nopenpilot/selfdrive/boardd/boardd.cc

690 lines
21 KiB
C++

#include <sched.h>
#include <sys/cdefs.h>
#include <sys/resource.h>
#include <sys/types.h>
#include <unistd.h>
#include <algorithm>
#include <atomic>
#include <bitset>
#include <cassert>
#include <cerrno>
#include <chrono>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <future>
#include <thread>
#include <unordered_map>
#include <libusb-1.0/libusb.h>
#include "cereal/gen/cpp/car.capnp.h"
#include "cereal/messaging/messaging.h"
#include "selfdrive/common/params.h"
#include "selfdrive/common/swaglog.h"
#include "selfdrive/common/timing.h"
#include "selfdrive/common/util.h"
#include "selfdrive/hardware/hw.h"
#include "selfdrive/locationd/ublox_msg.h"
#include "selfdrive/boardd/panda.h"
#include "selfdrive/boardd/pigeon.h"
// -- Multi-panda conventions --
// Ordering:
// - The internal panda will always be the first panda
// - Consecutive pandas will be sorted based on panda type, and then serial number
// Connecting:
// - If a panda connection is dropped, boardd wil reconnect to all pandas
// - If a panda is added, we will only reconnect when we are offroad
// CAN buses:
// - Each panda will have it's block of 4 buses. E.g.: the second panda will use
// bus numbers 4, 5, 6 and 7
// - The internal panda will always be used for accessing the OBD2 port,
// and thus firmware queries
// Safety:
// - SafetyConfig is a list, which is mapped to the connected pandas
// - If there are more pandas connected than there are SafetyConfigs,
// the excess pandas will remain in "silent" ot "noOutput" mode
// Ignition:
// - If any of the ignition sources in any panda is high, ignition is high
#define MAX_IR_POWER 0.5f
#define MIN_IR_POWER 0.0f
#define CUTOFF_IL 200
#define SATURATE_IL 1600
#define NIBBLE_TO_HEX(n) ((n) < 10 ? (n) + '0' : ((n) - 10) + 'a')
using namespace std::chrono_literals;
std::atomic<bool> ignition(false);
std::atomic<bool> pigeon_active(false);
ExitHandler do_exit;
std::string get_time_str(const struct tm &time) {
char s[30] = {'\0'};
std::strftime(s, std::size(s), "%Y-%m-%d %H:%M:%S", &time);
return s;
}
bool check_all_connected(std::vector<Panda *> pandas) {
for (const auto& panda : pandas) {
if (!panda->connected) return false;
}
return true;
}
bool safety_setter_thread(std::vector<Panda *> pandas) {
LOGD("Starting safety setter thread");
// there should be at least one panda connected
if (pandas.size() == 0) {
return false;
}
pandas[0]->set_safety_model(cereal::CarParams::SafetyModel::ELM327);
Params p = Params();
// switch to SILENT when CarVin param is read
while (true) {
if (do_exit || !check_all_connected(pandas) || !ignition) {
return false;
}
std::string value_vin = p.get("CarVin");
if (value_vin.size() > 0) {
// sanity check VIN format
assert(value_vin.size() == 17);
LOGW("got CarVin %s", value_vin.c_str());
break;
}
util::sleep_for(20);
}
pandas[0]->set_safety_model(cereal::CarParams::SafetyModel::ELM327, 1);
std::string params;
LOGW("waiting for params to set safety model");
while (true) {
for (const auto& panda : pandas) {
if (do_exit || !panda->connected || !ignition) {
return false;
}
}
if (p.getBool("ControlsReady")) {
params = p.get("CarParams");
if (params.size() > 0) break;
}
util::sleep_for(100);
}
LOGW("got %d bytes CarParams", params.size());
AlignedBuffer aligned_buf;
capnp::FlatArrayMessageReader cmsg(aligned_buf.align(params.data(), params.size()));
cereal::CarParams::Reader car_params = cmsg.getRoot<cereal::CarParams>();
cereal::CarParams::SafetyModel safety_model;
int safety_param;
auto safety_configs = car_params.getSafetyConfigs();
for (uint32_t i=0; i<pandas.size(); i++) {
auto panda = pandas[i];
if (safety_configs.size() > i) {
safety_model = safety_configs[i].getSafetyModel();
safety_param = safety_configs[i].getSafetyParam();
} else {
// If no safety mode is specified, default to silent
safety_model = cereal::CarParams::SafetyModel::SILENT;
safety_param = 0;
}
LOGW("panda %d: setting safety model: %d with param %d", i, (int)safety_model, safety_param);
panda->set_unsafe_mode(0); // see safety_declarations.h for allowed values
panda->set_safety_model(safety_model, safety_param);
}
return true;
}
Panda *usb_connect(std::string serial="", uint32_t index=0) {
std::unique_ptr<Panda> panda;
try {
panda = std::make_unique<Panda>(serial, (index * PANDA_BUS_CNT));
} catch (std::exception &e) {
return nullptr;
}
Params params = Params();
if (getenv("BOARDD_LOOPBACK")) {
panda->set_loopback(true);
}
// power on charging, only the first time. Panda can also change mode and it causes a brief disconneciton
#ifndef __x86_64__
static std::once_flag connected_once;
std::call_once(connected_once, &Panda::set_usb_power_mode, panda, cereal::PeripheralState::UsbPowerMode::CDP);
#endif
if (panda->has_rtc) {
setenv("TZ","UTC",1);
struct tm sys_time = util::get_time();
struct tm rtc_time = panda->get_rtc();
if (!util::time_valid(sys_time) && util::time_valid(rtc_time)) {
LOGE("System time wrong, setting from RTC. System: %s RTC: %s",
get_time_str(sys_time).c_str(), get_time_str(rtc_time).c_str());
const struct timeval tv = {mktime(&rtc_time), 0};
settimeofday(&tv, 0);
}
}
return panda.release();
}
void can_send_thread(std::vector<Panda *> pandas, bool fake_send) {
LOGD("start send thread");
AlignedBuffer aligned_buf;
Context * context = Context::create();
SubSocket * subscriber = SubSocket::create(context, "sendcan");
assert(subscriber != NULL);
subscriber->setTimeout(100);
// run as fast as messages come in
while (!do_exit) {
if (!check_all_connected(pandas)) {
do_exit = true;
break;
}
Message * msg = subscriber->receive();
if (!msg) {
if (errno == EINTR) {
do_exit = true;
}
continue;
}
capnp::FlatArrayMessageReader cmsg(aligned_buf.align(msg));
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
//Dont send if older than 1 second
if (nanos_since_boot() - event.getLogMonoTime() < 1e9) {
if (!fake_send) {
for (const auto& panda : pandas) {
panda->can_send(event.getSendcan());
}
}
}
delete msg;
}
delete subscriber;
delete context;
}
void can_recv_thread(std::vector<Panda *> pandas) {
LOGD("start recv thread");
// can = 8006
PubMaster pm({"can"});
// run at 100hz
const uint64_t dt = 10000000ULL;
uint64_t next_frame_time = nanos_since_boot() + dt;
while (!do_exit) {
if (!check_all_connected(pandas)){
do_exit = true;
break;
}
std::vector<can_frame> raw_can_data;
bool comms_healthy = true;
for (const auto& panda : pandas) {
comms_healthy &= panda->can_receive(raw_can_data);
}
MessageBuilder msg;
auto evt = msg.initEvent();
evt.setValid(comms_healthy);
auto canData = evt.initCan(raw_can_data.size());
for (uint i = 0; i<raw_can_data.size(); i++) {
canData[i].setAddress(raw_can_data[i].address);
canData[i].setBusTime(raw_can_data[i].busTime);
canData[i].setDat(kj::arrayPtr((uint8_t*)raw_can_data[i].dat.data(), raw_can_data[i].dat.size()));
canData[i].setSrc(raw_can_data[i].src);
}
pm.send("can", msg);
uint64_t cur_time = nanos_since_boot();
int64_t remaining = next_frame_time - cur_time;
if (remaining > 0) {
std::this_thread::sleep_for(std::chrono::nanoseconds(remaining));
} else {
if (ignition) {
LOGW("missed cycles (%d) %lld", (int)-1*remaining/dt, remaining);
}
next_frame_time = cur_time;
}
next_frame_time += dt;
}
}
void send_empty_peripheral_state(PubMaster *pm) {
MessageBuilder msg;
auto peripheralState = msg.initEvent().initPeripheralState();
peripheralState.setPandaType(cereal::PandaState::PandaType::UNKNOWN);
pm->send("peripheralState", msg);
}
void send_empty_panda_state(PubMaster *pm) {
MessageBuilder msg;
auto pandaStates = msg.initEvent().initPandaStates(1);
pandaStates[0].setPandaType(cereal::PandaState::PandaType::UNKNOWN);
pm->send("pandaStates", msg);
}
bool send_panda_states(PubMaster *pm, std::vector<Panda *> pandas, bool spoofing_started) {
bool ignition_local = false;
// build msg
MessageBuilder msg;
auto evt = msg.initEvent();
auto pss = evt.initPandaStates(pandas.size());
std::vector<health_t> pandaStates;
for (const auto& panda : pandas){
health_t pandaState = panda->get_state();
if (spoofing_started) {
pandaState.ignition_line = 1;
}
ignition_local |= ((pandaState.ignition_line != 0) || (pandaState.ignition_can != 0));
pandaStates.push_back(pandaState);
}
for (uint32_t i=0; i<pandas.size(); i++) {
auto panda = pandas[i];
auto pandaState = pandaStates[i];
// Make sure CAN buses are live: safety_setter_thread does not work if Panda CAN are silent and there is only one other CAN node
if (pandaState.safety_model == (uint8_t)(cereal::CarParams::SafetyModel::SILENT)) {
panda->set_safety_model(cereal::CarParams::SafetyModel::NO_OUTPUT);
}
#ifndef __x86_64__
bool power_save_desired = !ignition_local && !pigeon_active;
if (pandaState.power_save_enabled != power_save_desired) {
panda->set_power_saving(power_save_desired);
}
// set safety mode to NO_OUTPUT when car is off. ELM327 is an alternative if we want to leverage athenad/connect
if (!ignition_local && (pandaState.safety_model != (uint8_t)(cereal::CarParams::SafetyModel::NO_OUTPUT))) {
panda->set_safety_model(cereal::CarParams::SafetyModel::NO_OUTPUT);
}
#endif
// TODO: do we still need this?
if (!panda->comms_healthy) {
evt.setValid(false);
}
auto ps = pss[i];
ps.setUptime(pandaState.uptime);
ps.setIgnitionLine(pandaState.ignition_line);
ps.setIgnitionCan(pandaState.ignition_can);
ps.setControlsAllowed(pandaState.controls_allowed);
ps.setGasInterceptorDetected(pandaState.gas_interceptor_detected);
ps.setCanRxErrs(pandaState.can_rx_errs);
ps.setCanSendErrs(pandaState.can_send_errs);
ps.setCanFwdErrs(pandaState.can_fwd_errs);
ps.setGmlanSendErrs(pandaState.gmlan_send_errs);
ps.setPandaType(panda->hw_type);
ps.setSafetyModel(cereal::CarParams::SafetyModel(pandaState.safety_model));
ps.setSafetyParam(pandaState.safety_param);
ps.setFaultStatus(cereal::PandaState::FaultStatus(pandaState.fault_status));
ps.setPowerSaveEnabled((bool)(pandaState.power_save_enabled));
ps.setHeartbeatLost((bool)(pandaState.heartbeat_lost));
ps.setHarnessStatus(cereal::PandaState::HarnessStatus(pandaState.car_harness_status));
// Convert faults bitset to capnp list
std::bitset<sizeof(pandaState.faults) * 8> fault_bits(pandaState.faults);
auto faults = ps.initFaults(fault_bits.count());
size_t j = 0;
for (size_t f = size_t(cereal::PandaState::FaultType::RELAY_MALFUNCTION);
f <= size_t(cereal::PandaState::FaultType::INTERRUPT_RATE_TICK); f++) {
if (fault_bits.test(f)) {
faults.set(j, cereal::PandaState::FaultType(f));
j++;
}
}
}
pm->send("pandaStates", msg);
return ignition_local;
}
void send_peripheral_state(PubMaster *pm, Panda *panda) {
health_t pandaState = panda->get_state();
// build msg
MessageBuilder msg;
auto evt = msg.initEvent();
evt.setValid(panda->comms_healthy);
auto ps = evt.initPeripheralState();
ps.setPandaType(panda->hw_type);
if (Hardware::TICI()) {
double read_time = millis_since_boot();
ps.setVoltage(std::atoi(util::read_file("/sys/class/hwmon/hwmon1/in1_input").c_str()));
ps.setCurrent(std::atoi(util::read_file("/sys/class/hwmon/hwmon1/curr1_input").c_str()));
read_time = millis_since_boot() - read_time;
if (read_time > 50) {
LOGW("reading hwmon took %lfms", read_time);
}
} else {
ps.setVoltage(pandaState.voltage);
ps.setCurrent(pandaState.current);
}
uint16_t fan_speed_rpm = panda->get_fan_speed();
ps.setUsbPowerMode(cereal::PeripheralState::UsbPowerMode(pandaState.usb_power_mode));
ps.setFanSpeedRpm(fan_speed_rpm);
pm->send("peripheralState", msg);
}
void panda_state_thread(PubMaster *pm, std::vector<Panda *> pandas, bool spoofing_started) {
Params params;
Panda *peripheral_panda = pandas[0];
bool ignition_last = false;
std::future<bool> safety_future;
LOGD("start panda state thread");
// run at 2hz
while (!do_exit) {
if(!check_all_connected(pandas)) {
do_exit = true;
break;
}
send_peripheral_state(pm, peripheral_panda);
ignition = send_panda_states(pm, pandas, spoofing_started);
// check if we have new pandas and are offroad
if (!ignition && (pandas.size() != Panda::list().size())) {
LOGW("Reconnecting to changed amount of pandas!");
do_exit = true;
break;
}
// clear VIN, CarParams, and set new safety on car start
if (ignition && !ignition_last) {
params.clearAll(CLEAR_ON_IGNITION_ON);
if (!safety_future.valid() || safety_future.wait_for(0ms) == std::future_status::ready) {
safety_future = std::async(std::launch::async, safety_setter_thread, pandas);
} else {
LOGW("Safety setter thread already running");
}
} else if (!ignition && ignition_last) {
params.clearAll(CLEAR_ON_IGNITION_OFF);
}
ignition_last = ignition;
for (const auto &panda : pandas) {
panda->send_heartbeat();
}
util::sleep_for(500);
}
}
void peripheral_control_thread(Panda *panda) {
LOGD("start peripheral control thread");
SubMaster sm({"deviceState", "driverCameraState"});
uint64_t last_front_frame_t = 0;
uint16_t prev_fan_speed = 999;
uint16_t ir_pwr = 0;
uint16_t prev_ir_pwr = 999;
bool prev_charging_disabled = false;
unsigned int cnt = 0;
FirstOrderFilter integ_lines_filter(0, 30.0, 0.05);
while (!do_exit && panda->connected) {
cnt++;
sm.update(1000); // TODO: what happens if EINTR is sent while in sm.update?
if (!Hardware::PC() && sm.updated("deviceState")) {
// Charging mode
bool charging_disabled = sm["deviceState"].getDeviceState().getChargingDisabled();
if (charging_disabled != prev_charging_disabled) {
if (charging_disabled) {
panda->set_usb_power_mode(cereal::PeripheralState::UsbPowerMode::CLIENT);
LOGW("TURN OFF CHARGING!\n");
} else {
panda->set_usb_power_mode(cereal::PeripheralState::UsbPowerMode::CDP);
LOGW("TURN ON CHARGING!\n");
}
prev_charging_disabled = charging_disabled;
}
}
// Other pandas don't have fan/IR to control
if (panda->hw_type != cereal::PandaState::PandaType::UNO && panda->hw_type != cereal::PandaState::PandaType::DOS) continue;
if (sm.updated("deviceState")) {
// Fan speed
uint16_t fan_speed = sm["deviceState"].getDeviceState().getFanSpeedPercentDesired();
if (fan_speed != prev_fan_speed || cnt % 100 == 0) {
panda->set_fan_speed(fan_speed);
prev_fan_speed = fan_speed;
}
}
if (sm.updated("driverCameraState")) {
auto event = sm["driverCameraState"];
int cur_integ_lines = event.getDriverCameraState().getIntegLines();
float cur_gain = event.getDriverCameraState().getGain();
if (Hardware::TICI()) {
cur_integ_lines = integ_lines_filter.update(cur_integ_lines * cur_gain);
}
last_front_frame_t = event.getLogMonoTime();
if (cur_integ_lines <= CUTOFF_IL) {
ir_pwr = 100.0 * MIN_IR_POWER;
} else if (cur_integ_lines > SATURATE_IL) {
ir_pwr = 100.0 * MAX_IR_POWER;
} else {
ir_pwr = 100.0 * (MIN_IR_POWER + ((cur_integ_lines - CUTOFF_IL) * (MAX_IR_POWER - MIN_IR_POWER) / (SATURATE_IL - CUTOFF_IL)));
}
}
// Disable ir_pwr on front frame timeout
uint64_t cur_t = nanos_since_boot();
if (cur_t - last_front_frame_t > 1e9) {
ir_pwr = 0;
}
if (ir_pwr != prev_ir_pwr || cnt % 100 == 0 || ir_pwr >= 50.0) {
panda->set_ir_pwr(ir_pwr);
prev_ir_pwr = ir_pwr;
}
// Write to rtc once per minute when no ignition present
if ((panda->has_rtc) && !ignition && (cnt % 120 == 1)) {
// Write time to RTC if it looks reasonable
setenv("TZ","UTC",1);
struct tm sys_time = util::get_time();
if (util::time_valid(sys_time)) {
struct tm rtc_time = panda->get_rtc();
double seconds = difftime(mktime(&rtc_time), mktime(&sys_time));
if (std::abs(seconds) > 1.1) {
panda->set_rtc(sys_time);
LOGW("Updating panda RTC. dt = %.2f System: %s RTC: %s",
seconds, get_time_str(sys_time).c_str(), get_time_str(rtc_time).c_str());
}
}
}
}
}
static void pigeon_publish_raw(PubMaster &pm, const std::string &dat) {
// create message
MessageBuilder msg;
msg.initEvent().setUbloxRaw(capnp::Data::Reader((uint8_t*)dat.data(), dat.length()));
pm.send("ubloxRaw", msg);
}
void pigeon_thread(Panda *panda) {
PubMaster pm({"ubloxRaw"});
bool ignition_last = false;
Pigeon *pigeon = Hardware::TICI() ? Pigeon::connect("/dev/ttyHS0") : Pigeon::connect(panda);
std::unordered_map<char, uint64_t> last_recv_time;
std::unordered_map<char, int64_t> cls_max_dt = {
{(char)ublox::CLASS_NAV, int64_t(900000000ULL)}, // 0.9s
{(char)ublox::CLASS_RXM, int64_t(900000000ULL)}, // 0.9s
};
while (!do_exit && panda->connected) {
bool need_reset = false;
bool ignition_local = ignition;
std::string recv = pigeon->receive();
// Parse message header
if (ignition_local && recv.length() >= 3) {
if (recv[0] == (char)ublox::PREAMBLE1 && recv[1] == (char)ublox::PREAMBLE2) {
const char msg_cls = recv[2];
uint64_t t = nanos_since_boot();
if (t > last_recv_time[msg_cls]) {
last_recv_time[msg_cls] = t;
}
}
}
// Check based on message frequency
for (const auto& [msg_cls, max_dt] : cls_max_dt) {
int64_t dt = (int64_t)nanos_since_boot() - (int64_t)last_recv_time[msg_cls];
if (ignition_last && ignition_local && dt > max_dt) {
LOGD("ublox receive timeout, msg class: 0x%02x, dt %llu", msg_cls, dt);
// TODO: turn on reset after verification of logs
// need_reset = true;
}
}
// Check based on null bytes
if (ignition_local && recv.length() > 0 && recv[0] == (char)0x00) {
need_reset = true;
LOGW("received invalid ublox message while onroad, resetting panda GPS");
}
if (recv.length() > 0) {
pigeon_publish_raw(pm, recv);
}
// init pigeon on rising ignition edge
// since it was turned off in low power mode
if((ignition_local && !ignition_last) || need_reset) {
pigeon_active = true;
pigeon->init();
// Set receive times to current time
uint64_t t = nanos_since_boot() + 10000000000ULL; // Give ublox 10 seconds to start
for (const auto& [msg_cls, dt] : cls_max_dt) {
last_recv_time[msg_cls] = t;
}
} else if (!ignition_local && ignition_last) {
// power off on falling edge of ignition
LOGD("powering off pigeon\n");
pigeon->stop();
pigeon->set_power(false);
pigeon_active = false;
}
ignition_last = ignition_local;
// 10ms - 100 Hz
util::sleep_for(10);
}
delete pigeon;
}
int main(int argc, char* argv[]) {
std::vector<std::thread> threads;
std::vector<Panda *> pandas;
Panda *peripheral_panda;
LOGW("starting boardd");
if (!Hardware::PC()) {
int err;
err = set_realtime_priority(54);
assert(err == 0);
err = set_core_affinity({Hardware::TICI() ? 4 : 3});
assert(err == 0);
}
LOGW("attempting to connect");
PubMaster pm({"pandaStates", "peripheralState"});
// connect loop
while (!do_exit) {
std::vector<std::string> serials(argv + 1, argv + argc);
if (serials.size() == 0) serials.push_back("");
// connect to all provided serials
for (int i=0; i<serials.size(); i++) {
Panda *p = usb_connect(serials[i], i);
if (p != NULL) {
pandas.push_back(p);
}
}
// send empty pandaState & peripheralState and try again
if (pandas.size() != serials.size()) {
send_empty_panda_state(&pm);
send_empty_peripheral_state(&pm);
util::sleep_for(500);
} else {
break;
}
}
peripheral_panda = pandas[0];
LOGW("connected to board");
threads.emplace_back(panda_state_thread, &pm, pandas, getenv("STARTED") != nullptr);
threads.emplace_back(peripheral_control_thread, peripheral_panda);
threads.emplace_back(pigeon_thread, peripheral_panda);
threads.emplace_back(can_send_thread, pandas, getenv("FAKESEND") != nullptr);
threads.emplace_back(can_recv_thread, pandas);
for (auto &t : threads) t.join();
// we have exited, clean up pandas
for (const auto& panda : pandas){
delete panda;
}
}