nopenpilot/selfdrive/thermald/power_monitoring.py

193 lines
8.6 KiB
Python

import random
import threading
import time
from statistics import mean
from typing import Optional
from cereal import log
from common.params import Params, put_nonblocking
from common.realtime import sec_since_boot
from selfdrive.hardware import HARDWARE
from selfdrive.swaglog import cloudlog
from selfdrive.statsd import statlog
CAR_VOLTAGE_LOW_PASS_K = 0.091 # LPF gain for 5s tau (dt/tau / (dt/tau + 1))
# A C2 uses about 1W while idling, and 30h seens like a good shutoff for most cars
# While driving, a battery charges completely in about 30-60 minutes
CAR_BATTERY_CAPACITY_uWh = 30e6
CAR_CHARGING_RATE_W = 45
VBATT_PAUSE_CHARGING = 11.0 # Lower limit on the LPF car battery voltage
VBATT_INSTANT_PAUSE_CHARGING = 7.0 # Lower limit on the instant car battery voltage measurements to avoid triggering on instant power loss
MAX_TIME_OFFROAD_S = 30*3600
MIN_ON_TIME_S = 3600
class PowerMonitoring:
def __init__(self):
self.params = Params()
self.last_measurement_time = None # Used for integration delta
self.last_save_time = 0 # Used for saving current value in a param
self.power_used_uWh = 0 # Integrated power usage in uWh since going into offroad
self.next_pulsed_measurement_time = None
self.car_voltage_mV = 12e3 # Low-passed version of peripheralState voltage
self.car_voltage_instant_mV = 12e3 # Last value of peripheralState voltage
self.integration_lock = threading.Lock()
car_battery_capacity_uWh = self.params.get("CarBatteryCapacity")
if car_battery_capacity_uWh is None:
car_battery_capacity_uWh = 0
# Reset capacity if it's low
self.car_battery_capacity_uWh = max((CAR_BATTERY_CAPACITY_uWh / 10), int(car_battery_capacity_uWh))
# Calculation tick
def calculate(self, peripheralState, ignition):
try:
now = sec_since_boot()
# If peripheralState is None, we're probably not in a car, so we don't care
if peripheralState is None or peripheralState.pandaType == log.PandaState.PandaType.unknown:
with self.integration_lock:
self.last_measurement_time = None
self.next_pulsed_measurement_time = None
self.power_used_uWh = 0
return
# Low-pass battery voltage
self.car_voltage_instant_mV = peripheralState.voltage
self.car_voltage_mV = ((peripheralState.voltage * CAR_VOLTAGE_LOW_PASS_K) + (self.car_voltage_mV * (1 - CAR_VOLTAGE_LOW_PASS_K)))
statlog.gauge("car_voltage", self.car_voltage_mV / 1e3)
# Cap the car battery power and save it in a param every 10-ish seconds
self.car_battery_capacity_uWh = max(self.car_battery_capacity_uWh, 0)
self.car_battery_capacity_uWh = min(self.car_battery_capacity_uWh, CAR_BATTERY_CAPACITY_uWh)
if now - self.last_save_time >= 10:
put_nonblocking("CarBatteryCapacity", str(int(self.car_battery_capacity_uWh)))
self.last_save_time = now
# First measurement, set integration time
with self.integration_lock:
if self.last_measurement_time is None:
self.last_measurement_time = now
return
if ignition:
# If there is ignition, we integrate the charging rate of the car
with self.integration_lock:
self.power_used_uWh = 0
integration_time_h = (now - self.last_measurement_time) / 3600
if integration_time_h < 0:
raise ValueError(f"Negative integration time: {integration_time_h}h")
self.car_battery_capacity_uWh += (CAR_CHARGING_RATE_W * 1e6 * integration_time_h)
self.last_measurement_time = now
else:
# No ignition, we integrate the offroad power used by the device
is_uno = peripheralState.pandaType == log.PandaState.PandaType.uno
# Get current power draw somehow
current_power = HARDWARE.get_current_power_draw() # pylint: disable=assignment-from-none
if current_power is not None:
pass
elif HARDWARE.get_battery_status() == 'Discharging':
# If the battery is discharging, we can use this measurement
# On C2: this is low by about 10-15%, probably mostly due to UNO draw not being factored in
current_power = ((HARDWARE.get_battery_voltage() / 1000000) * (HARDWARE.get_battery_current() / 1000000))
elif (self.next_pulsed_measurement_time is not None) and (self.next_pulsed_measurement_time <= now):
# TODO: Figure out why this is off by a factor of 3/4???
FUDGE_FACTOR = 1.33
# Turn off charging for about 10 sec in a thread that does not get killed on SIGINT, and perform measurement here to avoid blocking thermal
def perform_pulse_measurement(now):
try:
HARDWARE.set_battery_charging(False)
time.sleep(5)
# Measure for a few sec to get a good average
voltages = []
currents = []
for _ in range(6):
voltages.append(HARDWARE.get_battery_voltage())
currents.append(HARDWARE.get_battery_current())
time.sleep(1)
current_power = ((mean(voltages) / 1000000) * (mean(currents) / 1000000))
self._perform_integration(now, current_power * FUDGE_FACTOR)
# Enable charging again
HARDWARE.set_battery_charging(True)
except Exception:
cloudlog.exception("Pulsed power measurement failed")
# Start pulsed measurement and return
threading.Thread(target=perform_pulse_measurement, args=(now,)).start()
self.next_pulsed_measurement_time = None
return
elif self.next_pulsed_measurement_time is None and not is_uno:
# On a charging EON with black panda, or drawing more than 400mA out of a white/grey one
# Only way to get the power draw is to turn off charging for a few sec and check what the discharging rate is
# We shouldn't do this very often, so make sure it has been some long-ish random time interval
self.next_pulsed_measurement_time = now + random.randint(120, 180)
return
else:
# Do nothing
return
# Do the integration
self._perform_integration(now, current_power)
except Exception:
cloudlog.exception("Power monitoring calculation failed")
def _perform_integration(self, t: float, current_power: float) -> None:
with self.integration_lock:
try:
if self.last_measurement_time:
integration_time_h = (t - self.last_measurement_time) / 3600
power_used = (current_power * 1000000) * integration_time_h
if power_used < 0:
raise ValueError(f"Negative power used! Integration time: {integration_time_h} h Current Power: {power_used} uWh")
self.power_used_uWh += power_used
self.car_battery_capacity_uWh -= power_used
self.last_measurement_time = t
except Exception:
cloudlog.exception("Integration failed")
# Get the power usage
def get_power_used(self) -> int:
return int(self.power_used_uWh)
def get_car_battery_capacity(self) -> int:
return int(self.car_battery_capacity_uWh)
# See if we need to disable charging
def should_disable_charging(self, ignition: bool, in_car: bool, offroad_timestamp: Optional[float]) -> bool:
if offroad_timestamp is None:
return False
now = sec_since_boot()
disable_charging = False
disable_charging |= (now - offroad_timestamp) > MAX_TIME_OFFROAD_S
disable_charging |= (self.car_voltage_mV < (VBATT_PAUSE_CHARGING * 1e3)) and (self.car_voltage_instant_mV > (VBATT_INSTANT_PAUSE_CHARGING * 1e3))
disable_charging |= (self.car_battery_capacity_uWh <= 0)
disable_charging &= not ignition
disable_charging &= (not self.params.get_bool("DisablePowerDown"))
disable_charging &= in_car
disable_charging |= self.params.get_bool("ForcePowerDown")
return disable_charging
# See if we need to shutdown
def should_shutdown(self, peripheralState, ignition, in_car, offroad_timestamp, started_seen):
if offroad_timestamp is None:
return False
now = sec_since_boot()
panda_charging = (peripheralState.usbPowerMode != log.PeripheralState.UsbPowerMode.client)
BATT_PERC_OFF = 10
should_shutdown = False
# Wait until we have shut down charging before powering down
should_shutdown |= (not panda_charging and self.should_disable_charging(ignition, in_car, offroad_timestamp))
should_shutdown |= ((HARDWARE.get_battery_capacity() < BATT_PERC_OFF) and (not HARDWARE.get_battery_charging()) and ((now - offroad_timestamp) > 60))
should_shutdown &= started_seen or (now > MIN_ON_TIME_S)
return should_shutdown