nopenpilot/selfdrive/loggerd/loggerd.cc

401 lines
12 KiB
C++

#include <ftw.h>
#include <pthread.h>
#include <sys/resource.h>
#include <unistd.h>
#include <atomic>
#include <cassert>
#include <cerrno>
#include <condition_variable>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <mutex>
#include <random>
#include <string>
#include <thread>
#include <unordered_map>
#include "cereal/messaging/messaging.h"
#include "cereal/services.h"
#include "cereal/visionipc/visionipc.h"
#include "cereal/visionipc/visionipc_client.h"
#include "selfdrive/camerad/cameras/camera_common.h"
#include "selfdrive/common/params.h"
#include "selfdrive/common/swaglog.h"
#include "selfdrive/common/timing.h"
#include "selfdrive/common/util.h"
#include "selfdrive/hardware/hw.h"
#include "selfdrive/loggerd/encoder.h"
#include "selfdrive/loggerd/logger.h"
#if defined(QCOM) || defined(QCOM2)
#include "selfdrive/loggerd/omx_encoder.h"
#define Encoder OmxEncoder
#else
#include "selfdrive/loggerd/raw_logger.h"
#define Encoder RawLogger
#endif
namespace {
constexpr int MAIN_FPS = 20;
const int MAIN_BITRATE = Hardware::TICI() ? 10000000 : 5000000;
const int DCAM_BITRATE = Hardware::TICI() ? MAIN_BITRATE : 2500000;
#define NO_CAMERA_PATIENCE 500 // fall back to time-based rotation if all cameras are dead
const bool LOGGERD_TEST = getenv("LOGGERD_TEST");
const int SEGMENT_LENGTH = LOGGERD_TEST ? atoi(getenv("LOGGERD_SEGMENT_LENGTH")) : 60;
ExitHandler do_exit;
const LogCameraInfo cameras_logged[] = {
{
.type = RoadCam,
.stream_type = VISION_STREAM_YUV_BACK,
.filename = "fcamera.hevc",
.frame_packet_name = "roadCameraState",
.fps = MAIN_FPS,
.bitrate = MAIN_BITRATE,
.is_h265 = true,
.downscale = false,
.has_qcamera = true,
.trigger_rotate = true,
.enable = true,
.record = true,
},
{
.type = DriverCam,
.stream_type = VISION_STREAM_YUV_FRONT,
.filename = "dcamera.hevc",
.frame_packet_name = "driverCameraState",
.fps = MAIN_FPS, // on EONs, more compressed this way
.bitrate = DCAM_BITRATE,
.is_h265 = true,
.downscale = false,
.has_qcamera = false,
.trigger_rotate = Hardware::TICI(),
.enable = !Hardware::PC(),
.record = Params().getBool("RecordFront"),
},
{
.type = WideRoadCam,
.stream_type = VISION_STREAM_YUV_WIDE,
.filename = "ecamera.hevc",
.frame_packet_name = "wideRoadCameraState",
.fps = MAIN_FPS,
.bitrate = MAIN_BITRATE,
.is_h265 = true,
.downscale = false,
.has_qcamera = false,
.trigger_rotate = true,
.enable = Hardware::TICI(),
.record = Hardware::TICI(),
},
};
const LogCameraInfo qcam_info = {
.filename = "qcamera.ts",
.fps = MAIN_FPS,
.bitrate = 256000,
.is_h265 = false,
.downscale = true,
.frame_width = Hardware::TICI() ? 526 : 480,
.frame_height = Hardware::TICI() ? 330 : 360 // keep pixel count the same?
};
struct LoggerdState {
Context *ctx;
LoggerState logger = {};
char segment_path[4096];
std::mutex rotate_lock;
std::condition_variable rotate_cv;
std::atomic<int> rotate_segment;
std::atomic<double> last_camera_seen_tms;
std::atomic<int> waiting_rotate;
int max_waiting = 0;
double last_rotate_tms = 0.;
// Sync logic for startup
std::atomic<int> encoders_ready = 0;
std::atomic<uint32_t> latest_frame_id = 0;
bool camera_ready[WideRoadCam + 1] = {};
bool camera_synced[WideRoadCam + 1] = {};
};
LoggerdState s;
// Wait for all encoders to reach the same frame id
bool sync_encoders(LoggerdState *state, CameraType cam_type, uint32_t frame_id) {
if (state->camera_synced[cam_type]) return true;
if (state->max_waiting > 1 && state->encoders_ready != state->max_waiting) {
update_max_atomic(state->latest_frame_id, frame_id);
if (std::exchange(state->camera_ready[cam_type], true) == false) {
++state->encoders_ready;
LOGE("camera %d encoder ready", cam_type);
}
return false;
} else {
// Small margin in case one of the encoders already dropped the next frame
uint32_t start_frame_id = state->latest_frame_id + 2;
bool synced = frame_id >= start_frame_id;
state->camera_synced[cam_type] = synced;
if (!synced) LOGE("camera %d waiting for frame %d, cur %d", cam_type, start_frame_id, frame_id);
return synced;
}
}
void encoder_thread(const LogCameraInfo &cam_info) {
set_thread_name(cam_info.filename);
int cnt = 0, cur_seg = -1;
int encode_idx = 0;
LoggerHandle *lh = NULL;
std::vector<Encoder *> encoders;
VisionIpcClient vipc_client = VisionIpcClient("camerad", cam_info.stream_type, false);
while (!do_exit) {
if (!vipc_client.connect(false)) {
util::sleep_for(5);
continue;
}
// init encoders
if (encoders.empty()) {
VisionBuf buf_info = vipc_client.buffers[0];
LOGD("encoder init %dx%d", buf_info.width, buf_info.height);
// main encoder
encoders.push_back(new Encoder(cam_info.filename, buf_info.width, buf_info.height,
cam_info.fps, cam_info.bitrate, cam_info.is_h265,
cam_info.downscale, cam_info.record));
// qcamera encoder
if (cam_info.has_qcamera) {
encoders.push_back(new Encoder(qcam_info.filename, qcam_info.frame_width, qcam_info.frame_height,
qcam_info.fps, qcam_info.bitrate, qcam_info.is_h265, qcam_info.downscale));
}
}
while (!do_exit) {
VisionIpcBufExtra extra;
VisionBuf* buf = vipc_client.recv(&extra);
if (buf == nullptr) continue;
if (cam_info.trigger_rotate) {
s.last_camera_seen_tms = millis_since_boot();
if (!sync_encoders(&s, cam_info.type, extra.frame_id)) {
continue;
}
}
if (cam_info.trigger_rotate && (cnt >= SEGMENT_LENGTH * MAIN_FPS)) {
// trigger rotate and wait logger rotated to new segment
++s.waiting_rotate;
std::unique_lock lk(s.rotate_lock);
s.rotate_cv.wait(lk, [&] { return s.rotate_segment > cur_seg || do_exit; });
}
if (do_exit) break;
// rotate the encoder if the logger is on a newer segment
if (s.rotate_segment > cur_seg) {
cur_seg = s.rotate_segment;
cnt = 0;
LOGW("camera %d rotate encoder to %s", cam_info.type, s.segment_path);
for (auto &e : encoders) {
e->encoder_close();
e->encoder_open(s.segment_path);
}
if (lh) {
lh_close(lh);
}
lh = logger_get_handle(&s.logger);
}
// encode a frame
for (int i = 0; i < encoders.size(); ++i) {
int out_id = encoders[i]->encode_frame(buf->y, buf->u, buf->v,
buf->width, buf->height, extra.timestamp_eof);
if (out_id == -1) {
LOGE("Failed to encode frame. frame_id: %d encode_id: %d", extra.frame_id, encode_idx);
}
// publish encode index
if (i == 0 && out_id != -1) {
MessageBuilder msg;
// this is really ugly
bool valid = (buf->get_frame_id() == extra.frame_id);
auto eidx = cam_info.type == DriverCam ? msg.initEvent(valid).initDriverEncodeIdx() :
(cam_info.type == WideRoadCam ? msg.initEvent(valid).initWideRoadEncodeIdx() : msg.initEvent(valid).initRoadEncodeIdx());
eidx.setFrameId(extra.frame_id);
eidx.setTimestampSof(extra.timestamp_sof);
eidx.setTimestampEof(extra.timestamp_eof);
if (Hardware::TICI()) {
eidx.setType(cereal::EncodeIndex::Type::FULL_H_E_V_C);
} else {
eidx.setType(cam_info.type == DriverCam ? cereal::EncodeIndex::Type::FRONT : cereal::EncodeIndex::Type::FULL_H_E_V_C);
}
eidx.setEncodeId(encode_idx);
eidx.setSegmentNum(cur_seg);
eidx.setSegmentId(out_id);
if (lh) {
auto bytes = msg.toBytes();
lh_log(lh, bytes.begin(), bytes.size(), true);
}
}
}
cnt++;
encode_idx++;
}
if (lh) {
lh_close(lh);
lh = NULL;
}
}
LOG("encoder destroy");
for(auto &e : encoders) {
e->encoder_close();
delete e;
}
}
int clear_locks_fn(const char* fpath, const struct stat *sb, int tyupeflag) {
const char* dot = strrchr(fpath, '.');
if (dot && strcmp(dot, ".lock") == 0) {
unlink(fpath);
}
return 0;
}
void clear_locks() {
ftw(LOG_ROOT.c_str(), clear_locks_fn, 16);
}
void logger_rotate() {
{
std::unique_lock lk(s.rotate_lock);
int segment = -1;
int err = logger_next(&s.logger, LOG_ROOT.c_str(), s.segment_path, sizeof(s.segment_path), &segment);
assert(err == 0);
s.rotate_segment = segment;
s.waiting_rotate = 0;
s.last_rotate_tms = millis_since_boot();
}
s.rotate_cv.notify_all();
LOGW((s.logger.part == 0) ? "logging to %s" : "rotated to %s", s.segment_path);
}
void rotate_if_needed() {
if (s.waiting_rotate == s.max_waiting) {
logger_rotate();
}
double tms = millis_since_boot();
if ((tms - s.last_rotate_tms) > SEGMENT_LENGTH * 1000 &&
(tms - s.last_camera_seen_tms) > NO_CAMERA_PATIENCE &&
!LOGGERD_TEST) {
LOGW("no camera packet seen. auto rotating");
logger_rotate();
}
}
} // namespace
int main(int argc, char** argv) {
if (Hardware::EON()) {
setpriority(PRIO_PROCESS, 0, -20);
} else if (Hardware::TICI()) {
int ret;
ret = set_core_affinity({0, 1, 2, 3});
assert(ret == 0);
// TODO: why does this impact camerad timings?
//ret = set_realtime_priority(1);
//assert(ret == 0);
}
clear_locks();
// setup messaging
typedef struct QlogState {
int counter, freq;
} QlogState;
std::unordered_map<SubSocket*, QlogState> qlog_states;
s.ctx = Context::create();
Poller * poller = Poller::create();
// subscribe to all socks
for (const auto& it : services) {
if (!it.should_log) continue;
SubSocket * sock = SubSocket::create(s.ctx, it.name);
assert(sock != NULL);
poller->registerSocket(sock);
qlog_states[sock] = {.counter = 0, .freq = it.decimation};
}
// init logger
logger_init(&s.logger, "rlog", true);
logger_rotate();
Params().put("CurrentRoute", s.logger.route_name);
// init encoders
s.last_camera_seen_tms = millis_since_boot();
std::vector<std::thread> encoder_threads;
for (const auto &ci : cameras_logged) {
if (ci.enable) {
encoder_threads.push_back(std::thread(encoder_thread, ci));
if (ci.trigger_rotate) s.max_waiting++;
}
}
uint64_t msg_count = 0, bytes_count = 0;
double start_ts = millis_since_boot();
while (!do_exit) {
// poll for new messages on all sockets
for (auto sock : poller->poll(1000)) {
// drain socket
QlogState &qs = qlog_states[sock];
Message *msg = nullptr;
while (!do_exit && (msg = sock->receive(true))) {
const bool in_qlog = qs.freq != -1 && (qs.counter++ % qs.freq == 0);
logger_log(&s.logger, (uint8_t *)msg->getData(), msg->getSize(), in_qlog);
bytes_count += msg->getSize();
delete msg;
rotate_if_needed();
if ((++msg_count % 1000) == 0) {
double seconds = (millis_since_boot() - start_ts) / 1000.0;
LOGD("%lu messages, %.2f msg/sec, %.2f KB/sec", msg_count, msg_count / seconds, bytes_count * 0.001 / seconds);
}
}
}
}
LOGW("closing encoders");
s.rotate_cv.notify_all();
for (auto &t : encoder_threads) t.join();
LOGW("closing logger");
logger_close(&s.logger, &do_exit);
if (do_exit.power_failure) {
LOGE("power failure");
sync();
LOGE("sync done");
}
// messaging cleanup
for (auto &[sock, qs] : qlog_states) delete sock;
delete poller;
delete s.ctx;
return 0;
}