base):
'''
This method constructs the initial population of Tree type 'tree_type' and of the size tree_depth_base. The Tree
can be Full, Grow, or "Ramped Half/Half" as defined by John Koza.
Called by: fx_karoo_gp
Arguments required: tree_type, tree_depth_base
'''
if self.display == 'i':
print ('\n\t\033[32m Press \033[36m\033[1m?\033[0;0m\033[32m at any \033[36m\033[1m(pause)\033[0;0m\033[32m, or \033[36m\033[1mENTER\033[0;0m \033[32mto continue the run\033[0;0m'); self.fx_karoo_pause_refer()
if tree_type == 'r': # Ramped 50/50
TREE_ID = 1
for n in range(1, int((self.tree_pop_max / 2) / tree_depth_base) + 1): # split the population into equal parts
for depth in range(1, tree_depth_base + 1): # build 2 Trees at each depth
self.fx_init_tree_build(TREE_ID, 'f', depth) # build a Full Tree
self.fx_data_tree_append(self.tree) # append Tree to the list 'gp.population_a'
TREE_ID = TREE_ID + 1
self.fx_init_tree_build(TREE_ID, 'g', depth) # build a Grow Tree
self.fx_data_tree_append(self.tree) # append Tree to the list 'gp.population_a'
TREE_ID = TREE_ID + 1
if TREE_ID < self.tree_pop_max: # eg: split 100 by 2*3 and it will produce only 96 Trees ...
for n in range(self.tree_pop_max - TREE_ID + 1): # ... so we complete the run
self.fx_init_tree_build(TREE_ID, 'g', tree_depth_base)
self.fx_data_tree_append(self.tree)
TREE_ID = TREE_ID + 1
else: pass
else: # Full or Grow
for TREE_ID in range(1, self.tree_pop_max + 1):
self.fx_init_tree_build(TREE_ID, tree_type, tree_depth_base) # build the 1st generation of Trees
self.fx_data_tree_append(self.tree)
return
def fx_init_tree_build(self, TREE_ID, tree_type, tree_depth_base):
'''
This method combines 4 sub-methods into a single method for ease of deployment. It is designed to executed
within a loop such that an entire population is built. However, it may also be run from the command line,
passing a single TREE_ID to the method.
'tree_type' is either (f)ull or (g)row. Note, however, that when the user selects 'ramped 50/50' at launch,
it is still (f) or (g) which are passed to this method.
Called by: fx_init_construct, fx_evolve_crossover, fx_evolve_grow_mutate
Arguments required: TREE_ID, tree_type, tree_depth_base
'''
self.fx_init_tree_initialise(TREE_ID, tree_type, tree_depth_base) # initialise a new Tree
self.fx_init_root_build() # build the Root node
self.fx_init_function_build() # build the Function nodes
self.fx_init_terminal_build() # build the Terminal nodes
return # each Tree is written to 'gp.tree'
def fx_init_tree_initialise(self, TREE_ID, tree_type, tree_depth_base):
'''
Assign 13 global variables to the array 'tree'.
Build the array 'tree' with 13 rows and initally, just 1 column of labels. This array will grow horizontally as
each new node is appended. The values of this array are stored as string characters, numbers forced to integers at
the point of execution.
Use of the debug (db) interface mode enables the user to watch the genetic operations as they work on the Trees.
Called by: fx_init_tree_build
Arguments required: TREE_ID, tree_type, tree_depth_base
'''
self.pop_TREE_ID = TREE_ID # pos 0: a unique identifier for each tree
self.pop_tree_type = tree_type # pos 1: a global constant based upon the initial user setting
self.pop_tree_depth_base = tree_depth_base # pos 2: a global variable which conveys 'tree_depth_base' as unique to each new Tree
self.pop_NODE_ID = 1 # pos 3: unique identifier for each node; this is the INDEX KEY to this array
self.pop_node_depth = 0 # pos 4: depth of each node when committed to the array
self.pop_node_type = '' # pos 5: root, function, or terminal
self.pop_node_label = '' # pos 6: operator [+, -, *, ...] or terminal [a, b, c, ...]
self.pop_node_parent = '' # pos 7: parent node
self.pop_node_arity = '' # pos 8: number of nodes attached to each non-terminal node
self.pop_node_c1 = '' # pos 9: child node 1
self.pop_node_c2 = '' # pos 10: child node 2
self.pop_node_c3 = '' # pos 11: child node 3 (assumed max of 3 with boolean operator 'if')
self.pop_fitness = '' # pos 12: fitness score following Tree evaluation
self.tree = np.array([ ['TREE_ID'],['tree_type'],['tree_depth_base'],['NODE_ID'],['node_depth'],['node_type'],['node_label'],['node_parent'],['node_arity'],['node_c1'],['node_c2'],['node_c3'],['fitness'] ])
return
### Root Node ###
def fx_init_root_build(self):
'''
Build the Root node for the initial population.
Called by: fx_init_tree_build
Arguments required: none
'''
self.fx_init_function_select() # select the operator for root
if self.pop_node_arity == 1: # 1 child
self.pop_node_c1 = 2
self.pop_node_c2 = ''
self.pop_node_c3 = ''
elif self.pop_node_arity == 2: # 2 children
self.pop_node_c1 = 2
self.pop_node_c2 = 3
self.pop_node_c3 = ''
elif self.pop_node_arity == 3: # 3 children
self.pop_node_c1 = 2
self.pop_node_c2 = 3
self.pop_node_c3 = 4
else: print ('\n\t\033[31m ERROR! In fx_init_root_build: pop_node_arity =', self.pop_node_arity, '\033[0;0m'); self.fx_karoo_pause() # consider special instructions for this (pause) - 2019 06/08
self.pop_node_type = 'root'
self.fx_init_node_commit()
return
### Function Nodes ###
def fx_init_function_build(self):
'''
Build the Function nodes for the intial population.
Called by: fx_init_tree_build
Arguments required: none
'''
for i in range(1, self.pop_tree_depth_base): # increment depth, from 1 through 'tree_depth_base' - 1
self.pop_node_depth = i # increment 'node_depth'
parent_arity_sum = 0
prior_sibling_arity = 0 # reset for 'c_buffer' in 'children_link'
prior_siblings = 0 # reset for 'c_buffer' in 'children_link'
for j in range(1, len(self.tree[3])): # increment through all nodes (exclude 0) in array 'tree'
if int(self.tree[4][j]) == self.pop_node_depth - 1: # find parent nodes which reside at the prior depth
parent_arity_sum = parent_arity_sum + int(self.tree[8][j]) # sum arities of all parent nodes at the prior depth
# (do *not* merge these 2 "j" loops or it gets all kinds of messed up)
for j in range(1, len(self.tree[3])): # increment through all nodes (exclude 0) in array 'tree'
if int(self.tree[4][j]) == self.pop_node_depth - 1: # find parent nodes which reside at the prior depth
for k in range(1, int(self.tree[8][j]) + 1): # increment through each degree of arity for each parent node
self.pop_node_parent = int(self.tree[3][j]) # set the parent 'NODE_ID' ...
prior_sibling_arity = self.fx_init_function_gen(parent_arity_sum, prior_sibling_arity, prior_siblings) # ... generate a Function ndoe
prior_siblings = prior_siblings + 1 # sum sibling nodes (current depth) who will spawn their own children (cousins? :)
return
def fx_init_function_gen(self, parent_arity_sum, prior_sibling_arity, prior_siblings):
'''
Generate a single Function node for the initial population.
Called by fx_init_function_build
Arguments required: parent_arity_sum, prior_sibling_arity, prior_siblings
'''
if self.pop_tree_type == 'f': # user defined as (f)ull
self.fx_init_function_select() # retrieve a function
self.fx_init_child_link(parent_arity_sum, prior_sibling_arity, prior_siblings) # establish links to children
elif self.pop_tree_type == 'g': # user defined as (g)row
rnd = np.random.randint(2)
if rnd == 0: # randomly selected as Function
self.fx_init_function_select() # retrieve a function
self.fx_init_child_link(parent_arity_sum, prior_sibling_arity, prior_siblings) # establish links to children
elif rnd == 1: # randomly selected as Terminal
self.fx_init_terminal_select() # retrieve a terminal
self.pop_node_c1 = ''
self.pop_node_c2 = ''
self.pop_node_c3 = ''
self.fx_init_node_commit() # commit new node to array
prior_sibling_arity = prior_sibling_arity + self.pop_node_arity # sum the arity of prior siblings
return prior_sibling_arity
def fx_init_function_select(self):
'''
Define a single Function (operator extracted from the associated functions.csv) for the initial population.
Called by: fx_init_function_gen, fx_init_root_build
Arguments required: none
'''
self.pop_node_type = 'func'
rnd = np.random.randint(0, len(self.functions[:,0])) # call the previously loaded .csv which contains all operators
self.pop_node_label = self.functions[rnd][0]
self.pop_node_arity = int(self.functions[rnd][1])
return
### Terminal Nodes ###
def fx_init_terminal_build(self):
'''
Build the Terminal nodes for the intial population.
Called by: fx_init_tree_build
Arguments required: none
'''
self.pop_node_depth = self.pop_tree_depth_base # set the final node_depth (same as 'gp.pop_node_depth' + 1)
for j in range(1, len(self.tree[3]) ): # increment through all nodes (exclude 0) in array 'tree'
if int(self.tree[4][j]) == self.pop_node_depth - 1: # find parent nodes which reside at the prior depth
for k in range(1,(int(self.tree[8][j]) + 1)): # increment through each degree of arity for each parent node
self.pop_node_parent = int(self.tree[3][j]) # set the parent 'NODE_ID' ...
self.fx_init_terminal_gen() # ... generate a Terminal node
return
def fx_init_terminal_gen(self):
'''
Generate a single Terminal node for the initial population.
Called by: fx_init_terminal_build
Arguments required: none
'''
self.fx_init_terminal_select() # retrieve a terminal
self.pop_node_c1 = ''
self.pop_node_c2 = ''
self.pop_node_c3 = ''
self.fx_init_node_commit() # commit new node to array
return
def fx_init_terminal_select(self):
'''
Define a single Terminal (variable extracted from the top row of the associated TRAINING data)
Called by: fx_init_terminal_gen, fx_init_function_gen
Arguments required: none
'''
self.pop_node_type = 'term'
rnd = np.random.randint(0, len(self.terminals) - 1) # call the previously loaded .csv which contains all terminals
self.pop_node_label = self.terminals[rnd]
self.pop_node_arity = 0
return
### The Lovely Children ###
def fx_init_child_link(self, parent_arity_sum, prior_sibling_arity, prior_siblings):
'''
Link each parent node to its children in the intial population.
Called by: fx_init_function_gen
Arguments required: parent_arity_sum, prior_sibling_arity, prior_siblings
'''
c_buffer = 0
for n in range(1, len(self.tree[3]) ): # increment through all nodes (exclude 0) in array 'tree'
if int(self.tree[4][n]) == self.pop_node_depth - 1: # find all nodes that reside at the prior (parent) 'node_depth'
c_buffer = self.pop_NODE_ID + (parent_arity_sum + prior_sibling_arity - prior_siblings) # One algo to rule the world!
if self.pop_node_arity == 0: # terminal in a Grow Tree
self.pop_node_c1 = ''
self.pop_node_c2 = ''
self.pop_node_c3 = ''
elif self.pop_node_arity == 1: # 1 child
self.pop_node_c1 = c_buffer
self.pop_node_c2 = ''
self.pop_node_c3 = ''
elif self.pop_node_arity == 2: # 2 children
self.pop_node_c1 = c_buffer
self.pop_node_c2 = c_buffer + 1
self.pop_node_c3 = ''
elif self.pop_node_arity == 3: # 3 children
self.pop_node_c1 = c_buffer
self.pop_node_c2 = c_buffer + 1
self.pop_node_c3 = c_buffer + 2
else: print ('\n\t\033[31m ERROR! In fx_init_child_link: pop_node_arity =', self.pop_node_arity, '\033[0;0m'); self.fx_karoo_pause() # consider special instructions for this (pause) - 2019 06/08
return
def fx_init_node_commit(self):
'''
Commit the values of a new node (root, function, or terminal) to the array 'tree'.
Called by: fx_init_root_build, fx_init_function_gen, fx_init_terminal_gen
Arguments required: none
'''
self.tree = np.append(self.tree, [ [self.pop_TREE_ID],[self.pop_tree_type],[self.pop_tree_depth_base],[self.pop_NODE_ID],[self.pop_node_depth],[self.pop_node_type],[self.pop_node_label],[self.pop_node_parent],[self.pop_node_arity],[self.pop_node_c1],[self.pop_node_c2],[self.pop_node_c3],[self.pop_fitness] ], 1)
self.pop_NODE_ID = self.pop_NODE_ID + 1
return
#+++++++++++++++++++++++++++++++++++++++++++++
# Methods to Evaluate a Tree |
#+++++++++++++++++++++++++++++++++++++++++++++
def fx_eval_poly(self, tree):
'''
Evaluate a Tree and generate its multivariate expression (both raw and Sympified).
We need to extract the variables from the expression. However, these variables are no longer correlated
to the original variables listed across the top of each column of data.csv. Therefore, we must re-assign
the respective values for each subsequent row in the data .csv, for each Tree's unique expression.
Called by: fx_karoo_pause, fx_data_params_write, fx_eval_label, fx_fitness_gym, fx_fitness_gene_pool, fx_display_tree
Arguments required: tree
'''
self.algo_raw = self.fx_eval_label(tree, 1) # pass the root 'node_id', then flatten the Tree to a string
self.algo_sym = sympify(self.algo_raw) # convert string to a functional expression (the coolest line in Karoo! :)
return
def fx_eval_label(self, tree, node_id):
'''
Evaluate all or part of a Tree (starting at node_id) and return a raw mutivariate expression ('algo_raw').
This method is called once per Tree, but may be called at any time to prepare an expression for any full or
partial (branch) Tree contained in 'population'. Pass the starting node for recursion via the local variable
'node_id' where the local variable 'tree' is a copy of the Tree you desire to evaluate.
Called by: fx_eval_poly, fx_eval_label (recursively)
Arguments required: tree, node_id
'''
# if tree[6, node_id] == 'not': tree[6, node_id] = ', not' # temp until this can be fixed at data_load
node_id = int(node_id)
if tree[8, node_id] == '0': # arity of 0 for the pattern '[term]'
return '(' + tree[6, node_id] + ')' # 'node_label' (function or terminal)
else:
if tree[8, node_id] == '1': # arity of 1 for the explicit pattern 'not [term]'
return self.fx_eval_label(tree, tree[9, node_id]) + tree[6, node_id]
elif tree[8, node_id] == '2': # arity of 2 for the pattern '[func] [term] [func]'
return self.fx_eval_label(tree, tree[9, node_id]) + tree[6, node_id] + self.fx_eval_label(tree, tree[10, node_id])
elif tree[8, node_id] == '3': # arity of 3 for the explicit pattern 'if [term] then [term] else [term]'
return tree[6, node_id] + self.fx_eval_label(tree, tree[9, node_id]) + ' then ' + self.fx_eval_label(tree, tree[10, node_id]) + ' else ' + self.fx_eval_label(tree, tree[11, node_id])
def fx_eval_id(self, tree, node_id):
'''
Evaluate all or part of a Tree and return a list of all 'NODE_ID's.
This method generates a list of all 'NODE_ID's from the given Node and below. It is used primarily to generate
'branch' for the multi-generational mutation of Trees.
Pass the starting node for recursion via the local variable 'node_id' where the local variable 'tree' is a copy
of the Tree you desire to evaluate.
Called by: fx_eval_id (recursively), fx_evolve_branch_select
Arguments required: tree, node_id
'''
node_id = int(node_id)
if tree[8, node_id] == '0': # arity of 0 for the pattern '[NODE_ID]'
return tree[3, node_id] # 'NODE_ID'
else:
if tree[8, node_id] == '1': # arity of 1 for the pattern '[NODE_ID], [NODE_ID]'
return tree[3, node_id] + ', ' + self.fx_eval_id(tree, tree[9, node_id])
elif tree[8, node_id] == '2': # arity of 2 for the pattern '[NODE_ID], [NODE_ID], [NODE_ID]'
return tree[3, node_id] + ', ' + self.fx_eval_id(tree, tree[9, node_id]) + ', ' + self.fx_eval_id(tree, tree[10, node_id])
elif tree[8, node_id] == '3': # arity of 3 for the pattern '[NODE_ID], [NODE_ID], [NODE_ID], [NODE_ID]'
return tree[3, node_id] + ', ' + self.fx_eval_id(tree, tree[9, node_id]) + ', ' + self.fx_eval_id(tree, tree[10, node_id]) + ', ' + self.fx_eval_id(tree, tree[11, node_id])
def fx_eval_generation(self):
'''
This method invokes the evaluation of an entire generation of Trees. It automatically evaluates population_b
before invoking the copy of _b to _a.
Called by: fx_karoo_gp
Arguments required: none
'''
if self.display != 's':
if self.display == 'i': print ('')
print ('\n Evaluate all Trees in Generation', self.gen_id)
if self.display == 'i': self.fx_karoo_pause_refer() # 2019 06/07
for tree_id in range(1, len(self.population_b)): # renumber all Trees in given population - merged fx_evolve_tree_renum 2018 04/12
self.population_b[tree_id][0][1] = tree_id
self.fx_fitness_gym(self.population_b) # run fx_eval(), fx_fitness(), fx_fitness_store(), and fitness record
self.fx_data_tree_write(self.population_b, 'a') # archive current population as foundation for next generation
if self.display != 's':
print ('\n Copy gp.population_b to gp.population_a\n')
return
#+++++++++++++++++++++++++++++++++++++++++++++
# Methods to Train and Test a Tree |
#+++++++++++++++++++++++++++++++++++++++++++++
def fx_fitness_gym(self, population):
'''
Part 1 evaluates each expression against the data, line for line. This is the most time consuming and
computationally expensive part of genetic programming. When GPUs are available, the performance can increase
by many orders of magnitude for datasets measured in millions of data.
Part 2 evaluates every Tree in each generation to determine which have the best, overall fitness score. This
could be the highest or lowest depending upon if the fitness function is maximising (higher is better) or
minimising (lower is better). The total fitness score is then saved with each Tree in the external .csv file.
Part 3 compares the fitness of each Tree to the prior best fit in order to track those that improve with each
comparison. For matching functions, all the Trees will have the same fitness score, but they may present more
than one solution. For minimisation and maximisation functions, the final Tree should present the best overall
fitness for that generation. It is important to note that Part 3 does *not* in any way influence the Tournament
Selection which is a stand-alone process.
Called by: fx_karoo_gp, fx_eval_generations
Arguments required: population
'''
fitness_best = 0
self.fittest_dict = {}
time_sum = 0
for tree_id in range(1, len(population)):
### PART 1 - GENERATE MULTIVARIATE EXPRESSION FOR EACH TREE ###
self.fx_eval_poly(population[tree_id]) # extract the expression
if self.display not in ('s'): print ('\t\033[36mTree', population[tree_id][0][1], 'yields (sym):\033[1m', self.algo_sym, '\033[0;0m')
### PART 2 - EVALUATE FITNESS FOR EACH TREE AGAINST TRAINING DATA ###
fitness = 0
expr = str(self.algo_sym) # get sympified expression and process it with TF - tested 2017 02/02
result = self.fx_fitness_eval(expr, self.data_train)
fitness = result['fitness'] # extract fitness score
if self.display == 'i':
print ('\t \033[36m with fitness sum:\033[1m', fitness, '\033[0;0m\n')
self.fx_fitness_store(population[tree_id], fitness) # store Fitness with each Tree
### PART 3 - COMPARE FITNESS OF ALL TREES IN CURRENT GENERATION ###
if self.kernel == 'c': # display best fit Trees for the CLASSIFY kernel
if fitness >= fitness_best: # find the Tree with Maximum fitness score
fitness_best = fitness # set best fitness score
self.fittest_dict.update({tree_id:self.algo_sym}) # add to dictionary if fitness >= prior
elif self.kernel == 'r': # display best fit Trees for the REGRESSION kernel
if fitness_best == 0: fitness_best = fitness # set the baseline first time through
if fitness <= fitness_best: # find the Tree with Minimum fitness score
fitness_best = fitness # set best fitness score
self.fittest_dict.update({tree_id:self.algo_sym}) # add to dictionary if fitness <= prior
elif self.kernel == 'm': # display best fit Trees for the MATCH kernel
if fitness == self.data_train_rows: # find the Tree with a perfect match for all data rows
fitness_best = fitness # set best fitness score
self.fittest_dict.update({tree_id:self.algo_sym}) # add to dictionary if all rows match
# elif self.kernel == '[other]': # use others as a template
print ('\n\033[36m ', len(list(self.fittest_dict.keys())), 'trees\033[1m', np.sort(list(self.fittest_dict.keys())), '\033[0;0m\033[36moffer the highest fitness scores.\033[0;0m')
if self.display == 'g': self.fx_karoo_pause_refer() # 2019 06/07
return
def fx_fitness_eval(self, expr, data, get_pred_labels = False):
'''
Computes tree expression using TensorFlow (TF) returning results and fitness scores.
This method orchestrates most of the TF routines by parsing input string 'expression' and converting it into a TF
operation graph which is then processed in an isolated TF session to compute the results and corresponding fitness
values.
'self.tf_device' - controls which device will be used for computations (CPU or GPU).
'self.tf_device_log' - controls device placement logging (debug only).
Args:
'expr' - a string containing math expression to be computed on the data. Variable names should match corresponding
terminal names in 'self.terminals'.
'data' - an 'n by m' matrix of the data points containing n observations and m features per observation.
Variable order should match corresponding order of terminals in 'self.terminals'.
'get_pred_labels' - a boolean flag which controls whether the predicted labels should be extracted from the
evolved results. This applies only to the CLASSIFY kernel and defaults to 'False'.
Returns:
A dict mapping keys to the following outputs:
'result' - an array of the results of applying given expression to the data
'pred_labels' - an array of the predicted labels extracted from the results; defined only for CLASSIFY kernel, else None
'solution' - an array of the solution values extracted from the data (variable 's' in the dataset)
'pairwise_fitness' - an array of the element-wise results of applying corresponding fitness kernel function
'fitness' - aggregated scalar fitness score
Called by: fx_karoo_pause, fx_data_params_write, fx_fitness_gym
Arguments required: expr, data
'''
# Initialize TensorFlow session
tf.reset_default_graph() # Reset TF internal state and cache (after previous processing)
config = tf.ConfigProto(log_device_placement=self.tf_device_log, allow_soft_placement=True)
config.gpu_options.allow_growth = True
with tf.Session(config=config) as sess:
with sess.graph.device(self.tf_device):
# 1 - Load data into TF vectors
tensors = {}
for i in range(len(self.terminals)):
var = self.terminals[i]
tensors[var] = tf.constant(data[:, i], dtype=tf.float32) # converts data into vectors
# 2- Transform string expression into TF operation graph
result = self.fx_fitness_expr_parse(expr, tensors)
pred_labels = tf.no_op() # a placeholder, applies only to CLASSIFY kernel
solution = tensors['s'] # solution value is assumed to be stored in 's' terminal
# 3- Add fitness computation into TF graph
if self.kernel == 'c': # CLASSIFY kernel
'''
Creates element-wise fitness computation TensorFlow (TF) sub-graph for CLASSIFY kernel.
This method uses the 'sympified' (SymPy) expression ('algo_sym') created in fx_eval_poly() and the data set
loaded at run-time to evaluate the fitness of the selected kernel.
This multiclass classifer compares each row of a given Tree to the known solution, comparing predicted labels
generated by Karoo GP against the true classs labels. This method is able to work with any number of class
labels, from 2 to n. The left-most bin includes -inf. The right-most bin includes +inf. Those inbetween are
by default confined to the spacing of 1.0 each, as defined by:
(solution - 1) < result <= solution
The skew adjusts the boundaries of the bins such that they fall on both the negative and positive sides of the
origin. At the time of this writing, an odd number of class labels will generate an extra bin on the positive
side of origin as it has not yet been determined the effect of enabling the middle bin to include both a
negative and positive result.
'''
# was breaking with upgrade from Tensorflow 1.1 to 1.3; fixed by Iurii by replacing [] with () as of 20171026
# if get_pred_labels: pred_labels = tf.map_fn(self.fx_fitness_labels_map, result, dtype = [tf.int32, tf.string], swap_memory = True)
if get_pred_labels: pred_labels = tf.map_fn(self.fx_fitness_labels_map, result, dtype = (tf.int32, tf.string), swap_memory = True)
skew = (self.class_labels / 2) - 1
rule11 = tf.equal(solution, 0)
rule12 = tf.less_equal(result, 0 - skew)
rule13 = tf.logical_and(rule11, rule12)
rule21 = tf.equal(solution, self.class_labels - 1)
rule22 = tf.greater(result, solution - 1 - skew)
rule23 = tf.logical_and(rule21, rule22)
rule31 = tf.less(solution - 1 - skew, result)
rule32 = tf.less_equal(result, solution - skew)
rule33 = tf.logical_and(rule31, rule32)
pairwise_fitness = tf.cast(tf.logical_or(tf.logical_or(rule13, rule23), rule33), tf.int32)
elif self.kernel == 'r': # REGRESSION kernel
'''
A very, very basic REGRESSION kernel which is not designed to perform well in the real world. It requires
that you raise the minimum node count to keep it from converging on the value of '1'. Consider writing or
integrating a more sophisticated kernel.
'''
pairwise_fitness = tf.abs(solution - result)
elif self.kernel == 'm': # MATCH kernel
'''
This is used for demonstration purposes only.
'''
# pairwise_fitness = tf.cast(tf.equal(solution, result), tf.int32) # breaks due to floating points
RTOL, ATOL = 1e-05, 1e-08 # fixes above issue by checking if a float value lies within a range of values
pairwise_fitness = tf.cast(tf.less_equal(tf.abs(solution - result), ATOL + RTOL * tf.abs(result)), tf.int32)
# elif self.kernel == '[other]': # use others as a template
else: raise Exception('Kernel type is wrong or missing. You entered {}'.format(self.kernel))
fitness = tf.reduce_sum(pairwise_fitness)
# Process TF graph and collect the results
result, pred_labels, solution, fitness, pairwise_fitness = sess.run([result, pred_labels, solution, fitness, pairwise_fitness])
return {'result': result, 'pred_labels': pred_labels, 'solution': solution, 'fitness': float(fitness), 'pairwise_fitness': pairwise_fitness}
def fx_fitness_expr_parse(self, expr, tensors):
'''
Extract expression tree from the string algo_sym and transform into TensorFlow (TF) graph.
Called by: fx_fitness_eval
Arguments required: expr, tensors
'''
tree = ast.parse(expr, mode='eval').body
return self.fx_fitness_node_parse(tree, tensors)
def fx_fitness_chain_bool(self, values, operation, tensors):
'''
Chains a sequence of boolean operations (e.g. 'a and b and c') into a single TensorFlow (TF) sub graph.
Called by: fx_fitness_node_parse
Arguments required: values, operation, tensors
'''
x = tf.cast(self.fx_fitness_node_parse(values[0], tensors), tf.bool)
if len(values) > 1:
return operation(x, self.fx_fitness_chain_bool(values[1:], operation, tensors))
else:
return x
def fx_fitness_chain_compare(self, comparators, ops, tensors):
'''
Chains a sequence of comparison operations (e.g. 'a > b < c') into a single TensorFlow (TF) sub graph.
Called by: fx_fitness_node_parse
Arguments required: comparators, ops, tensors
'''
x = self.fx_fitness_node_parse(comparators[0], tensors)
y = self.fx_fitness_node_parse(comparators[1], tensors)
if len(comparators) > 2:
return tf.logical_and(operators[type(ops[0])](x, y), self.fx_fitness_chain_compare(comparators[1:], ops[1:], tensors))
else:
return operators[type(ops[0])](x, y)
def fx_fitness_node_parse(self, node, tensors):
'''
Recursively transforms parsed expression tree into TensorFlow (TF) graph.
Called by: fx_fitness_expr_parse, fx_fitness_chain_bool, fx_fitness_chain_compare
Arguments required: node, tensors
'''
if isinstance(node, ast.Name): # <tensor_name>
return tensors[node.id]
elif isinstance(node, ast.Num): # <number>
#shape = tensors[tensors.keys()[0]].get_shape() # Python 2.7
shape = tensors[list(tensors.keys())[0]].get_shape()
return tf.constant(node.n, shape=shape, dtype=tf.float32)
elif isinstance(node, ast.BinOp): # <left> <operator> <right>, e.g., x + y
return operators[type(node.op)](self.fx_fitness_node_parse(node.left, tensors), self.fx_fitness_node_parse(node.right, tensors))
elif isinstance(node, ast.UnaryOp): # <operator> <operand> e.g., -1
return operators[type(node.op)](self.fx_fitness_node_parse(node.operand, tensors))
elif isinstance(node, ast.Call): # <function>(<arguments>) e.g., sin(x)
return operators[node.func.id](*[self.fx_fitness_node_parse(arg, tensors) for arg in node.args])
elif isinstance(node, ast.BoolOp): # <left> <bool_operator> <right> e.g. x or y
return self.fx_fitness_chain_bool(node.values, operators[type(node.op)], tensors)
elif isinstance(node, ast.Compare): # <left> <compare> <right> e.g., a > z
return self.fx_fitness_chain_compare([node.left] + node.comparators, node.ops, tensors)
else: raise TypeError(node)
def fx_fitness_labels_map(self, result):
'''
For the CLASSIFY kernel, creates a TensorFlow (TF) sub-graph defined as a sequence of boolean conditions based upon
the quantity of true class labels provided in the data .csv. Outputs an array of tuples containing the predicted
labels based upon the result and corresponding boolean condition triggered.
For comparison, the original (pre-TensorFlow) cod follows:
skew = (self.class_labels / 2) - 1 # '-1' keeps a binary classification splitting over the origin
if solution == 0 and result <= 0 - skew; fitness = 1: # check for first class (the left-most bin)
elif solution == self.class_labels - 1 and result > solution - 1 - skew; fitness = 1: # check for last class (the right-most bin)
elif solution - 1 - skew < result <= solution - skew; fitness = 1: # check for class bins between first and last
else: fitness = 0 # no class match
Called by: fx_fitness_eval
Arguments required: result
'''
skew = (self.class_labels / 2) - 1
label_rules = {self.class_labels - 1: (tf.constant(self.class_labels - 1), tf.constant(' > {}'.format(self.class_labels - 2 - skew)))}
for class_label in range(self.class_labels - 2, 0, -1):
cond = (class_label - 1 - skew < result) & (result <= class_label - skew)
label_rules[class_label] = tf.cond(cond, lambda: (tf.constant(class_label), tf.constant(' <= {}'.format(class_label - skew))), lambda: label_rules[class_label + 1])
pred_label = tf.cond(result <= 0 - skew, lambda: (tf.constant(0), tf.constant(' <= {}'.format(0 - skew))), lambda: label_rules[1])
return pred_label
def fx_fitness_store(self, tree, fitness):
'''
Records the fitness and length of the raw algorithm (multivariate expression) to the Numpy array. Parsimony can
be used to apply pressure to the evolutionary process to select from a set of trees with the same fitness function
the one(s) with the simplest (shortest) multivariate expression.
Called by: fx_fitness_gym
Arguments required: tree, fitness
'''
fitness = float(fitness)
fitness = round(fitness, self.precision)
tree[12][1] = fitness # store the fitness with each tree
tree[12][2] = len(str(self.algo_raw)) # store the length of the raw algo for parsimony
# if len(tree[3]) > 4: # if the Tree array is wide enough -- SEE SCRATCHPAD
return
def fx_fitness_tournament(self, tourn_size):
'''
Multiple contenders ('tourn_size') are randomly selected and then compared for their respective fitness, as
determined in fx_fitness_gym(). The tournament is engaged to select a single Tree for each invocation of the
genetic operators: reproduction, mutation (point, branch), and crossover (sexual reproduction).
The original Tournament Selection drew directly from the foundation generation (gp.generation_a). However,
with the introduction of a minimum number of nodes as defined by the user ('gp.tree_depth_min'),
'gp.gene_pool' limits the Trees to those which meet all criteria.
Stronger boundary parameters (a reduced gap between the min and max number of nodes) may invoke more compact
solutions, but also runs the risk of elitism, even total population die-off where a healthy population once existed.
Called by: fx_nextgen_reproduce, fx_nextgen_point_mutate, fx_nextgen_branch_mutate, fx_nextgen_crossover
Arguments required: tourn_size
'''
tourn_test = 0
# short_test = 0 # an incomplete parsimony test (seeking shortest solution)
if self.display == 'i': print ('\n\tEnter the tournament ...')
for n in range(tourn_size):
# tree_id = np.random.randint(1, self.tree_pop_max + 1) # former method of selection from the unfiltered population
rnd = np.random.randint(len(self.gene_pool)) # select one Tree at random from the gene pool
tree_id = int(self.gene_pool[rnd])
fitness = float(self.population_a[tree_id][12][1]) # extract the fitness from the array
fitness = round(fitness, self.precision) # force 'result' and 'solution' to the same number of floating points
if self.fitness_type == 'max': # if the fitness function is Maximising
# first time through, 'tourn_test' will be initialised below
if fitness > tourn_test: # if the current Tree's 'fitness' is greater than the priors'
if self.display == 'i': print ('\t\033[36m Tree', tree_id, 'has fitness', fitness, '>', tourn_test, 'and leads\033[0;0m')
tourn_lead = tree_id # set 'TREE_ID' for the new leader
tourn_test = fitness # set 'fitness' of the new leader
# short_test = int(self.population_a[tree_id][12][2]) # set len(algo_raw) of new leader
elif fitness == tourn_test: # if the current Tree's 'fitness' is equal to the priors'
if self.display == 'i': print ('\t\033[36m Tree', tree_id, 'has fitness', fitness, '=', tourn_test, 'and leads\033[0;0m')
tourn_lead = tree_id # in case there is no variance in this tournament
# tourn_test remains unchanged
# NEED TO add option for parsimony
# if int(self.population_a[tree_id][12][2]) < short_test:
# short_test = int(self.population_a[tree_id][12][2]) # set len(algo_raw) of new leader
# print ('\t\033[36m with improved parsimony score of:\033[1m', short_test, '\033[0;0m')
elif fitness < tourn_test: # if the current Tree's 'fitness' is less than the priors'
if self.display == 'i': print ('\t\033[36m Tree', tree_id, 'has fitness', fitness, '<', tourn_test, 'and is ignored\033[0;0m')
# tourn_lead remains unchanged
# tourn_test remains unchanged
else: print ('\n\t\033[31m ERROR! In fx_fitness_tournament: fitness =', fitness, 'and tourn_test =', tourn_test, '\033[0;0m'); self.fx_karoo_pause() # consider special instructions for this (pause) - 2019 06/08
elif self.fitness_type == 'min': # if the fitness function is Minimising
if tourn_test == 0: # first time through, 'tourn_test' is given a baseline value
tourn_test = fitness
if fitness < tourn_test: # if the current Tree's 'fitness' is less than the priors'
if self.display == 'i': print ('\t\033[36m Tree', tree_id, 'has fitness', fitness, '<', tourn_test, 'and leads\033[0;0m')
tourn_lead = tree_id # set 'TREE_ID' for the new leader
tourn_test = fitness # set 'fitness' of the new leader
elif fitness == tourn_test: # if the current Tree's 'fitness' is equal to the priors'
if self.display == 'i': print ('\t\033[36m Tree', tree_id, 'has fitness', fitness, '=', tourn_test, 'and leads\033[0;0m')
tourn_lead = tree_id # in case there is no variance in this tournament
# tourn_test remains unchanged
elif fitness > tourn_test: # if the current Tree's 'fitness' is greater than the priors'
if self.display == 'i': print ('\t\033[36m Tree', tree_id, 'has fitness', fitness, '>', tourn_test, 'and is ignored\033[0;0m')
# tourn_lead remains unchanged
# tourn_test remains unchanged
else: print ('\n\t\033[31m ERROR! In fx_fitness_tournament: fitness =', fitness, 'and tourn_test =', tourn_test, '\033[0;0m'); self.fx_karoo_pause() # consider special instructions for this (pause) - 2019 06/08
tourn_winner = np.copy(self.population_a[tourn_lead]) # copy full Tree so as to not inadvertantly modify the original tree
if self.display == 'i': print ('\n\t\033[36mThe winner of the tournament is Tree:\033[1m', tourn_winner[0][1], '\033[0;0m')
return tourn_winner
def fx_fitness_gene_pool(self):
'''
The gene pool was introduced as means by which advanced users could define additional constraints on the evolved
functions, in an effort to guide the evolutionary process. The first constraint introduced is the 'mininum number
of nodes' parameter (gp.tree_depth_min). This defines the minimum number of nodes (in the context of Karoo, this
refers to both functions (operators) and terminals (operands)).
When the minimum node count is human guided, it can keep the solution from defaulting to a local minimum, as with
't/t' in the Kepler problem, by forcing a more complex solution. If you find that when engaging the Regression
kernel you are met with a solution which is too simple (eg: linear instead of non-linear), try increasing the
minimum number of nodes (with the launch of Karoo, or mid-stream by way of the pause menu).
With additional or alternative constraints, you may customize how the next generation is selected.
At this time, the gene pool does *not* limit the number of times any given Tree may be selected for reproduction or
mutation nor does it take into account parsimony (seeking the simplest multivariate expression).
This method is automatically invoked with every Tournament Selection - fx_fitness_tournament().
Called by: fx_karoo_gp
Arguments required: none
'''
self.gene_pool = []
if self.display == 'i': print ('\n Prepare a viable gene pool ...'); self.fx_karoo_pause_refer() # 2019 06/07
for tree_id in range(1, len(self.population_a)):
self.fx_eval_poly(self.population_a[tree_id]) # extract the expression
if self.swim == 'p': # each tree must have the min number of nodes defined by the user
if len(self.population_a[tree_id][3])-1 >= self.tree_depth_min and self.algo_sym != 1: # check if Tree meets the requirements
if self.display == 'i': print ('\t\033[36m Tree', tree_id, 'has >=', self.tree_depth_min, 'nodes and is added to the gene pool\033[0;0m')
self.gene_pool.append(self.population_a[tree_id][0][1])
elif self.swim == 'f': # each tree must contain at least one instance of each feature
if len(np.intersect1d([self.population_a[tree_id][6]],[self.terminals])) == len(self.terminals)-1: # check if Tree contains at least one instance of each feature - 2018 04/14 APS, Ohio
if self.display == 'i': print ('\t\033[36m Tree', tree_id, 'includes at least one of each feature and is added to the gene pool\033[0;0m')
self.gene_pool.append(self.population_a[tree_id][0][1])
# elif self.swim == '[other]' # use others as a template
if len(self.gene_pool) > 0 and self.display == 'i': print ('\n\t The total population of the gene pool is', len(self.gene_pool)); self.fx_karoo_pause_refer() # 2019 06/07
elif len(self.gene_pool) <= 0: # the evolutionary constraints were too tight, killing off the entire population
# self.gen_id = self.gen_id - 1 # revert the increment of the 'gen_id'
# self.gen_max = self.gen_id # catch the unused "cont" values in the fx_karoo_pause() method
print ("\n\t\033[31m\033[3m 'They're dead Jim. They're all dead!'\033[0;0m There are no Trees in the gene pool. You should archive your population and (q)uit."); self.fx_karoo_pause_refer() # 2019 06/07
return
def fx_fitness_test_classify(self, result):
'''
Print the Precision-Recall and Confusion Matrix for a CLASSIFICATION run against the test data.
From scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html
Precision (P) = true_pos / true_pos + false_pos
Recall (R) = true_pos / true_pos + false_neg
harmonic mean of Precision and Recall (F1) = 2(P x R) / (P + R)
From scikit-learn.org/stable/modules/generated/sklearn.metrics.classification_report.html
y_pred = result, the predicted labels generated by Karoo GP
y_true = solution, the true labels associated with the data
Called by: fx_karoo_pause
Arguments required: result
'''
for i in range(len(result['result'])):
print ('\t\033[36m Data row {} predicts class:\033[1m {} ({} True)\033[0;0m\033[36m as {:.2f}{}\033[0;0m'.format(i, int(result['pred_labels'][0][i]), int(result['solution'][i]), result['result'][i], result['pred_labels'][1][i]))
print ('\n Fitness score: {}'.format(result['fitness']))
print ('\n Precision-Recall report:\n', skm.classification_report(result['solution'], result['pred_labels'][0]))
print (' Confusion matrix:\n', skm.confusion_matrix(result['solution'], result['pred_labels'][0]))
return
def fx_fitness_test_regress(self, result):
'''
Print the Fitness score and Mean Squared Error for a REGRESSION run against the test data.
Called by: fx_karoo_pause
Arguments required: result
'''
for i in range(len(result['result'])):
print ('\t\033[36m Data row {} predicts value:\033[1m {:.2f} ({:.2f} True)\033[0;0m'.format(i, result['result'][i], result['solution'][i]))
MSE, fitness = skm.mean_squared_error(result['result'], result['solution']), result['fitness']
print ('\n\t Regression fitness score: {}'.format(fitness))
print ('\t Mean Squared Error: {}'.format(MSE))
return
def fx_fitness_test_match(self, result):
'''
Print the accuracy for a MATCH kernel run against the test data.
Called by: fx_karoo_pause
Arguments required: result
'''
for i in range(len(result['result'])):
print ('\t\033[36m Data row {} predicts match:\033[1m {:.2f} ({:.2f} True)\033[0;0m'.format(i, result['result'][i], result['solution'][i]))
print ('\n\tMatching fitness score: {}'.format(result['fitness']))
return
# def fx_fitness_test_[other](self, result): # use others as a template
#+++++++++++++++++++++++++++++++++++++++++++++
# Methods to Construct the next Generation |
#+++++++++++++++++++++++++++++++++++++++++++++
def fx_nextgen_reproduce(self):
'''
Through tournament selection, a single Tree from the prior generation is copied without mutation to the next
generation. This is analogous to a member of the prior generation directly entering the gene pool of the
subsequent (younger) generation.
Called by: fx_karoo_gp
Arguments required: none
'''
if self.display != 's':
if self.display == 'i': print ('')
print (' Perform', self.evolve_repro, 'Reproductions ...')
if self.display == 'i': self.fx_karoo_pause_refer() # 2019 06/07
for n in range(self.evolve_repro): # quantity of Trees to be copied without mutation
tourn_winner = self.fx_fitness_tournament(self.tourn_size) # perform tournament selection for each reproduction
tourn_winner = self.fx_evolve_fitness_wipe(tourn_winner) # wipe fitness data
self.population_b.append(tourn_winner) # append array to next generation population of Trees
return
def fx_nextgen_point_mutate(self):
'''
Through tournament selection, a copy of a Tree from the prior generation mutates before being added to the
next generation. In this method, a single point is selected for mutation while maintaining function nodes as
functions (operators) and terminal nodes as terminals (variables). The size and shape of the Tree will remain
identical.
Called by: fx_karoo_gp
Arguments required: none
'''
if self.display != 's':
if self.display == 'i': print ('')
print (' Perform', self.evolve_point, 'Point Mutations ...')
if self.display == 'i': self.fx_karoo_pause_refer() # 2019 06/07
for n in range(self.evolve_point): # quantity of Trees to be generated through mutation
tourn_winner = self.fx_fitness_tournament(self.tourn_size) # perform tournament selection for each mutation
tourn_winner, node = self.fx_evolve_point_mutate(tourn_winner) # perform point mutation; return single point for record keeping
self.population_b.append(tourn_winner) # append array to next generation population of Trees
return
def fx_nextgen_branch_mutate(self):
'''
Through tournament selection, a copy of a Tree from the prior generation mutates before being added to the
next generation. Unlike Point Mutation, in this method an entire branch is selected. If the evolutionary run is
designated as Full, the size and shape of the Tree will remain identical, each node mutated sequentially, where
functions remain functions and terminals remain terminals. If the evolutionary run is designated as Grow or
Ramped Half/Half, the size and shape of the Tree may grow smaller or larger, but it may not exceed
tree_depth_max as defined by the user.
Called by: fx_karoo_gp
Arguments required: none
'''
if self.display != 's':
if self.display == 'i': print ('')
print (' Perform', self.evolve_branch, 'Branch Mutations ...')
if self.display == 'i': self.fx_karoo_pause_refer() # 2019 06/07
for n in range(self.evolve_branch): # quantity of Trees to be generated through mutation
tourn_winner = self.fx_fitness_tournament(self.tourn_size) # perform tournament selection for each mutation
branch = self.fx_evolve_branch_select(tourn_winner) # select point of mutation and all nodes beneath
# TEST & DEBUG: comment the top or bottom to force all Full or all Grow methods
if tourn_winner[1][1] == 'f': # perform Full method mutation on 'tourn_winner'
tourn_winner = self.fx_evolve_full_mutate(tourn_winner, branch)
elif tourn_winner[1][1] == 'g': # perform Grow method mutation on 'tourn_winner'
tourn_winner = self.fx_evolve_grow_mutate(tourn_winner, branch)
self.population_b.append(tourn_winner) # append array to next generation population of Trees
return
def fx_nextgen_crossover(self):
'''
Through tournament selection, two trees are selected as parents to produce two offspring. Within each parent
Tree a branch is selected. Parent A is copied, with its selected branch deleted. Parent B's branch is then
copied to the former location of Parent A's branch and inserted (grafted). The size and shape of the child
Tree may be smaller or larger than either of the parents, but may not exceed 'tree_depth_max' as defined
by the user.
This process combines genetic code from two parent Trees, both of which were chosen by the tournament process
as having a higher fitness than the average population. Therefore, there is a chance their offspring will
provide an improvement in total fitness. In most GP applications, Crossover is the most commonly applied
evolutionary operator (~70-80%).
For those who like to watch, select 'db' (debug mode) at the launch of Karoo GP or at any (pause).
Called by: fx_karoo_gp
Arguments required: none
'''
if self.display != 's':
if self.display == 'i': print ('')
print (' Perform', self.evolve_cross, 'Crossovers ...')
if self.display == 'i': self.fx_karoo_pause_refer() # 2019 06/07
#for n in range(self.evolve_cross / 2): # Python 2.7
for n in range(self.evolve_cross // 2): # quantity of Trees to be generated through Crossover, accounting for 2 children each
parent_a = self.fx_fitness_tournament(self.tourn_size) # perform tournament selection for 'parent_a'
branch_a = self.fx_evolve_branch_select(parent_a) # select branch within 'parent_a', to copy to 'parent_b' and receive a branch from 'parent_b'
parent_b = self.fx_fitness_tournament(self.tourn_size) # perform tournament selection for 'parent_b'
branch_b = self.fx_evolve_branch_select(parent_b) # select branch within 'parent_b', to copy to 'parent_a' and receive a branch from 'parent_a'
parent_c = np.copy(parent_a); branch_c = np.copy(branch_a) # else the Crossover mods affect the parent Trees, due to how Python manages '='
parent_d = np.copy(parent_b); branch_d = np.copy(branch_b) # else the Crossover mods affect the parent Trees, due to how Python manages '='
offspring_1 = self.fx_evolve_crossover(parent_a, branch_a, parent_b, branch_b) # perform Crossover
self.population_b.append(offspring_1) # append the 1st child to next generation of Trees
offspring_2 = self.fx_evolve_crossover(parent_d, branch_d, parent_c, branch_c) # perform Crossover
self.population_b.append(offspring_2) # append the 2nd child to next generation of Trees
return
#+++++++++++++++++++++++++++++++++++++++++++++
# Methods to Evolve a Population |
#+++++++++++++++++++++++++++++++++++++++++++++
def fx_evolve_point_mutate(self, tree):
'''
Mutate a single point in any Tree (Grow or Full).
Called by: fx_nextgen_point_mutate
Arguments required: tree
'''
node = np.random.randint(1, len(tree[3])) # randomly select a point in the Tree (including root)
if self.display == 'i': print ('\t\033[36m with', tree[5][node], 'node\033[1m', tree[3][node], '\033[0;0m\033[36mchosen for mutation\n\033[0;0m')
elif self.display == 'db': print ('\n\n\033[33m *** Point Mutation *** \033[0;0m\n\n\033[36m This is the unaltered tourn_winner:\033[0;0m\n', tree)
if tree[5][node] == 'root':
rnd = np.random.randint(0, len(self.functions[:,0])) # call the previously loaded .csv which contains all operators
tree[6][node] = self.functions[rnd][0] # replace function (operator)
elif tree[5][node] == 'func':
rnd = np.random.randint(0, len(self.functions[:,0])) # call the previously loaded .csv which contains all operators
tree[6][node] = self.functions[rnd][0] # replace function (operator)
elif tree[5][node] == 'term':
rnd = np.random.randint(0, len(self.terminals) - 1) # call the previously loaded .csv which contains all terminals
tree[6][node] = self.terminals[rnd] # replace terminal (variable)
else: print ('\n\t\033[31m ERROR! In fx_evolve_point_mutate, node_type =', tree[5][node], '\033[0;0m'); self.fx_karoo_pause() # consider special instructions for this (pause) - 2019 06/08
tree = self.fx_evolve_fitness_wipe(tree) # wipe fitness data
if self.display == 'db': print ('\n\033[36m This is tourn_winner after node\033[1m', node, '\033[0;0m\033[36mmutation and updates:\033[0;0m\n', tree); self.fx_karoo_pause_refer() # 2019 06/07
return tree, node # 'node' is returned only to be assigned to the 'tourn_trees' record keeping
def fx_evolve_full_mutate(self, tree, branch):
'''
Mutate a branch of a Full method Tree.
The full mutate method is straight-forward. A branch was generated and passed to this method. As the size and
shape of the Tree must remain identical, each node is mutated sequentially (copied from the new Tree to replace
the old, node for node), where functions remain functions and terminals remain terminals.
Called by: fx_nextgen_branch_mutate
Arguments required: tree, branch
'''
if self.display == 'db': print ('\n\n\033[33m *** Full Mutation: function to function *** \033[0;0m\n\n\033[36m This is the unaltered tourn_winner:\033[0;0m\n', tree)
for n in range(len(branch)):
# 'root' is not made available for Full mutation as this would build an entirely new Tree
if tree[5][branch[n]] == 'func':
if self.display == 'i': print ('\t\033[36m from\033[1m', tree[5][branch[n]], '\033[0;0m\033[36mto\033[1m func \033[0;0m')
rnd = np.random.randint(0, len(self.functions[:,0])) # call the previously loaded .csv which contains all operators
tree[6][branch[n]] = self.functions[rnd][0] # replace function (operator)
elif tree[5][branch[n]] == 'term':
if self.display == 'i': print ('\t\033[36m from\033[1m', tree[5][branch[n]], '\033[0;0m\033[36mto\033[1m term \033[0;0m')
rnd = np.random.randint(0, len(self.terminals) - 1) # call the previously loaded .csv which contains all terminals
tree[6][branch[n]] = self.terminals[rnd] # replace terminal (variable)
tree = self.fx_evolve_fitness_wipe(tree) # wipe fitness data
if self.display == 'db': print ('\n\033[36m This is tourn_winner after nodes\033[1m', branch, '\033[0;0m\033[36mwere mutated and updated:\033[0;0m\n', tree); self.fx_karoo_pause_refer() # 2019 06/07
return tree
def fx_evolve_grow_mutate(self, tree, branch):
'''
Mutate a branch of a Grow method Tree.
A branch is selected within a given tree.
If the point of mutation ('branch_top') resides at 'tree_depth_max', we do not need to grow a new tree. As the
methods for building trees always assume root (node 0) to be a function, we need only mutate this terminal node
to another terminal node, and this branch mutate method is complete.
If the top of that branch is a terminal which does not reside at 'tree_depth_max', then it may either remain a
terminal (in which case a new value is randomly assigned) or it may mutate into a function. If it becomes a
function, a new branch (mini-tree) is generated to be appended to that nodes current location. The same is true
for function-to-function mutation. Either way, the new branch will be only as deep as allowed by the distance
from it's branch_top to the bottom of the tree.
If however a function mutates into a terminal, the entire branch beneath the function is deleted from the array
and the entire array is updated, to fix parent/child links, associated arities, and node IDs.
Called by: fx_nextgen_branch_mutate
Arguments required: tree, branch
'''
branch_top = int(branch[0]) # replaces 2 instances, below; tested 2016 07/09
branch_depth = self.tree_depth_max - int(tree[4][branch_top]) # 'tree_depth_max' - depth at 'branch_top' to set max potential size of new branch - 2016 07/10
if branch_depth < 0: # this has never occured ... yet
print ('\n\t\033[31m ERROR! In fx_evolve_grow_mutate: branch_depth', branch_depth, '< 0'); self.fx_karoo_pause() # consider special instructions for this (pause) - 2019 06/08
elif branch_depth == 0: # the point of mutation ('branch_top') chosen resides at the maximum allowable depth, so mutate term to term
if self.display == 'i': print ('\t\033[36m max depth branch node\033[1m', tree[3][branch_top], '\033[0;0m\033[36mmutates from \033[1mterm\033[0;0m \033[36mto \033[1mterm\033[0;0m\n')
if self.display == 'db': print ('\n\n\033[33m *** Grow Mutation: terminal to terminal *** \033[0;0m\n\n\033[36m This is the unaltered tourn_winner:\033[0;0m\n', tree)
rnd = np.random.randint(0, len(self.terminals) - 1) # call the previously loaded .csv which contains all terminals
tree[6][branch_top] = self.terminals[rnd] # replace terminal (variable)
if self.display == 'db': print ('\n\033[36m This is tourn_winner after terminal\033[1m', branch_top, '\033[0;0m\033[36mmutation, branch deletion, and updates:\033[0;0m\n', tree); self.fx_karoo_pause_refer() # 2019 06/07
else: # the point of mutation ('branch_top') chosen is at least one depth from the maximum allowed
# type_mod = '[func or term]' # TEST & DEBUG: force to 'func' or 'term' and comment the next 3 lines
rnd = np.random.randint(2)
if rnd == 0: type_mod = 'func' # randomly selected as Function
elif rnd == 1: type_mod = 'term' # randomly selected as Terminal
if type_mod == 'term': # mutate 'branch_top' to a terminal and delete all nodes beneath (no subsequent nodes are added to this branch)
if self.display == 'i': print ('\t\033[36m branch node\033[1m', tree[3][branch_top], '\033[0;0m\033[36mmutates from\033[1m', tree[5][branch_top], '\033[0;0m\033[36mto\033[1m term \n\033[0;0m')
if self.display == 'db': print ('\n\n\033[33m *** Grow Mutation: branch_top to terminal *** \033[0;0m\n\n\033[36m This is the unaltered tourn_winner:\033[0;0m\n', tree)
rnd = np.random.randint(0, len(self.terminals) - 1) # call the previously loaded .csv which contains all terminals
tree[5][branch_top] = 'term' # replace type ('func' to 'term' or 'term' to 'term')
tree[6][branch_top] = self.terminals[rnd] # replace label
tree = np.delete(tree, branch[1:], axis = 1) # delete all nodes beneath point of mutation ('branch_top')
tree = self.fx_evolve_node_arity_fix(tree) # fix all node arities
tree = self.fx_evolve_child_link_fix(tree) # fix all child links
tree = self.fx_evolve_node_renum(tree) # renumber all 'NODE_ID's
if self.display == 'db': print ('\n\033[36m This is tourn_winner after terminal\033[1m', branch_top, '\033[0;0m\033[36mmutation, branch deletion, and updates:\033[0;0m\n', tree); self.fx_karoo_pause_refer() # 2019 06/07
if type_mod == 'func': # mutate 'branch_top' to a function (a new 'gp.tree' will be copied, node by node, into 'tourn_winner')
if self.display == 'i': print ('\t\033[36m branch node\033[1m', tree[3][branch_top], '\033[0;0m\033[36mmutates from\033[1m', tree[5][branch_top], '\033[0;0m\033[36mto\033[1m func \n\033[0;0m')
if self.display == 'db': print ('\n\n\033[33m *** Grow Mutation: branch_top to function *** \033[0;0m\n\n\033[36m This is the unaltered tourn_winner:\033[0;0m\n', tree)
self.fx_init_tree_build('mutant', self.pop_tree_type, branch_depth) # build new Tree ('gp.tree') with a maximum depth which matches 'branch'
if self.display == 'db': print ('\n\033[36m This is the new Tree to be inserted at node\033[1m', branch_top, '\033[0;0m\033[36min tourn_winner:\033[0;0m\n', self.tree); self.fx_karoo_pause_refer() # 2019 06/07
tree = self.fx_evolve_branch_insert(tree, branch) # insert new 'branch' at point of mutation 'branch_top' in tourn_winner 'tree'
# because we already know the maximum depth to which this branch can grow, there is no need to prune after insertion
tree = self.fx_evolve_fitness_wipe(tree) # wipe fitness data
return tree
def fx_evolve_crossover(self, parent, branch_x, offspring, branch_y):
'''
Refer to the method fx_nextgen_crossover() for a full description of the genetic operator Crossover.
This method is called twice to produce 2 offspring per pair of parent Trees. Note that in the method
'karoo_fx_crossover' the parent/branch relationships are swapped from the first run to the second, such that
this method receives swapped components to produce the alternative offspring. Therefore 'parent_b' is first
passed to 'offspring' which will receive 'branch_a'. With the second run, 'parent_a' is passed to 'offspring' which
will receive 'branch_b'.
Called by: fx_nextgen_crossover
Arguments required: parent, branch_x, offspring, branch_y (parents_a / _b, branch_a / _b from fx_nextgen_crossover()
'''
crossover = int(branch_x[0]) # pointer to the top of the 1st parent branch passed from fx_nextgen_crossover()
branch_top = int(branch_y[0]) # pointer to the top of the 2nd parent branch passed from fx_nextgen_crossover()
if self.display == 'db': print ('\n\n\033[33m *** Crossover *** \033[0;0m')
if len(branch_x) == 1: # if the branch from the parent contains only one node (terminal)
if self.display == 'i': print ('\t\033[36m terminal crossover from \033[1mparent', parent[0][1], '\033[0;0m\033[36mto \033[1moffspring', offspring[0][1], '\033[0;0m\033[36mat node\033[1m', branch_top, '\033[0;0m')
if self.display == 'db':
print ('\n\033[36m In a copy of one parent:\033[0;0m\n', offspring)
print ('\n\033[36m ... we remove nodes\033[1m', branch_y, '\033[0;0m\033[36mand replace node\033[1m', branch_top, '\033[0;0m\033[36mwith a terminal from branch_x\033[0;0m'); self.fx_karoo_pause_refer() # 2019 06/07
offspring[5][branch_top] = 'term' # replace type
offspring[6][branch_top] = parent[6][crossover] # replace label with that of a particular node in 'branch_x'
offspring[8][branch_top] = 0 # set terminal arity
offspring = np.delete(offspring, branch_y[1:], axis = 1) # delete all nodes beneath point of mutation ('branch_top')
offspring = self.fx_evolve_child_link_fix(offspring) # fix all child links
offspring = self.fx_evolve_node_renum(offspring) # renumber all 'NODE_ID's
if self.display == 'db': print ('\n\033[36m This is the resulting offspring:\033[0;0m\n', offspring); self.fx_karoo_pause_refer() # 2019 06/07
else: # we are working with a branch from 'parent' >= depth 1 (min 3 nodes)
if self.display == 'i': print ('\t\033[36m branch crossover from \033[1mparent', parent[0][1], '\033[0;0m\033[36mto \033[1moffspring', offspring[0][1], '\033[0;0m\033[36mat node\033[1m', branch_top, '\033[0;0m')
# self.fx_init_tree_build('test', 'f', 2) # TEST & DEBUG: disable the next 'self.tree ...' line
self.tree = self.fx_evolve_branch_copy(parent, branch_x) # generate stand-alone 'gp.tree' with properties of 'branch_x'
if self.display == 'db':
print ('\n\033[36m From one parent:\033[0;0m\n', parent)
print ('\n\033[36m ... we copy branch_x\033[1m', branch_x, '\033[0;0m\033[36mas a new, sub-tree:\033[0;0m\n', self.tree); self.fx_karoo_pause_refer() # 2019 06/07
if self.display == 'db':
print ('\n\033[36m ... and insert it into a copy of the second parent in place of the selected branch\033[1m', branch_y,':\033[0;0m\n', offspring); self.fx_karoo_pause_refer() # 2019 06/07
offspring = self.fx_evolve_branch_insert(offspring, branch_y) # insert new 'branch_y' at point of mutation 'branch_top' in tourn_winner 'offspring'
offspring = self.fx_evolve_tree_prune(offspring, self.tree_depth_max) # prune to the max Tree depth + adjustment - tested 2016 07/10
offspring = self.fx_evolve_fitness_wipe(offspring) # wipe fitness data
return offspring
def fx_evolve_branch_select(self, tree):
'''
Select all nodes in the 'tourn_winner' Tree at and below the randomly selected starting point.
While Grow mutation uses this method to select a region of the 'tourn_winner' to delete, Crossover uses this
method to select a region of the 'tourn_winner' which is then converted to a stand-alone tree. As such, it is
imperative that the nodes be in the correct order, else all kinds of bad things happen.
Called by: fx_nextgen_branch, fx_nextgen_crossover
Arguments required: tree
'''
branch = np.array([]) # the array is necessary in order to len(branch) when 'branch' has only one element
branch_top = np.random.randint(2, len(tree[3])) # randomly select a non-root node
branch_eval = self.fx_eval_id(tree, branch_top) # generate tuple of 'branch_top' and subseqent nodes
branch_symp = sympify(branch_eval) # convert string into something useful
branch = np.append(branch, branch_symp) # append list to array
branch = np.sort(branch) # sort nodes in branch for Crossover.
if self.display == 'i': print ('\t \033[36mwith nodes\033[1m', branch, '\033[0;0m\033[36mchosen for mutation\033[0;0m')
return branch
def fx_evolve_branch_insert(self, tree, branch):
'''
This method enables the insertion of Tree in place of a branch. It works with 3 inputs: local 'tree' is being
modified; local 'branch' is a section of 'tree' which will be removed; and the global 'gp.tree' (recycling this
variable from initial population generation) is the new Tree to be insertd into 'tree', replacing 'branch'.
The end result is a Tree with a mutated branch. Pretty cool, huh?
Called by: fx_evolve_grow_mutate, fx_evolve_grow_crossover
Arguments required: tree, branch
'''
# *_branch_top_copy merged with *_body_copy 2018 04/12
### PART 1 - insert branch_top from 'gp.tree' into 'tree' ###
branch_top = int(branch[0])
tree[5][branch_top] = 'func' # update type ('func' to 'term' or 'term' to 'term'); this modifies gp.tree[5][1] from 'root' to 'func'
tree[6][branch_top] = self.tree[6][1] # copy node_label from new tree
tree[8][branch_top] = self.tree[8][1] # copy node_arity from new tree
tree = np.delete(tree, branch[1:], axis = 1) # delete all nodes beneath point of mutation ('branch_top')
c_buffer = self.fx_evolve_c_buffer(tree, branch_top) # generate c_buffer for point of mutation ('branch_top')
tree = self.fx_evolve_child_insert(tree, branch_top, c_buffer) # insert a single new node ('branch_top')
tree = self.fx_evolve_node_renum(tree) # renumber all 'NODE_ID's
if self.display == 'db':
print ('\n\t ... inserted node 1 of', len(self.tree[3])-1)
print ('\n\033[36m This is the Tree after a new node is inserted:\033[0;0m\n', tree); self.fx_karoo_pause_refer() # 2019 06/07
### PART 2 - insert branch_body from 'gp.tree' into 'tree' ###
node_count = 2 # set node count for 'gp.tree' to 2 as the new root has already replaced 'branch_top' (above)
while node_count < len(self.tree[3]): # increment through all nodes in the new Tree ('gp.tree'), starting with node 2
for j in range(1, len(tree[3])): # increment through all nodes in tourn_winner ('tree')
if self.display == 'db': print ('\tScanning tourn_winner node_id:', j)
if tree[5][j] == '':
tree[5][j] = self.tree[5][node_count] # copy 'node_type' from branch to tree
tree[6][j] = self.tree[6][node_count] # copy 'node_label' from branch to tree
tree[8][j] = self.tree[8][node_count] # copy 'node_arity' from branch to tree
if tree[5][j] == 'term':
tree = self.fx_evolve_child_link_fix(tree) # fix all child links
tree = self.fx_evolve_node_renum(tree) # renumber all 'NODE_ID's
if tree[5][j] == 'func':
c_buffer = self.fx_evolve_c_buffer(tree, j) # generate 'c_buffer' for point of mutation ('branch_top')
tree = self.fx_evolve_child_insert(tree, j, c_buffer) # insert new nodes
tree = self.fx_evolve_child_link_fix(tree) # fix all child links
tree = self.fx_evolve_node_renum(tree) # renumber all 'NODE_ID's
if self.display == 'db':
print ('\n\t ... inserted node', node_count, 'of', len(self.tree[3])-1)
print ('\n\033[36m This is the Tree after a new node is inserted:\033[0;0m\n', tree); self.fx_karoo_pause_refer() # 2019 06/07
node_count = node_count + 1 # exit loop when 'node_count' reaches the number of columns in the array 'gp.tree'
return tree
def fx_evolve_branch_copy(self, tree, branch):
'''
This method prepares a stand-alone Tree as a copy of the given branch.
Called by: fx_evolve_crossover
Arguments required: tree, branch
'''
new_tree = np.array([ ['TREE_ID'],['tree_type'],['tree_depth_base'],['NODE_ID'],['node_depth'],['node_type'],['node_label'],['node_parent'],['node_arity'],['node_c1'],['node_c2'],['node_c3'],['fitness'] ])
# tested 2015 06/08
for n in range(len(branch)):
node = branch[n]
branch_top = int(branch[0])
TREE_ID = 'copy'
tree_type = tree[1][1]
tree_depth_base = int(tree[4][branch[-1]]) - int(tree[4][branch_top]) # subtract depth of 'branch_top' from the last in 'branch'
NODE_ID = tree[3][node]
node_depth = int(tree[4][node]) - int(tree[4][branch_top]) # subtract the depth of 'branch_top' from the current node depth
node_type = tree[5][node]
node_label = tree[6][node]
node_parent = '' # updated by fx_evolve_parent_link_fix(), below
node_arity = tree[8][node]
node_c1 = '' # updated by fx_evolve_child_link_fix(), below
node_c2 = ''
node_c3 = ''
fitness = ''
new_tree = np.append(new_tree, [ [TREE_ID],[tree_type],[tree_depth_base],[NODE_ID],[node_depth],[node_type],[node_label],[node_parent],[node_arity],[node_c1],[node_c2],[node_c3],[fitness] ], 1)
new_tree = self.fx_evolve_node_renum(new_tree)
new_tree = self.fx_evolve_child_link_fix(new_tree)
new_tree = self.fx_evolve_parent_link_fix(new_tree)
new_tree = self.fx_data_tree_clean(new_tree)
return new_tree
def fx_evolve_c_buffer(self, tree, node):
'''
This method serves the very important function of determining the links from parent to child for any given
node. The single, simple formula [parent_arity_sum + prior_sibling_arity - prior_siblings] perfectly determines
the correct position of the child node, already in place or to be inserted, no matter the depth nor complexity
of the tree.
This method is currently called from the evolution methods, but will soon (I hope) be called from the first
generation Tree generation methods (above) such that the same method may be used repeatedly.
Called by: fx_evolve_child_link_fix, fx_evolve_banch_top_copy, fx_evolve_branch_body_copy
Arguments required: tree, node
'''
parent_arity_sum = 0
prior_sibling_arity = 0
prior_siblings = 0
for n in range(1, len(tree[3])): # increment through all nodes (exclude 0) in array 'tree'
if int(tree[4][n]) == int(tree[4][node])-1: # find parent nodes at the prior depth
if tree[8][n] != '': parent_arity_sum = parent_arity_sum + int(tree[8][n]) # sum arities of all parent nodes at the prior depth
if int(tree[4][n]) == int(tree[4][node]) and int(tree[3][n]) < int(tree[3][node]): # find prior siblings at the current depth
if tree[8][n] != '': prior_sibling_arity = prior_sibling_arity + int(tree[8][n]) # sum prior sibling arity
prior_siblings = prior_siblings + 1 # sum quantity of prior siblings
c_buffer = node + (parent_arity_sum + prior_sibling_arity - prior_siblings) # One algo to rule the world!
return c_buffer
def fx_evolve_child_link(self, tree, node, c_buffer):
'''
Link each parent node to its children.
Called by: fx_evolve_child_link_fix
Arguments required: tree, node, c_buffer
'''
if int(tree[3][node]) == 1: c_buffer = c_buffer + 1 # if root (node 1) is passed through this method
if tree[8][node] != '':
if int(tree[8][node]) == 0: # if arity = 0
tree[9][node] = ''
tree[10][node] = ''
tree[11][node] = ''
elif int(tree[8][node]) == 1: # if arity = 1
tree[9][node] = c_buffer
tree[10][node] = ''
tree[11][node] = ''
elif int(tree[8][node]) == 2: # if arity = 2
tree[9][node] = c_buffer
tree[10][node] = c_buffer + 1
tree[11][node] = ''
elif int(tree[8][node]) == 3: # if arity = 3
tree[9][node] = c_buffer
tree[10][node] = c_buffer + 1
tree[11][node] = c_buffer + 2
else: print ('\n\t\033[31m ERROR! In fx_evolve_child_link: node', node, 'has arity', tree[8][node]); self.fx_karoo_pause() # consider special instructions for this (pause) - 2019 06/08
return tree
def fx_evolve_child_link_fix(self, tree):
'''
In a given Tree, fix 'node_c1', 'node_c2', 'node_c3' for all nodes.
This is required anytime the size of the array 'gp.tree' has been modified, as with both Grow and Full mutation.
Called by: fx_evolve_grow_mutate, fx_evolve_crossover, fx_evolve_branch_body_copy, fx_evolve_branch_copy
Arguments required: tree
'''
# tested 2015 06/04
for node in range(1, len(tree[3])):
c_buffer = self.fx_evolve_c_buffer(tree, node) # generate c_buffer for each node
tree = self.fx_evolve_child_link(tree, node, c_buffer) # update child links for each node
return tree
def fx_evolve_child_insert(self, tree, node, c_buffer):
'''
Insert child node into the copy of a parent Tree.
Called by: fx_evolve_branch_insert
Arguments required: tree, node, c_buffer
'''
if int(tree[8][node]) == 0: # if arity = 0
print ('\n\t\033[31m ERROR! In fx_evolve_child_insert: node', node, 'has arity 0\033[0;0m'); self.fx_karoo_pause() # consider special instructions for this (pause) - 2019 06/08
elif int(tree[8][node]) == 1: # if arity = 1
tree = np.insert(tree, c_buffer, '', axis=1) # insert node for 'node_c1'
tree[3][c_buffer] = c_buffer # node ID
tree[4][c_buffer] = int(tree[4][node]) + 1 # node_depth
tree[7][c_buffer] = int(tree[3][node]) # parent ID
elif int(tree[8][node]) == 2: # if arity = 2
tree = np.insert(tree, c_buffer, '', axis=1) # insert node for 'node_c1'
tree[3][c_buffer] = c_buffer # node ID
tree[4][c_buffer] = int(tree[4][node]) + 1 # node_depth
tree[7][c_buffer] = int(tree[3][node]) # parent ID
tree = np.insert(tree, c_buffer + 1, '', axis=1) # insert node for 'node_c2'
tree[3][c_buffer + 1] = c_buffer + 1 # node ID
tree[4][c_buffer + 1] = int(tree[4][node]) + 1 # node_depth
tree[7][c_buffer + 1] = int(tree[3][node]) # parent ID
elif int(tree[8][node]) == 3: # if arity = 3
tree = np.insert(tree, c_buffer, '', axis=1) # insert node for 'node_c1'
tree[3][c_buffer] = c_buffer # node ID
tree[4][c_buffer] = int(tree[4][node]) + 1 # node_depth
tree[7][c_buffer] = int(tree[3][node]) # parent ID
tree = np.insert(tree, c_buffer + 1, '', axis=1) # insert node for 'node_c2'
tree[3][c_buffer + 1] = c_buffer + 1 # node ID
tree[4][c_buffer + 1] = int(tree[4][node]) + 1 # node_depth
tree[7][c_buffer + 1] = int(tree[3][node]) # parent ID
tree = np.insert(tree, c_buffer + 2, '', axis=1) # insert node for 'node_c3'
tree[3][c_buffer + 2] = c_buffer + 2 # node ID
tree[4][c_buffer + 2] = int(tree[4][node]) + 1 # node_depth
tree[7][c_buffer + 2] = int(tree[3][node]) # parent ID
else: print ('\n\t\033[31m ERROR! In fx_evolve_child_insert: node', node, 'arity > 3\033[0;0m'); self.fx_karoo_pause() # consider special instructions for this (pause) - 2019 06/08
return tree
def fx_evolve_parent_link_fix(self, tree):
'''
In a given Tree, fix 'parent_id' for all nodes.
This is automatically handled in all mutations except with Crossover due to the need to copy branches 'a' and
'b' to their own trees before inserting them into copies of the parents.
Technically speaking, the 'node_parent' value is not used by any methods. The parent ID can be completely out
of whack and the expression will work perfectly. This is maintained for the sole purpose of granting the user
a friendly, makes-sense interface which can be read in both directions.
Called by: fx_evolve_branch_copy
Arguments required: tree
'''
### THIS METHOD MAY NOT BE REQUIRED AS SORTING 'branch' SEEMS TO HAVE FIXED 'parent_id' ###
# tested 2015 06/05
for node in range(1, len(tree[3])):
if tree[9][node] != '':
child = int(tree[9][node])
tree[7][child] = node
if tree[10][node] != '':
child = int(tree[10][node])
tree[7][child] = node
if tree[11][node] != '':
child = int(tree[11][node])
tree[7][child] = node
return tree
def fx_evolve_node_arity_fix(self, tree):
'''
In a given Tree, fix 'node_arity' for all nodes labeled 'term' but with arity 2.
This is required after a function has been replaced by a terminal, as may occur with both Grow mutation and
Crossover.
Called by: fx_evolve_grow_mutate, fx_evolve_tree_prune
Arguments required: tree
'''
# tested 2015 05/31
for n in range(1, len(tree[3])): # increment through all nodes (exclude 0) in array 'tree'
if tree[5][n] == 'term': # check for discrepency
tree[8][n] = '0' # set arity to 0
tree[9][n] = '' # wipe 'node_c1'
tree[10][n] = '' # wipe 'node_c2'
tree[11][n] = '' # wipe 'node_c3'
return tree
def fx_evolve_node_renum(self, tree):
'''
Renumber all 'NODE_ID' in a given tree.
This is required after a new generation is evolved as the NODE_ID numbers are carried forward from the previous
generation but are no longer in order.
Called by: fx_evolve_grow_mutate, fx_evolve_crossover, fx_evolve_branch_insert, fx_evolve_branch_copy
Arguments required: tree
'''
for n in range(1, len(tree[3])):
tree[3][n] = n # renumber all Trees in given population
return tree
def fx_evolve_fitness_wipe(self, tree):
'''
Remove all fitness data from a given tree.
This is required after a new generation is evolved as the fitness of the same Tree prior to its mutation will
no longer apply.
Called by: fx_nextgen_reproduce, fx_nextgen_point_mutate, fx_nextgen_full_mutate, fx_nextgen_grow_mutate, fx_nextgen_crossover
Arguments required: tree
'''
tree[12][1:] = '' # wipe fitness data
return tree
def fx_evolve_tree_prune(self, tree, depth):
'''
This method reduces the depth of a Tree. Used with Crossover, the input value 'branch' can be a partial Tree
(branch) or a full tree, and it will operate correctly. The input value 'depth' becomes the new maximum depth,
where depth is defined as the local maximum + the user defined adjustment.
Called by: fx_evolve_crossover
Arguments required: tree, depth
'''
nodes = []
# tested 2015 06/08
for n in range(1, len(tree[3])):
if int(tree[4][n]) == depth and tree[5][n] == 'func':
rnd = np.random.randint(0, len(self.terminals) - 1) # call the previously loaded .csv which contains all terminals
tree[5][n] = 'term' # mutate type 'func' to 'term'
tree[6][n] = self.terminals[rnd] # replace label
elif int(tree[4][n]) > depth: # record nodes deeper than the maximum allowed Tree depth
nodes.append(n)
else: pass # as int(tree[4][n]) < depth and will remain untouched
tree = np.delete(tree, nodes, axis = 1) # delete nodes deeper than the maximum allowed Tree depth
tree = self.fx_evolve_node_arity_fix(tree) # fix all node arities
return tree
def fx_evolve_pop_copy(self, pop_a, title):
'''
Copy one population to another.
Simply copying a list of arrays generates a pointer to the original list. Therefore we must append each array
to a new, empty array and then build a list of those new arrays.
Called by: fx_karoo_gp
Arguments required: pop_a, title
'''
pop_b = [title] # an empty list stores a copy of the prior generation
for tree in range(1, len(pop_a)): # increment through each Tree in the current population
tree_copy = np.copy(pop_a[tree]) # copy each array in the current population
pop_b.append(tree_copy) # add each copied Tree to the new population list
return pop_b
#+++++++++++++++++++++++++++++++++++++++++++++
# Methods to Visualize a Tree |
#+++++++++++++++++++++++++++++++++++++++++++++
def fx_display_tree(self, tree):
'''
Display all or part of a Tree on-screen.
This method displays all sequential node_ids from 'start' node through bottom, within the given tree.
Called by: fx_karoo_gp, fx_karoo_pause
Arguments required: tree
'''
ind = ''
print ('\n\033[1m\033[36m Tree ID', int(tree[0][1]), '\033[0;0m')
for depth in range(0, self.tree_depth_max + 1): # increment through all possible Tree depths - tested 2016 07/09
print ('\n', ind,'\033[36m Tree Depth:', depth, 'of', tree[2][1], '\033[0;0m')
for node in range(1, len(tree[3])): # increment through all nodes (redundant, I know)
if int(tree[4][node]) == depth:
print ('')
print (ind,'\033[1m\033[36m NODE:', tree[3][node], '\033[0;0m')
print (ind,' type:', tree[5][node])
print (ind,' label:', tree[6][node], '\tparent node:', tree[7][node])
print (ind,' arity:', tree[8][node], '\tchild node(s):', tree[9][node], tree[10][node], tree[11][node])
ind = ind + '\t'
print ('')
self.fx_eval_poly(tree) # generate the raw and sympified expression for the entire Tree
print ('\t\033[36mTree', tree[0][1], 'yields (raw):', self.algo_raw, '\033[0;0m')
print ('\t\033[36mTree', tree[0][1], 'yields (sym):\033[1m', self.algo_sym, '\033[0;0m')
return
def fx_display_branch(self, tree, start):
'''
Display a Tree branch on-screen.
This method displays all sequential node_ids from 'start' node through bottom, within the given branch.
Called by: This method is not used by Karoo GP at this time.
Arguments required: tree, start
'''
branch = np.array([]) # the array is necessary in order to len(branch) when 'branch' has only one element
branch_eval = self.fx_eval_id(tree, start) # generate tuple of given 'branch'
branch_symp = sympify(branch_eval) # convert string from tuple to list
branch = np.append(branch, branch_symp) # append list to array
ind = ''
# for depth in range(int(tree[4][start]), int(tree[2][1]) + self.tree_depth_max + 1): # increment through all Tree depths - tested 2016 07/09
for depth in range(int(tree[4][start]), self.tree_depth_max + 1): # increment through all Tree depths - tested 2016 07/09
print ('\n', ind,'\033[36m Tree Depth:', depth, 'of', tree[2][1], '\033[0;0m')
for n in range(0, len(branch)): # increment through all nodes listed in the branch
node = branch[n]
if int(tree[4][node]) == depth:
print ('')
print (ind,'\033[1m\033[36m NODE:', node, '\033[0;0m')
print (ind,' type:', tree[5][node])
print (ind,' label:', tree[6][node], '\tparent node:', tree[7][node])
print (ind,' arity:', tree[8][node], '\tchild node(s):', tree[9][node], tree[10][node], tree[11][node])
ind = ind + '\t'
print ('')
self.fx_eval_poly(tree) # generate the raw and sympified expression for the entire Tree
print ('\t\033[36mTree', tree[0][1], 'yields (raw):', self.algo_raw, '\033[0;0m')
print ('\t\033[36mTree', tree[0][1], 'yields (sym):\033[1m', self.algo_sym, '\033[0;0m')
return