nopenpilot/selfdrive/controls/lib/planner.py

256 lines
9.8 KiB
Python
Executable File

#!/usr/bin/env python3
import math
import numpy as np
from common.params import Params
from common.numpy_fast import interp
import cereal.messaging as messaging
from cereal import car
from common.realtime import sec_since_boot
from selfdrive.swaglog import cloudlog
from selfdrive.config import Conversions as CV
from selfdrive.controls.lib.speed_smoother import speed_smoother
from selfdrive.controls.lib.longcontrol import LongCtrlState, MIN_CAN_SPEED
from selfdrive.controls.lib.fcw import FCWChecker
from selfdrive.controls.lib.long_mpc import LongitudinalMpc
from selfdrive.controls.lib.drive_helpers import V_CRUISE_MAX
MAX_SPEED = 255.0
LON_MPC_STEP = 0.2 # first step is 0.2s
MAX_SPEED_ERROR = 2.0
AWARENESS_DECEL = -0.2 # car smoothly decel at .2m/s^2 when user is distracted
# lookup tables VS speed to determine min and max accels in cruise
# make sure these accelerations are smaller than mpc limits
_A_CRUISE_MIN_V = [-1.0, -.8, -.67, -.5, -.30]
_A_CRUISE_MIN_BP = [ 0., 5., 10., 20., 40.]
# need fast accel at very low speed for stop and go
# make sure these accelerations are smaller than mpc limits
_A_CRUISE_MAX_V = [1.2, 1.2, 0.65, .4]
_A_CRUISE_MAX_V_FOLLOWING = [1.6, 1.6, 0.65, .4]
_A_CRUISE_MAX_BP = [0., 6.4, 22.5, 40.]
# Lookup table for turns
_A_TOTAL_MAX_V = [1.7, 3.2]
_A_TOTAL_MAX_BP = [20., 40.]
# 75th percentile
SPEED_PERCENTILE_IDX = 7
def calc_cruise_accel_limits(v_ego, following):
a_cruise_min = interp(v_ego, _A_CRUISE_MIN_BP, _A_CRUISE_MIN_V)
if following:
a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V_FOLLOWING)
else:
a_cruise_max = interp(v_ego, _A_CRUISE_MAX_BP, _A_CRUISE_MAX_V)
return np.vstack([a_cruise_min, a_cruise_max])
def limit_accel_in_turns(v_ego, angle_steers, a_target, CP):
"""
This function returns a limited long acceleration allowed, depending on the existing lateral acceleration
this should avoid accelerating when losing the target in turns
"""
a_total_max = interp(v_ego, _A_TOTAL_MAX_BP, _A_TOTAL_MAX_V)
a_y = v_ego**2 * angle_steers * CV.DEG_TO_RAD / (CP.steerRatio * CP.wheelbase)
a_x_allowed = math.sqrt(max(a_total_max**2 - a_y**2, 0.))
return [a_target[0], min(a_target[1], a_x_allowed)]
class Planner():
def __init__(self, CP):
self.CP = CP
self.mpc1 = LongitudinalMpc(1)
self.mpc2 = LongitudinalMpc(2)
self.v_acc_start = 0.0
self.a_acc_start = 0.0
self.v_acc = 0.0
self.v_acc_future = 0.0
self.a_acc = 0.0
self.v_cruise = 0.0
self.a_cruise = 0.0
self.v_model = 0.0
self.a_model = 0.0
self.longitudinalPlanSource = 'cruise'
self.fcw_checker = FCWChecker()
self.path_x = np.arange(192)
self.params = Params()
self.first_loop = True
def choose_solution(self, v_cruise_setpoint, enabled):
if enabled:
solutions = {'model': self.v_model, 'cruise': self.v_cruise}
if self.mpc1.prev_lead_status:
solutions['mpc1'] = self.mpc1.v_mpc
if self.mpc2.prev_lead_status:
solutions['mpc2'] = self.mpc2.v_mpc
slowest = min(solutions, key=solutions.get)
self.longitudinalPlanSource = slowest
# Choose lowest of MPC and cruise
if slowest == 'mpc1':
self.v_acc = self.mpc1.v_mpc
self.a_acc = self.mpc1.a_mpc
elif slowest == 'mpc2':
self.v_acc = self.mpc2.v_mpc
self.a_acc = self.mpc2.a_mpc
elif slowest == 'cruise':
self.v_acc = self.v_cruise
self.a_acc = self.a_cruise
elif slowest == 'model':
self.v_acc = self.v_model
self.a_acc = self.a_model
self.v_acc_future = min([self.mpc1.v_mpc_future, self.mpc2.v_mpc_future, v_cruise_setpoint])
def update(self, sm, pm, CP, VM, PP):
"""Gets called when new radarState is available"""
cur_time = sec_since_boot()
v_ego = sm['carState'].vEgo
long_control_state = sm['controlsState'].longControlState
v_cruise_kph = sm['controlsState'].vCruise
force_slow_decel = sm['controlsState'].forceDecel
v_cruise_kph = min(v_cruise_kph, V_CRUISE_MAX)
v_cruise_setpoint = v_cruise_kph * CV.KPH_TO_MS
lead_1 = sm['radarState'].leadOne
lead_2 = sm['radarState'].leadTwo
enabled = (long_control_state == LongCtrlState.pid) or (long_control_state == LongCtrlState.stopping)
following = lead_1.status and lead_1.dRel < 45.0 and lead_1.vLeadK > v_ego and lead_1.aLeadK > 0.0
if len(sm['model'].path.poly):
path = list(sm['model'].path.poly)
# Curvature of polynomial https://en.wikipedia.org/wiki/Curvature#Curvature_of_the_graph_of_a_function
# y = a x^3 + b x^2 + c x + d, y' = 3 a x^2 + 2 b x + c, y'' = 6 a x + 2 b
# k = y'' / (1 + y'^2)^1.5
# TODO: compute max speed without using a list of points and without numpy
y_p = 3 * path[0] * self.path_x**2 + 2 * path[1] * self.path_x + path[2]
y_pp = 6 * path[0] * self.path_x + 2 * path[1]
curv = y_pp / (1. + y_p**2)**1.5
a_y_max = 2.975 - v_ego * 0.0375 # ~1.85 @ 75mph, ~2.6 @ 25mph
v_curvature = np.sqrt(a_y_max / np.clip(np.abs(curv), 1e-4, None))
model_speed = np.min(v_curvature)
model_speed = max(20.0 * CV.MPH_TO_MS, model_speed) # Don't slow down below 20mph
else:
model_speed = MAX_SPEED
# Calculate speed for normal cruise control
if enabled and not self.first_loop:
accel_limits = [float(x) for x in calc_cruise_accel_limits(v_ego, following)]
jerk_limits = [min(-0.1, accel_limits[0]), max(0.1, accel_limits[1])] # TODO: make a separate lookup for jerk tuning
accel_limits_turns = limit_accel_in_turns(v_ego, sm['carState'].steeringAngle, accel_limits, self.CP)
if force_slow_decel:
# if required so, force a smooth deceleration
accel_limits_turns[1] = min(accel_limits_turns[1], AWARENESS_DECEL)
accel_limits_turns[0] = min(accel_limits_turns[0], accel_limits_turns[1])
self.v_cruise, self.a_cruise = speed_smoother(self.v_acc_start, self.a_acc_start,
v_cruise_setpoint,
accel_limits_turns[1], accel_limits_turns[0],
jerk_limits[1], jerk_limits[0],
LON_MPC_STEP)
self.v_model, self.a_model = speed_smoother(self.v_acc_start, self.a_acc_start,
model_speed,
2*accel_limits[1], accel_limits[0],
2*jerk_limits[1], jerk_limits[0],
LON_MPC_STEP)
# cruise speed can't be negative even is user is distracted
self.v_cruise = max(self.v_cruise, 0.)
else:
starting = long_control_state == LongCtrlState.starting
a_ego = min(sm['carState'].aEgo, 0.0)
reset_speed = MIN_CAN_SPEED if starting else v_ego
reset_accel = self.CP.startAccel if starting else a_ego
self.v_acc = reset_speed
self.a_acc = reset_accel
self.v_acc_start = reset_speed
self.a_acc_start = reset_accel
self.v_cruise = reset_speed
self.a_cruise = reset_accel
self.mpc1.set_cur_state(self.v_acc_start, self.a_acc_start)
self.mpc2.set_cur_state(self.v_acc_start, self.a_acc_start)
self.mpc1.update(pm, sm['carState'], lead_1, v_cruise_setpoint)
self.mpc2.update(pm, sm['carState'], lead_2, v_cruise_setpoint)
self.choose_solution(v_cruise_setpoint, enabled)
# determine fcw
if self.mpc1.new_lead:
self.fcw_checker.reset_lead(cur_time)
blinkers = sm['carState'].leftBlinker or sm['carState'].rightBlinker
fcw = self.fcw_checker.update(self.mpc1.mpc_solution, cur_time,
sm['controlsState'].active,
v_ego, sm['carState'].aEgo,
lead_1.dRel, lead_1.vLead, lead_1.aLeadK,
lead_1.yRel, lead_1.vLat,
lead_1.fcw, blinkers) and not sm['carState'].brakePressed
if fcw:
cloudlog.info("FCW triggered %s", self.fcw_checker.counters)
radar_dead = not sm.alive['radarState']
radar_errors = list(sm['radarState'].radarErrors)
radar_fault = car.RadarData.Error.fault in radar_errors
radar_can_error = car.RadarData.Error.canError in radar_errors
# **** send the plan ****
plan_send = messaging.new_message('plan')
plan_send.valid = sm.all_alive_and_valid(service_list=['carState', 'controlsState', 'radarState'])
plan_send.plan.mdMonoTime = sm.logMonoTime['model']
plan_send.plan.radarStateMonoTime = sm.logMonoTime['radarState']
# longitudal plan
plan_send.plan.vCruise = float(self.v_cruise)
plan_send.plan.aCruise = float(self.a_cruise)
plan_send.plan.vStart = float(self.v_acc_start)
plan_send.plan.aStart = float(self.a_acc_start)
plan_send.plan.vTarget = float(self.v_acc)
plan_send.plan.aTarget = float(self.a_acc)
plan_send.plan.vTargetFuture = float(self.v_acc_future)
plan_send.plan.hasLead = self.mpc1.prev_lead_status
plan_send.plan.longitudinalPlanSource = self.longitudinalPlanSource
radar_valid = not (radar_dead or radar_fault)
plan_send.plan.radarValid = bool(radar_valid)
plan_send.plan.radarCanError = bool(radar_can_error)
plan_send.plan.processingDelay = (plan_send.logMonoTime / 1e9) - sm.rcv_time['radarState']
# Send out fcw
plan_send.plan.fcw = fcw
pm.send('plan', plan_send)
# Interpolate 0.05 seconds and save as starting point for next iteration
a_acc_sol = self.a_acc_start + (CP.radarTimeStep / LON_MPC_STEP) * (self.a_acc - self.a_acc_start)
v_acc_sol = self.v_acc_start + CP.radarTimeStep * (a_acc_sol + self.a_acc_start) / 2.0
self.v_acc_start = v_acc_sol
self.a_acc_start = a_acc_sol
self.first_loop = False