nopenpilot/selfdrive/boardd/boardd.cc

561 lines
15 KiB
C++

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
#include <sched.h>
#include <errno.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/resource.h>
#include <ctime>
#include <cassert>
#include <iostream>
#include <algorithm>
#include <bitset>
#include <thread>
#include <atomic>
#include <libusb-1.0/libusb.h>
#include "cereal/gen/cpp/car.capnp.h"
#include "common/util.h"
#include "common/utilpp.h"
#include "common/params.h"
#include "common/swaglog.h"
#include "common/timing.h"
#include "messaging.hpp"
#include "panda.h"
#include "pigeon.h"
#define MAX_IR_POWER 0.5f
#define MIN_IR_POWER 0.0f
#define CUTOFF_IL 200
#define SATURATE_IL 1600
#define NIBBLE_TO_HEX(n) ((n) < 10 ? (n) + '0' : ((n) - 10) + 'a')
Panda * panda = NULL;
std::atomic<bool> safety_setter_thread_running(false);
bool spoofing_started = false;
bool fake_send = false;
bool connected_once = false;
bool ignition = false;
volatile sig_atomic_t do_exit = 0;
static void set_do_exit(int sig) {
do_exit = 1;
}
struct tm get_time(){
time_t rawtime;
time(&rawtime);
struct tm sys_time;
gmtime_r(&rawtime, &sys_time);
return sys_time;
}
bool time_valid(struct tm sys_time){
int year = 1900 + sys_time.tm_year;
int month = 1 + sys_time.tm_mon;
return (year > 2020) || (year == 2020 && month >= 10);
}
void safety_setter_thread() {
LOGD("Starting safety setter thread");
// diagnostic only is the default, needed for VIN query
panda->set_safety_model(cereal::CarParams::SafetyModel::ELM327);
// switch to SILENT when CarVin param is read
while (true) {
if (do_exit || !panda->connected){
safety_setter_thread_running = false;
return;
};
std::vector<char> value_vin = Params().read_db_bytes("CarVin");
if (value_vin.size() > 0) {
// sanity check VIN format
assert(value_vin.size() == 17);
std::string str_vin(value_vin.begin(), value_vin.end());
LOGW("got CarVin %s", str_vin.c_str());
break;
}
util::sleep_for(100);
}
// VIN query done, stop listening to OBDII
panda->set_safety_model(cereal::CarParams::SafetyModel::NO_OUTPUT);
std::vector<char> params;
LOGW("waiting for params to set safety model");
while (true) {
if (do_exit || !panda->connected){
safety_setter_thread_running = false;
return;
};
params = Params().read_db_bytes("CarParams");
if (params.size() > 0) break;
util::sleep_for(100);
}
LOGW("got %d bytes CarParams", params.size());
// format for board, make copy due to alignment issues, will be freed on out of scope
auto amsg = kj::heapArray<capnp::word>((params.size() / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), params.data(), params.size());
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::CarParams::Reader car_params = cmsg.getRoot<cereal::CarParams>();
cereal::CarParams::SafetyModel safety_model = car_params.getSafetyModel();
panda->set_unsafe_mode(0); // see safety_declarations.h for allowed values
auto safety_param = car_params.getSafetyParam();
LOGW("setting safety model: %d with param %d", (int)safety_model, safety_param);
panda->set_safety_model(safety_model, safety_param);
safety_setter_thread_running = false;
}
bool usb_connect() {
try {
assert(panda == NULL);
panda = new Panda();
} catch (std::exception &e) {
return false;
}
Params params = Params();
if (getenv("BOARDD_LOOPBACK")) {
panda->set_loopback(true);
}
const char *fw_sig_buf = panda->get_firmware_version();
if (fw_sig_buf){
params.write_db_value("PandaFirmware", fw_sig_buf, 128);
// Convert to hex for offroad
char fw_sig_hex_buf[16] = {0};
for (size_t i = 0; i < 8; i++){
fw_sig_hex_buf[2*i] = NIBBLE_TO_HEX((uint8_t)fw_sig_buf[i] >> 4);
fw_sig_hex_buf[2*i+1] = NIBBLE_TO_HEX((uint8_t)fw_sig_buf[i] & 0xF);
}
params.write_db_value("PandaFirmwareHex", fw_sig_hex_buf, 16);
LOGW("fw signature: %.*s", 16, fw_sig_hex_buf);
delete[] fw_sig_buf;
} else { return false; }
// get panda serial
const char *serial_buf = panda->get_serial();
if (serial_buf) {
size_t serial_sz = strnlen(serial_buf, 16);
params.write_db_value("PandaDongleId", serial_buf, serial_sz);
LOGW("panda serial: %.*s", serial_sz, serial_buf);
delete[] serial_buf;
} else { return false; }
// power on charging, only the first time. Panda can also change mode and it causes a brief disconneciton
#ifndef __x86_64__
if (!connected_once) {
panda->set_usb_power_mode(cereal::HealthData::UsbPowerMode::CDP);
}
#endif
if (panda->has_rtc){
struct tm sys_time = get_time();
struct tm rtc_time = panda->get_rtc();
if (!time_valid(sys_time) && time_valid(rtc_time)) {
LOGE("System time wrong, setting from RTC");
setenv("TZ","UTC",1);
const struct timeval tv = {mktime(&rtc_time), 0};
settimeofday(&tv, 0);
}
}
connected_once = true;
return true;
}
// must be called before threads or with mutex
void usb_retry_connect() {
LOGW("attempting to connect");
while (!usb_connect()) { util::sleep_for(100); }
LOGW("connected to board");
}
void can_recv(PubMaster &pm) {
// create message
MessageBuilder msg;
auto event = msg.initEvent();
panda->can_receive(event);
pm.send("can", msg);
}
void can_send_thread() {
LOGD("start send thread");
Context * context = Context::create();
SubSocket * subscriber = SubSocket::create(context, "sendcan");
assert(subscriber != NULL);
subscriber->setTimeout(100);
// run as fast as messages come in
while (!do_exit && panda->connected) {
Message * msg = subscriber->receive();
if (!msg){
if (errno == EINTR) {
do_exit = true;
}
continue;
}
auto amsg = kj::heapArray<capnp::word>((msg->getSize() / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), msg->getData(), msg->getSize());
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
//Dont send if older than 1 second
if (nanos_since_boot() - event.getLogMonoTime() < 1e9) {
if (!fake_send){
panda->can_send(event.getSendcan());
}
}
delete msg;
}
delete subscriber;
delete context;
}
void can_recv_thread() {
LOGD("start recv thread");
// can = 8006
PubMaster pm({"can"});
// run at 100hz
const uint64_t dt = 10000000ULL;
uint64_t next_frame_time = nanos_since_boot() + dt;
while (!do_exit && panda->connected) {
can_recv(pm);
uint64_t cur_time = nanos_since_boot();
int64_t remaining = next_frame_time - cur_time;
if (remaining > 0){
std::this_thread::sleep_for(std::chrono::nanoseconds(remaining));
} else {
if (ignition){
LOGW("missed cycles (%d) %lld", (int)-1*remaining/dt, remaining);
}
next_frame_time = cur_time;
}
next_frame_time += dt;
}
}
void can_health_thread() {
LOGD("start health thread");
PubMaster pm({"health"});
uint32_t no_ignition_cnt = 0;
bool ignition_last = false;
Params params = Params();
// Broadcast empty health message when panda is not yet connected
while (!do_exit && !panda) {
MessageBuilder msg;
auto healthData = msg.initEvent().initHealth();
healthData.setHwType(cereal::HealthData::HwType::UNKNOWN);
pm.send("health", msg);
util::sleep_for(500);
}
// run at 2hz
while (!do_exit && panda->connected) {
MessageBuilder msg;
auto healthData = msg.initEvent().initHealth();
health_t health = panda->get_health();
if (spoofing_started) {
health.ignition_line = 1;
}
// Make sure CAN buses are live: safety_setter_thread does not work if Panda CAN are silent and there is only one other CAN node
if (health.safety_model == (uint8_t)(cereal::CarParams::SafetyModel::SILENT)) {
panda->set_safety_model(cereal::CarParams::SafetyModel::NO_OUTPUT);
}
ignition = ((health.ignition_line != 0) || (health.ignition_can != 0));
if (ignition) {
no_ignition_cnt = 0;
} else {
no_ignition_cnt += 1;
}
#ifndef __x86_64__
bool power_save_desired = !ignition;
if (health.power_save_enabled != power_save_desired){
panda->set_power_saving(power_save_desired);
}
// set safety mode to NO_OUTPUT when car is off. ELM327 is an alternative if we want to leverage athenad/connect
if (!ignition && (health.safety_model != (uint8_t)(cereal::CarParams::SafetyModel::NO_OUTPUT))) {
panda->set_safety_model(cereal::CarParams::SafetyModel::NO_OUTPUT);
}
#endif
// clear VIN, CarParams, and set new safety on car start
if (ignition && !ignition_last) {
int result = params.delete_db_value("CarVin");
assert((result == 0) || (result == ERR_NO_VALUE));
result = params.delete_db_value("CarParams");
assert((result == 0) || (result == ERR_NO_VALUE));
if (!safety_setter_thread_running) {
safety_setter_thread_running = true;
std::thread(safety_setter_thread).detach();
} else {
LOGW("Safety setter thread already running");
}
}
// Write to rtc once per minute when no ignition present
if ((panda->has_rtc) && !ignition && (no_ignition_cnt % 120 == 1)){
// Write time to RTC if it looks reasonable
struct tm sys_time = get_time();
if (time_valid(sys_time)){
panda->set_rtc(sys_time);
}
}
ignition_last = ignition;
uint16_t fan_speed_rpm = panda->get_fan_speed();
// set fields
healthData.setUptime(health.uptime);
healthData.setVoltage(health.voltage);
healthData.setCurrent(health.current);
healthData.setIgnitionLine(health.ignition_line);
healthData.setIgnitionCan(health.ignition_can);
healthData.setControlsAllowed(health.controls_allowed);
healthData.setGasInterceptorDetected(health.gas_interceptor_detected);
healthData.setHasGps(panda->is_pigeon);
healthData.setCanRxErrs(health.can_rx_errs);
healthData.setCanSendErrs(health.can_send_errs);
healthData.setCanFwdErrs(health.can_fwd_errs);
healthData.setGmlanSendErrs(health.gmlan_send_errs);
healthData.setHwType(panda->hw_type);
healthData.setUsbPowerMode(cereal::HealthData::UsbPowerMode(health.usb_power_mode));
healthData.setSafetyModel(cereal::CarParams::SafetyModel(health.safety_model));
healthData.setFanSpeedRpm(fan_speed_rpm);
healthData.setFaultStatus(cereal::HealthData::FaultStatus(health.fault_status));
healthData.setPowerSaveEnabled((bool)(health.power_save_enabled));
// Convert faults bitset to capnp list
std::bitset<sizeof(health.faults) * 8> fault_bits(health.faults);
auto faults = healthData.initFaults(fault_bits.count());
size_t i = 0;
for (size_t f = size_t(cereal::HealthData::FaultType::RELAY_MALFUNCTION);
f <= size_t(cereal::HealthData::FaultType::INTERRUPT_RATE_TIM9); f++){
if (fault_bits.test(f)) {
faults.set(i, cereal::HealthData::FaultType(f));
i++;
}
}
pm.send("health", msg);
panda->send_heartbeat();
util::sleep_for(500);
}
}
void hardware_control_thread() {
LOGD("start hardware control thread");
SubMaster sm({"thermal", "frontFrame"});
uint64_t last_front_frame_t = 0;
uint16_t prev_fan_speed = 999;
uint16_t ir_pwr = 0;
uint16_t prev_ir_pwr = 999;
#ifdef QCOM
bool prev_charging_disabled = false;
#endif
unsigned int cnt = 0;
while (!do_exit && panda->connected) {
cnt++;
sm.update(1000); // TODO: what happens if EINTR is sent while in sm.update?
#ifdef QCOM
if (sm.updated("thermal")){
// Charging mode
bool charging_disabled = sm["thermal"].getThermal().getChargingDisabled();
if (charging_disabled != prev_charging_disabled){
if (charging_disabled){
panda->set_usb_power_mode(cereal::HealthData::UsbPowerMode::CLIENT);
LOGW("TURN OFF CHARGING!\n");
} else {
panda->set_usb_power_mode(cereal::HealthData::UsbPowerMode::CDP);
LOGW("TURN ON CHARGING!\n");
}
prev_charging_disabled = charging_disabled;
}
}
#endif
// Other pandas don't have fan/IR to control
if (panda->hw_type != cereal::HealthData::HwType::UNO && panda->hw_type != cereal::HealthData::HwType::DOS) continue;
if (sm.updated("thermal")){
// Fan speed
uint16_t fan_speed = sm["thermal"].getThermal().getFanSpeed();
if (fan_speed != prev_fan_speed || cnt % 100 == 0){
panda->set_fan_speed(fan_speed);
prev_fan_speed = fan_speed;
}
}
if (sm.updated("frontFrame")){
auto event = sm["frontFrame"];
int cur_integ_lines = event.getFrontFrame().getIntegLines();
last_front_frame_t = event.getLogMonoTime();
if (cur_integ_lines <= CUTOFF_IL) {
ir_pwr = 100.0 * MIN_IR_POWER;
} else if (cur_integ_lines > SATURATE_IL) {
ir_pwr = 100.0 * MAX_IR_POWER;
} else {
ir_pwr = 100.0 * (MIN_IR_POWER + ((cur_integ_lines - CUTOFF_IL) * (MAX_IR_POWER - MIN_IR_POWER) / (SATURATE_IL - CUTOFF_IL)));
}
}
// Disable ir_pwr on front frame timeout
uint64_t cur_t = nanos_since_boot();
if (cur_t - last_front_frame_t > 1e9){
ir_pwr = 0;
}
if (ir_pwr != prev_ir_pwr || cnt % 100 == 0 || ir_pwr >= 50.0){
panda->set_ir_pwr(ir_pwr);
prev_ir_pwr = ir_pwr;
}
}
}
static void pigeon_publish_raw(PubMaster &pm, std::string dat) {
// create message
MessageBuilder msg;
auto ublox_raw = msg.initEvent().initUbloxRaw(dat.length());
memcpy(ublox_raw.begin(), dat.data(), dat.length());
pm.send("ubloxRaw", msg);
}
void pigeon_thread() {
if (!panda->is_pigeon){ return; };
// ubloxRaw = 8042
PubMaster pm({"ubloxRaw"});
bool ignition_last = false;
#ifdef QCOM2
Pigeon * pigeon = Pigeon::connect("/dev/ttyHS0");
#else
Pigeon * pigeon = Pigeon::connect(panda);
#endif
while (!do_exit && panda->connected) {
std::string recv = pigeon->receive();
if (recv.length() > 0) {
if (recv[0] == (char)0x00){
if (ignition) {
LOGW("received invalid ublox message while onroad, resetting panda GPS");
pigeon->init();
}
} else {
pigeon_publish_raw(pm, recv);
}
}
// init pigeon on rising ignition edge
// since it was turned off in low power mode
if(ignition && !ignition_last) {
pigeon->init();
}
ignition_last = ignition;
// 10ms - 100 Hz
util::sleep_for(10);
}
delete pigeon;
}
int main() {
int err;
LOGW("starting boardd");
// set process priority and affinity
err = set_realtime_priority(54);
LOG("set priority returns %d", err);
err = set_core_affinity(3);
LOG("set affinity returns %d", err);
// setup signal handlers
signal(SIGINT, (sighandler_t)set_do_exit);
signal(SIGTERM, (sighandler_t)set_do_exit);
// check the environment
if (getenv("STARTED")) {
spoofing_started = true;
}
if (getenv("FAKESEND")) {
fake_send = true;
}
panda_set_power(true);
while (!do_exit){
std::vector<std::thread> threads;
threads.push_back(std::thread(can_health_thread));
// connect to the board
usb_retry_connect();
threads.push_back(std::thread(can_send_thread));
threads.push_back(std::thread(can_recv_thread));
threads.push_back(std::thread(hardware_control_thread));
threads.push_back(std::thread(pigeon_thread));
for (auto &t : threads) t.join();
delete panda;
panda = NULL;
}
}