nopenpilot/tools/replay/lib/ui_helpers.py

269 lines
8.4 KiB
Python

import itertools
from typing import Any, Dict, Tuple
import matplotlib.pyplot as plt
import numpy as np
import pygame # pylint: disable=import-error
from matplotlib.backends.backend_agg import FigureCanvasAgg
from common.transformations.camera import (eon_f_frame_size, eon_f_focal_length,
tici_f_frame_size, tici_f_focal_length,
get_view_frame_from_calib_frame)
from selfdrive.controls.lib.radar_helpers import RADAR_TO_CAMERA
RED = (255, 0, 0)
GREEN = (0, 255, 0)
BLUE = (0, 0, 255)
YELLOW = (255, 255, 0)
BLACK = (0, 0, 0)
WHITE = (255, 255, 255)
_FULL_FRAME_SIZE = {
}
class UIParams:
lidar_x, lidar_y, lidar_zoom = 384, 960, 6
lidar_car_x, lidar_car_y = lidar_x / 2., lidar_y / 1.1
car_hwidth = 1.7272 / 2 * lidar_zoom
car_front = 2.6924 * lidar_zoom
car_back = 1.8796 * lidar_zoom
car_color = 110
UP = UIParams
_BB_TO_FULL_FRAME = {}
_CALIB_BB_TO_FULL = {}
_FULL_FRAME_TO_BB = {}
_INTRINSICS = {}
eon_f_qcam_frame_size = (480, 360)
tici_f_qcam_frame_size = (528, 330)
cams = [(eon_f_frame_size, eon_f_focal_length, eon_f_frame_size),
(tici_f_frame_size, tici_f_focal_length, tici_f_frame_size),
(eon_f_qcam_frame_size, eon_f_focal_length, eon_f_frame_size),
(tici_f_qcam_frame_size, tici_f_focal_length, tici_f_frame_size)]
for size, focal, full_size in cams:
sz = size[0] * size[1]
_BB_SCALE = size[0] / 640.
_BB_TO_FULL_FRAME[sz] = np.asarray([
[_BB_SCALE, 0., 0.],
[0., _BB_SCALE, 0.],
[0., 0., 1.]])
calib_scale = full_size[0] / 640.
_CALIB_BB_TO_FULL[sz] = np.asarray([
[calib_scale, 0., 0.],
[0., calib_scale, 0.],
[0., 0., 1.]])
_FULL_FRAME_TO_BB[sz] = np.linalg.inv(_BB_TO_FULL_FRAME[sz])
_FULL_FRAME_SIZE[sz] = (size[0], size[1])
_INTRINSICS[sz] = np.array([
[focal, 0., full_size[0] / 2.],
[0., focal, full_size[1] / 2.],
[0., 0., 1.]])
METER_WIDTH = 20
class Calibration:
def __init__(self, num_px, rpy, intrinsic):
self.intrinsic = intrinsic
self.extrinsics_matrix = get_view_frame_from_calib_frame(rpy[0], rpy[1], rpy[2], 0.0)[:,:3]
self.zoom = _CALIB_BB_TO_FULL[num_px][0, 0]
def car_space_to_ff(self, x, y, z):
car_space_projective = np.column_stack((x, y, z)).T
ep = self.extrinsics_matrix.dot(car_space_projective)
kep = self.intrinsic.dot(ep)
return (kep[:-1, :] / kep[-1, :]).T
def car_space_to_bb(self, x, y, z):
pts = self.car_space_to_ff(x, y, z)
return pts / self.zoom
_COLOR_CACHE : Dict[Tuple[int, int, int], Any] = {}
def find_color(lidar_surface, color):
if color in _COLOR_CACHE:
return _COLOR_CACHE[color]
tcolor = 0
ret = 255
for x in lidar_surface.get_palette():
if x[0:3] == color:
ret = tcolor
break
tcolor += 1
_COLOR_CACHE[color] = ret
return ret
def to_topdown_pt(y, x):
px, py = x * UP.lidar_zoom + UP.lidar_car_x, -y * UP.lidar_zoom + UP.lidar_car_y
if px > 0 and py > 0 and px < UP.lidar_x and py < UP.lidar_y:
return int(px), int(py)
return -1, -1
def draw_path(path, color, img, calibration, top_down, lid_color=None, z_off=0):
x, y, z = np.asarray(path.x), np.asarray(path.y), np.asarray(path.z) + z_off
pts = calibration.car_space_to_bb(x, y, z)
pts = np.round(pts).astype(int)
# draw lidar path point on lidar
# find color in 8 bit
if lid_color is not None and top_down is not None:
tcolor = find_color(top_down[0], lid_color)
for i in range(len(x)):
px, py = to_topdown_pt(x[i], y[i])
if px != -1:
top_down[1][px, py] = tcolor
height, width = img.shape[:2]
for x, y in pts:
if 1 < x < width - 1 and 1 < y < height - 1:
for a, b in itertools.permutations([-1, 0, -1], 2):
img[y + a, x + b] = color
def init_plots(arr, name_to_arr_idx, plot_xlims, plot_ylims, plot_names, plot_colors, plot_styles):
color_palette = { "r": (1, 0, 0),
"g": (0, 1, 0),
"b": (0, 0, 1),
"k": (0, 0, 0),
"y": (1, 1, 0),
"p": (0, 1, 1),
"m": (1, 0, 1)}
dpi = 90
fig = plt.figure(figsize=(575 / dpi, 600 / dpi), dpi=dpi)
canvas = FigureCanvasAgg(fig)
fig.set_facecolor((0.2, 0.2, 0.2))
axs = []
for pn in range(len(plot_ylims)):
ax = fig.add_subplot(len(plot_ylims), 1, len(axs)+1)
ax.set_xlim(plot_xlims[pn][0], plot_xlims[pn][1])
ax.set_ylim(plot_ylims[pn][0], plot_ylims[pn][1])
ax.patch.set_facecolor((0.4, 0.4, 0.4))
axs.append(ax)
plots, idxs, plot_select = [], [], []
for i, pl_list in enumerate(plot_names):
for j, item in enumerate(pl_list):
plot, = axs[i].plot(arr[:, name_to_arr_idx[item]],
label=item,
color=color_palette[plot_colors[i][j]],
linestyle=plot_styles[i][j])
plots.append(plot)
idxs.append(name_to_arr_idx[item])
plot_select.append(i)
axs[i].set_title(", ".join(f"{nm} ({cl})"
for (nm, cl) in zip(pl_list, plot_colors[i])), fontsize=10)
axs[i].tick_params(axis="x", colors="white")
axs[i].tick_params(axis="y", colors="white")
axs[i].title.set_color("white")
if i < len(plot_ylims) - 1:
axs[i].set_xticks([])
canvas.draw()
def draw_plots(arr):
for ax in axs:
ax.draw_artist(ax.patch)
for i in range(len(plots)):
plots[i].set_ydata(arr[:, idxs[i]])
axs[plot_select[i]].draw_artist(plots[i])
raw_data = canvas.buffer_rgba()
plot_surface = pygame.image.frombuffer(raw_data, canvas.get_width_height(), "RGBA").convert()
return plot_surface
return draw_plots
def pygame_modules_have_loaded():
return pygame.display.get_init() and pygame.font.get_init()
def plot_model(m, img, calibration, top_down):
if calibration is None or top_down is None:
return
for lead in m.leadsV3:
if lead.prob < 0.5:
continue
x, y = lead.x[0], lead.y[0]
x_std = lead.xStd[0]
x -= RADAR_TO_CAMERA
_, py_top = to_topdown_pt(x + x_std, y)
px, py_bottom = to_topdown_pt(x - x_std, y)
top_down[1][int(round(px - 4)):int(round(px + 4)), py_top:py_bottom] = find_color(top_down[0], YELLOW)
for path, prob, _ in zip(m.laneLines, m.laneLineProbs, m.laneLineStds):
color = (0, int(255 * prob), 0)
draw_path(path, color, img, calibration, top_down, YELLOW)
for edge, std in zip(m.roadEdges, m.roadEdgeStds):
prob = max(1 - std, 0)
color = (int(255 * prob), 0, 0)
draw_path(edge, color, img, calibration, top_down, RED)
color = (255, 0, 0)
draw_path(m.position, color, img, calibration, top_down, RED, 1.22)
def plot_lead(rs, top_down):
for lead in [rs.leadOne, rs.leadTwo]:
if not lead.status:
continue
x = lead.dRel
px_left, py = to_topdown_pt(x, -10)
px_right, _ = to_topdown_pt(x, 10)
top_down[1][px_left:px_right, py] = find_color(top_down[0], RED)
def maybe_update_radar_points(lt, lid_overlay):
ar_pts = []
if lt is not None:
ar_pts = {}
for track in lt:
ar_pts[track.trackId] = [track.dRel, track.yRel, track.vRel, track.aRel, track.oncoming, track.stationary]
for ids, pt in ar_pts.items():
# negative here since radar is left positive
px, py = to_topdown_pt(pt[0], -pt[1])
if px != -1:
if pt[-1]:
color = 240
elif pt[-2]:
color = 230
else:
color = 255
if int(ids) == 1:
lid_overlay[px - 2:px + 2, py - 10:py + 10] = 100
else:
lid_overlay[px - 2:px + 2, py - 2:py + 2] = color
def get_blank_lid_overlay(UP):
lid_overlay = np.zeros((UP.lidar_x, UP.lidar_y), 'uint8')
# Draw the car.
lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)):int(
round(UP.lidar_car_x + UP.car_hwidth)), int(round(UP.lidar_car_y -
UP.car_front))] = UP.car_color
lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)):int(
round(UP.lidar_car_x + UP.car_hwidth)), int(round(UP.lidar_car_y +
UP.car_back))] = UP.car_color
lid_overlay[int(round(UP.lidar_car_x - UP.car_hwidth)), int(
round(UP.lidar_car_y - UP.car_front)):int(round(
UP.lidar_car_y + UP.car_back))] = UP.car_color
lid_overlay[int(round(UP.lidar_car_x + UP.car_hwidth)), int(
round(UP.lidar_car_y - UP.car_front)):int(round(
UP.lidar_car_y + UP.car_back))] = UP.car_color
return lid_overlay