nopenpilot/selfdrive/locationd/calibrationd.py

225 lines
8.0 KiB
Python
Raw Normal View History

2020-01-17 12:39:46 -07:00
#!/usr/bin/env python3
'''
This process finds calibration values. More info on what these calibration values
are can be found here https://github.com/commaai/openpilot/tree/master/common/transformations
While the roll calibration is a real value that can be estimated, here we assume it's zero,
and the image input into the neural network is not corrected for roll.
'''
2020-01-17 12:39:46 -07:00
import os
import copy
from typing import NoReturn
2020-01-17 12:39:46 -07:00
import numpy as np
import cereal.messaging as messaging
from cereal import log
from selfdrive.hardware import TICI
2020-01-17 12:39:46 -07:00
from common.params import Params, put_nonblocking
from common.transformations.model import model_height
from common.transformations.camera import get_view_frame_from_road_frame
from common.transformations.orientation import rot_from_euler, euler_from_rot
from selfdrive.config import Conversions as CV
from selfdrive.swaglog import cloudlog
2020-01-17 12:39:46 -07:00
MIN_SPEED_FILTER = 15 * CV.MPH_TO_MS
MAX_VEL_ANGLE_STD = np.radians(0.25)
2020-01-17 12:39:46 -07:00
MAX_YAW_RATE_FILTER = np.radians(2) # per second
# This is at model frequency, blocks needed for efficiency
SMOOTH_CYCLES = 400
2020-01-17 12:39:46 -07:00
BLOCK_SIZE = 100
INPUTS_NEEDED = 5 # Minimum blocks needed for valid calibration
INPUTS_WANTED = 50 # We want a little bit more than we need for stability
MAX_ALLOWED_SPREAD = np.radians(2)
RPY_INIT = np.array([0.0,0.0,0.0])
2020-01-17 12:39:46 -07:00
# These values are needed to accommodate biggest modelframe
PITCH_LIMITS = np.array([-0.09074112085129739, 0.14907572052989657])
YAW_LIMITS = np.array([-0.06912048084718224, 0.06912048084718235])
2020-01-17 12:39:46 -07:00
DEBUG = os.getenv("DEBUG") is not None
class Calibration:
UNCALIBRATED = 0
CALIBRATED = 1
INVALID = 2
2020-01-17 12:39:46 -07:00
def is_calibration_valid(rpy):
return (PITCH_LIMITS[0] < rpy[1] < PITCH_LIMITS[1]) and (YAW_LIMITS[0] < rpy[2] < YAW_LIMITS[1])
2020-01-17 12:39:46 -07:00
def sanity_clip(rpy):
if np.isnan(rpy).any():
rpy = RPY_INIT
return np.array([rpy[0],
np.clip(rpy[1], PITCH_LIMITS[0] - .005, PITCH_LIMITS[1] + .005),
np.clip(rpy[2], YAW_LIMITS[0] - .005, YAW_LIMITS[1] + .005)])
2020-01-17 12:39:46 -07:00
class Calibrator():
def __init__(self, param_put=False):
self.param_put = param_put
# Read saved calibration
params = Params()
calibration_params = params.get("CalibrationParams")
self.wide_camera = TICI and params.get_bool('EnableWideCamera')
rpy_init = RPY_INIT
valid_blocks = 0
if param_put and calibration_params:
2020-01-17 12:39:46 -07:00
try:
msg = log.Event.from_bytes(calibration_params)
rpy_init = list(msg.liveCalibration.rpyCalib)
valid_blocks = msg.liveCalibration.validBlocks
2020-01-17 12:39:46 -07:00
except Exception:
cloudlog.exception("Error reading cached CalibrationParams")
self.reset(rpy_init, valid_blocks)
self.update_status()
def reset(self, rpy_init=RPY_INIT, valid_blocks=0, smooth_from=None):
if not np.isfinite(rpy_init).all():
self.rpy = copy.copy(RPY_INIT)
else:
self.rpy = rpy_init
if not np.isfinite(valid_blocks) or valid_blocks < 0:
self.valid_blocks = 0
else:
self.valid_blocks = valid_blocks
self.rpys = np.tile(self.rpy, (INPUTS_WANTED, 1))
self.idx = 0
self.block_idx = 0
self.v_ego = 0
if smooth_from is None:
self.old_rpy = RPY_INIT
self.old_rpy_weight = 0.0
else:
self.old_rpy = smooth_from
self.old_rpy_weight = 1.0
2020-01-17 12:39:46 -07:00
def get_valid_idxs(self, ):
# exclude current block_idx from validity window
before_current = list(range(self.block_idx))
after_current = list(range(min(self.valid_blocks, self.block_idx + 1), self.valid_blocks))
return before_current + after_current
2020-01-17 12:39:46 -07:00
def update_status(self):
if len(self.get_valid_idxs()) > 0:
max_rpy_calib = np.array(np.max(self.rpys[self.get_valid_idxs()], axis=0))
min_rpy_calib = np.array(np.min(self.rpys[self.get_valid_idxs()], axis=0))
self.calib_spread = np.abs(max_rpy_calib - min_rpy_calib)
else:
self.calib_spread = np.zeros(3)
2020-01-17 12:39:46 -07:00
if self.valid_blocks < INPUTS_NEEDED:
self.cal_status = Calibration.UNCALIBRATED
elif is_calibration_valid(self.rpy):
self.cal_status = Calibration.CALIBRATED
2020-01-17 12:39:46 -07:00
else:
self.cal_status = Calibration.INVALID
# If spread is too high, assume mounting was changed and reset to last block.
# Make the transition smooth. Abrupt transitions are not good foor feedback loop through supercombo model.
if max(self.calib_spread) > MAX_ALLOWED_SPREAD and self.cal_status == Calibration.CALIBRATED:
self.reset(self.rpys[self.block_idx - 1], valid_blocks=INPUTS_NEEDED, smooth_from=self.rpy)
write_this_cycle = (self.idx == 0) and (self.block_idx % (INPUTS_WANTED//5) == 5)
if self.param_put and write_this_cycle:
put_nonblocking("CalibrationParams", self.get_msg().to_bytes())
2020-01-17 12:39:46 -07:00
def handle_v_ego(self, v_ego):
self.v_ego = v_ego
def get_smooth_rpy(self):
if self.old_rpy_weight > 0:
return self.old_rpy_weight * self.old_rpy + (1.0 - self.old_rpy_weight) * self.rpy
else:
return self.rpy
2020-01-17 12:39:46 -07:00
def handle_cam_odom(self, trans, rot, trans_std, rot_std):
self.old_rpy_weight = min(0.0, self.old_rpy_weight - 1/SMOOTH_CYCLES)
straight_and_fast = ((self.v_ego > MIN_SPEED_FILTER) and (trans[0] > MIN_SPEED_FILTER) and (abs(rot[2]) < MAX_YAW_RATE_FILTER))
if self.wide_camera:
angle_std_threshold = 4*MAX_VEL_ANGLE_STD
else:
angle_std_threshold = MAX_VEL_ANGLE_STD
certain_if_calib = ((np.arctan2(trans_std[1], trans[0]) < angle_std_threshold) or
(self.valid_blocks < INPUTS_NEEDED))
if not (straight_and_fast and certain_if_calib):
2020-01-17 12:39:46 -07:00
return None
observed_rpy = np.array([0,
-np.arctan2(trans[2], trans[0]),
np.arctan2(trans[1], trans[0])])
new_rpy = euler_from_rot(rot_from_euler(self.get_smooth_rpy()).dot(rot_from_euler(observed_rpy)))
new_rpy = sanity_clip(new_rpy)
self.rpys[self.block_idx] = (self.idx*self.rpys[self.block_idx] + (BLOCK_SIZE - self.idx) * new_rpy) / float(BLOCK_SIZE)
self.idx = (self.idx + 1) % BLOCK_SIZE
if self.idx == 0:
self.block_idx += 1
self.valid_blocks = max(self.block_idx, self.valid_blocks)
self.block_idx = self.block_idx % INPUTS_WANTED
if len(self.get_valid_idxs()) > 0:
self.rpy = np.mean(self.rpys[self.get_valid_idxs()], axis=0)
self.update_status()
return new_rpy
def get_msg(self):
smooth_rpy = self.get_smooth_rpy()
extrinsic_matrix = get_view_frame_from_road_frame(0, smooth_rpy[1], smooth_rpy[2], model_height)
2020-01-17 12:39:46 -07:00
msg = messaging.new_message('liveCalibration')
msg.liveCalibration.validBlocks = self.valid_blocks
msg.liveCalibration.calStatus = self.cal_status
msg.liveCalibration.calPerc = min(100 * (self.valid_blocks * BLOCK_SIZE + self.idx) // (INPUTS_NEEDED * BLOCK_SIZE), 100)
msg.liveCalibration.extrinsicMatrix = [float(x) for x in extrinsic_matrix.flatten()]
msg.liveCalibration.rpyCalib = [float(x) for x in smooth_rpy]
msg.liveCalibration.rpyCalibSpread = [float(x) for x in self.calib_spread]
return msg
2020-01-17 12:39:46 -07:00
def send_data(self, pm) -> None:
pm.send('liveCalibration', self.get_msg())
2020-01-17 12:39:46 -07:00
def calibrationd_thread(sm=None, pm=None) -> NoReturn:
2020-01-17 12:39:46 -07:00
if sm is None:
sm = messaging.SubMaster(['cameraOdometry', 'carState'], poll=['cameraOdometry'])
2020-01-17 12:39:46 -07:00
if pm is None:
pm = messaging.PubMaster(['liveCalibration'])
calibrator = Calibrator(param_put=True)
while 1:
timeout = 0 if sm.frame == -1 else 100
sm.update(timeout)
2020-01-17 12:39:46 -07:00
if sm.updated['cameraOdometry']:
calibrator.handle_v_ego(sm['carState'].vEgo)
new_rpy = calibrator.handle_cam_odom(sm['cameraOdometry'].trans,
sm['cameraOdometry'].rot,
sm['cameraOdometry'].transStd,
sm['cameraOdometry'].rotStd)
2020-01-17 12:39:46 -07:00
if DEBUG and new_rpy is not None:
print('got new rpy', new_rpy)
# 4Hz driven by cameraOdometry
if sm.frame % 5 == 0:
calibrator.send_data(pm)
2020-01-17 12:39:46 -07:00
def main(sm=None, pm=None) -> NoReturn:
2020-01-17 12:39:46 -07:00
calibrationd_thread(sm, pm)
if __name__ == "__main__":
main()