nopenpilot/selfdrive/loggerd/loggerd.cc

270 lines
8.4 KiB
C++

#include "selfdrive/loggerd/loggerd.h"
ExitHandler do_exit;
// Handle initial encoder syncing by waiting for all encoders to reach the same frame id
bool sync_encoders(LoggerdState *s, CameraType cam_type, uint32_t frame_id) {
if (s->camera_synced[cam_type]) return true;
if (s->max_waiting > 1 && s->encoders_ready != s->max_waiting) {
// add a small margin to the start frame id in case one of the encoders already dropped the next frame
update_max_atomic(s->start_frame_id, frame_id + 2);
if (std::exchange(s->camera_ready[cam_type], true) == false) {
++s->encoders_ready;
LOGD("camera %d encoder ready", cam_type);
}
return false;
} else {
if (s->max_waiting == 1) update_max_atomic(s->start_frame_id, frame_id);
bool synced = frame_id >= s->start_frame_id;
s->camera_synced[cam_type] = synced;
if (!synced) LOGD("camera %d waiting for frame %d, cur %d", cam_type, (int)s->start_frame_id, frame_id);
return synced;
}
}
bool trigger_rotate_if_needed(LoggerdState *s, int cur_seg, uint32_t frame_id) {
const int frames_per_seg = SEGMENT_LENGTH * MAIN_FPS;
if (cur_seg >= 0 && frame_id >= ((cur_seg + 1) * frames_per_seg) + s->start_frame_id) {
// trigger rotate and wait until the main logger has rotated to the new segment
++s->ready_to_rotate;
std::unique_lock lk(s->rotate_lock);
s->rotate_cv.wait(lk, [&] {
return s->rotate_segment > cur_seg || do_exit;
});
return !do_exit;
}
return false;
}
void encoder_thread(LoggerdState *s, const LogCameraInfo &cam_info) {
util::set_thread_name(cam_info.filename);
int cur_seg = -1;
int encode_idx = 0;
LoggerHandle *lh = NULL;
std::vector<Encoder *> encoders;
VisionIpcClient vipc_client = VisionIpcClient("camerad", cam_info.stream_type, false);
while (!do_exit) {
if (!vipc_client.connect(false)) {
util::sleep_for(5);
continue;
}
// init encoders
if (encoders.empty()) {
VisionBuf buf_info = vipc_client.buffers[0];
LOGD("encoder init %dx%d", buf_info.width, buf_info.height);
// main encoder
encoders.push_back(new Encoder(cam_info.filename, buf_info.width, buf_info.height,
cam_info.fps, cam_info.bitrate, cam_info.is_h265,
cam_info.downscale, cam_info.record));
// qcamera encoder
if (cam_info.has_qcamera) {
encoders.push_back(new Encoder(qcam_info.filename, qcam_info.frame_width, qcam_info.frame_height,
qcam_info.fps, qcam_info.bitrate, qcam_info.is_h265, qcam_info.downscale));
}
}
while (!do_exit) {
VisionIpcBufExtra extra;
VisionBuf* buf = vipc_client.recv(&extra);
if (buf == nullptr) continue;
if (cam_info.trigger_rotate) {
s->last_camera_seen_tms = millis_since_boot();
if (!sync_encoders(s, cam_info.type, extra.frame_id)) {
continue;
}
// check if we're ready to rotate
trigger_rotate_if_needed(s, cur_seg, extra.frame_id);
if (do_exit) break;
}
// rotate the encoder if the logger is on a newer segment
if (s->rotate_segment > cur_seg) {
cur_seg = s->rotate_segment;
LOGW("camera %d rotate encoder to %s", cam_info.type, s->segment_path);
for (auto &e : encoders) {
e->encoder_close();
e->encoder_open(s->segment_path);
}
if (lh) {
lh_close(lh);
}
lh = logger_get_handle(&s->logger);
}
// encode a frame
for (int i = 0; i < encoders.size(); ++i) {
int out_id = encoders[i]->encode_frame(buf->y, buf->u, buf->v,
buf->width, buf->height, extra.timestamp_eof);
if (out_id == -1) {
LOGE("Failed to encode frame. frame_id: %d encode_id: %d", extra.frame_id, encode_idx);
}
// publish encode index
if (i == 0 && out_id != -1) {
MessageBuilder msg;
// this is really ugly
bool valid = (buf->get_frame_id() == extra.frame_id);
auto eidx = cam_info.type == DriverCam ? msg.initEvent(valid).initDriverEncodeIdx() :
(cam_info.type == WideRoadCam ? msg.initEvent(valid).initWideRoadEncodeIdx() : msg.initEvent(valid).initRoadEncodeIdx());
eidx.setFrameId(extra.frame_id);
eidx.setTimestampSof(extra.timestamp_sof);
eidx.setTimestampEof(extra.timestamp_eof);
if (Hardware::TICI()) {
eidx.setType(cereal::EncodeIndex::Type::FULL_H_E_V_C);
} else {
eidx.setType(cam_info.type == DriverCam ? cereal::EncodeIndex::Type::FRONT : cereal::EncodeIndex::Type::FULL_H_E_V_C);
}
eidx.setEncodeId(encode_idx);
eidx.setSegmentNum(cur_seg);
eidx.setSegmentId(out_id);
if (lh) {
auto bytes = msg.toBytes();
lh_log(lh, bytes.begin(), bytes.size(), true);
}
}
}
encode_idx++;
}
if (lh) {
lh_close(lh);
lh = NULL;
}
}
LOG("encoder destroy");
for(auto &e : encoders) {
e->encoder_close();
delete e;
}
}
void logger_rotate(LoggerdState *s) {
{
std::unique_lock lk(s->rotate_lock);
int segment = -1;
int err = logger_next(&s->logger, LOG_ROOT.c_str(), s->segment_path, sizeof(s->segment_path), &segment);
assert(err == 0);
s->rotate_segment = segment;
s->ready_to_rotate = 0;
s->last_rotate_tms = millis_since_boot();
}
s->rotate_cv.notify_all();
LOGW((s->logger.part == 0) ? "logging to %s" : "rotated to %s", s->segment_path);
}
void rotate_if_needed(LoggerdState *s) {
if (s->ready_to_rotate == s->max_waiting) {
logger_rotate(s);
}
double tms = millis_since_boot();
if ((tms - s->last_rotate_tms) > SEGMENT_LENGTH * 1000 &&
(tms - s->last_camera_seen_tms) > NO_CAMERA_PATIENCE &&
!LOGGERD_TEST) {
LOGW("no camera packet seen. auto rotating");
logger_rotate(s);
}
}
void loggerd_thread() {
// setup messaging
typedef struct QlogState {
std::string name;
int counter, freq;
} QlogState;
std::unordered_map<SubSocket*, QlogState> qlog_states;
std::unique_ptr<Context> ctx(Context::create());
std::unique_ptr<Poller> poller(Poller::create());
// subscribe to all socks
for (const auto& it : services) {
if (!it.should_log) continue;
SubSocket * sock = SubSocket::create(ctx.get(), it.name);
assert(sock != NULL);
poller->registerSocket(sock);
qlog_states[sock] = {
.name = it.name,
.counter = 0,
.freq = it.decimation,
};
}
LoggerdState s;
// init logger
logger_init(&s.logger, "rlog", true);
logger_rotate(&s);
Params().put("CurrentRoute", s.logger.route_name);
// init encoders
s.last_camera_seen_tms = millis_since_boot();
std::vector<std::thread> encoder_threads;
for (const auto &cam : cameras_logged) {
if (cam.enable) {
encoder_threads.push_back(std::thread(encoder_thread, &s, cam));
if (cam.trigger_rotate) s.max_waiting++;
}
}
uint64_t msg_count = 0, bytes_count = 0;
double start_ts = millis_since_boot();
while (!do_exit) {
// poll for new messages on all sockets
for (auto sock : poller->poll(1000)) {
if (do_exit) break;
// drain socket
int count = 0;
QlogState &qs = qlog_states[sock];
Message *msg = nullptr;
while (!do_exit && (msg = sock->receive(true))) {
const bool in_qlog = qs.freq != -1 && (qs.counter++ % qs.freq == 0);
logger_log(&s.logger, (uint8_t *)msg->getData(), msg->getSize(), in_qlog);
bytes_count += msg->getSize();
delete msg;
rotate_if_needed(&s);
if ((++msg_count % 1000) == 0) {
double seconds = (millis_since_boot() - start_ts) / 1000.0;
LOGD("%lu messages, %.2f msg/sec, %.2f KB/sec", msg_count, msg_count / seconds, bytes_count * 0.001 / seconds);
}
count++;
if (count >= 200) {
LOGD("large volume of '%s' messages", qs.name.c_str());
break;
}
}
}
}
LOGW("closing encoders");
s.rotate_cv.notify_all();
for (auto &t : encoder_threads) t.join();
LOGW("closing logger");
logger_close(&s.logger, &do_exit);
if (do_exit.power_failure) {
LOGE("power failure");
sync();
LOGE("sync done");
}
// messaging cleanup
for (auto &[sock, qs] : qlog_states) delete sock;
}