nopenpilot/selfdrive/modeld/models/driving.cc

288 lines
9.8 KiB
C++

#include <string.h>
#include <assert.h>
#include <fcntl.h>
#include <unistd.h>
#include "common/timing.h"
#include "driving.h"
#define PATH_IDX 0
#define LL_IDX PATH_IDX + MODEL_PATH_DISTANCE*2
#define RL_IDX LL_IDX + MODEL_PATH_DISTANCE*2 + 1
#define LEAD_IDX RL_IDX + MODEL_PATH_DISTANCE*2 + 1
#define LONG_X_IDX LEAD_IDX + MDN_GROUP_SIZE*LEAD_MDN_N + SELECTION
#define LONG_V_IDX LONG_X_IDX + TIME_DISTANCE*2
#define LONG_A_IDX LONG_V_IDX + TIME_DISTANCE*2
#define META_IDX LONG_A_IDX + TIME_DISTANCE*2
#define POSE_IDX META_IDX + OTHER_META_SIZE + DESIRE_PRED_SIZE
#define OUTPUT_SIZE POSE_IDX + POSE_SIZE
#ifdef TEMPORAL
#define TEMPORAL_SIZE 512
#else
#define TEMPORAL_SIZE 0
#endif
// #define DUMP_YUV
Eigen::Matrix<float, MODEL_PATH_DISTANCE, POLYFIT_DEGREE - 1> vander;
void model_init(ModelState* s, cl_device_id device_id, cl_context context, int temporal) {
frame_init(&s->frame, MODEL_WIDTH, MODEL_HEIGHT, device_id, context);
s->input_frames = (float*)calloc(MODEL_FRAME_SIZE * 2, sizeof(float));
const int output_size = OUTPUT_SIZE + TEMPORAL_SIZE;
s->output = (float*)calloc(output_size, sizeof(float));
s->m = new DefaultRunModel("../../models/supercombo.dlc", s->output, output_size, USE_GPU_RUNTIME);
#ifdef TEMPORAL
assert(temporal);
s->m->addRecurrent(&s->output[OUTPUT_SIZE], TEMPORAL_SIZE);
#endif
#ifdef DESIRE
s->desire = (float*)malloc(DESIRE_SIZE * sizeof(float));
for (int i = 0; i < DESIRE_SIZE; i++) s->desire[i] = 0.0;
s->m->addDesire(s->desire, DESIRE_SIZE);
#endif
// Build Vandermonde matrix
for(int i = 0; i < MODEL_PATH_DISTANCE; i++) {
for(int j = 0; j < POLYFIT_DEGREE - 1; j++) {
vander(i, j) = pow(i, POLYFIT_DEGREE-j-1);
}
}
}
ModelDataRaw model_eval_frame(ModelState* s, cl_command_queue q,
cl_mem yuv_cl, int width, int height,
mat3 transform, void* sock, float *desire_in) {
#ifdef DESIRE
if (desire_in != NULL) {
for (int i = 0; i < DESIRE_SIZE; i++) s->desire[i] = desire_in[i];
}
#endif
//for (int i = 0; i < OUTPUT_SIZE + TEMPORAL_SIZE; i++) { printf("%f ", s->output[i]); } printf("\n");
float *new_frame_buf = frame_prepare(&s->frame, q, yuv_cl, width, height, transform);
memmove(&s->input_frames[0], &s->input_frames[MODEL_FRAME_SIZE], sizeof(float)*MODEL_FRAME_SIZE);
memmove(&s->input_frames[MODEL_FRAME_SIZE], new_frame_buf, sizeof(float)*MODEL_FRAME_SIZE);
s->m->execute(s->input_frames);
#ifdef DUMP_YUV
FILE *dump_yuv_file = fopen("/sdcard/dump.yuv", "wb");
fwrite(new_frame_buf, MODEL_HEIGHT*MODEL_WIDTH*3/2, sizeof(float), dump_yuv_file);
fclose(dump_yuv_file);
assert(1==2);
#endif
// net outputs
ModelDataRaw net_outputs;
net_outputs.path = &s->output[PATH_IDX];
net_outputs.left_lane = &s->output[LL_IDX];
net_outputs.right_lane = &s->output[RL_IDX];
net_outputs.lead = &s->output[LEAD_IDX];
net_outputs.long_x = &s->output[LONG_X_IDX];
net_outputs.long_v = &s->output[LONG_V_IDX];
net_outputs.long_a = &s->output[LONG_A_IDX];
net_outputs.meta = &s->output[META_IDX];
net_outputs.pose = &s->output[POSE_IDX];
return net_outputs;
}
void model_free(ModelState* s) {
free(s->output);
free(s->input_frames);
frame_free(&s->frame);
delete s->m;
}
void poly_fit(float *in_pts, float *in_stds, float *out) {
// References to inputs
Eigen::Map<Eigen::Matrix<float, MODEL_PATH_DISTANCE, 1> > pts(in_pts, MODEL_PATH_DISTANCE);
Eigen::Map<Eigen::Matrix<float, MODEL_PATH_DISTANCE, 1> > std(in_stds, MODEL_PATH_DISTANCE);
Eigen::Map<Eigen::Matrix<float, POLYFIT_DEGREE - 1, 1> > p(out, POLYFIT_DEGREE - 1);
float y0 = pts[0];
pts = pts.array() - y0;
// Build Least Squares equations
Eigen::Matrix<float, MODEL_PATH_DISTANCE, POLYFIT_DEGREE - 1> lhs = vander.array().colwise() / std.array();
Eigen::Matrix<float, MODEL_PATH_DISTANCE, 1> rhs = pts.array() / std.array();
// Improve numerical stability
Eigen::Matrix<float, POLYFIT_DEGREE - 1, 1> scale = 1. / (lhs.array()*lhs.array()).sqrt().colwise().sum();
lhs = lhs * scale.asDiagonal();
// Solve inplace
Eigen::ColPivHouseholderQR<Eigen::Ref<Eigen::MatrixXf> > qr(lhs);
p = qr.solve(rhs);
// Apply scale to output
p = p.transpose() * scale.asDiagonal();
out[3] = y0;
}
void fill_path(cereal::ModelData::PathData::Builder path, const float * data, bool has_prob, const float offset) {
float points_arr[MODEL_PATH_DISTANCE];
float stds_arr[MODEL_PATH_DISTANCE];
float poly_arr[POLYFIT_DEGREE];
float std;
float prob;
for (int i=0; i<MODEL_PATH_DISTANCE; i++) {
points_arr[i] = data[i] + offset;
stds_arr[i] = softplus(data[MODEL_PATH_DISTANCE + i]);
}
if (has_prob) {
prob = sigmoid(data[MODEL_PATH_DISTANCE*2]);
} else {
prob = 1.0;
}
std = softplus(data[MODEL_PATH_DISTANCE]);
poly_fit(points_arr, stds_arr, poly_arr);
if (std::getenv("DEBUG")){
kj::ArrayPtr<const float> stds(&stds_arr[0], ARRAYSIZE(stds_arr));
path.setStds(stds);
kj::ArrayPtr<const float> points(&points_arr[0], ARRAYSIZE(points_arr));
path.setPoints(points);
}
kj::ArrayPtr<const float> poly(&poly_arr[0], ARRAYSIZE(poly_arr));
path.setPoly(poly);
path.setProb(prob);
path.setStd(std);
}
void fill_lead(cereal::ModelData::LeadData::Builder lead, const float * data, int mdn_max_idx) {
const double x_scale = 10.0;
const double y_scale = 10.0;
lead.setProb(sigmoid(data[LEAD_MDN_N*MDN_GROUP_SIZE]));
lead.setDist(x_scale * data[mdn_max_idx*MDN_GROUP_SIZE]);
lead.setStd(x_scale * softplus(data[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS]));
lead.setRelY(y_scale * data[mdn_max_idx*MDN_GROUP_SIZE + 1]);
lead.setRelYStd(y_scale * softplus(data[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 1]));
lead.setRelVel(data[mdn_max_idx*MDN_GROUP_SIZE + 2]);
lead.setRelVelStd(softplus(data[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 2]));
lead.setRelA(data[mdn_max_idx*MDN_GROUP_SIZE + 3]);
lead.setRelAStd(softplus(data[mdn_max_idx*MDN_GROUP_SIZE + MDN_VALS + 3]));
}
void fill_meta(cereal::ModelData::MetaData::Builder meta, const float * meta_data) {
meta.setEngagedProb(meta_data[0]);
meta.setGasDisengageProb(meta_data[1]);
meta.setBrakeDisengageProb(meta_data[2]);
meta.setSteerOverrideProb(meta_data[3]);
kj::ArrayPtr<const float> desire_pred(&meta_data[OTHER_META_SIZE], DESIRE_PRED_SIZE);
meta.setDesirePrediction(desire_pred);
}
void fill_longi(cereal::ModelData::LongitudinalData::Builder longi, const float * long_v_data, const float * long_a_data) {
// just doing 10 vals, 1 every sec for now
float speed_arr[TIME_DISTANCE/10];
float accel_arr[TIME_DISTANCE/10];
for (int i=0; i<TIME_DISTANCE/10; i++) {
speed_arr[i] = long_v_data[i*10];
accel_arr[i] = long_a_data[i*10];
}
kj::ArrayPtr<const float> speed(&speed_arr[0], ARRAYSIZE(speed_arr));
longi.setSpeeds(speed);
kj::ArrayPtr<const float> accel(&accel_arr[0], ARRAYSIZE(accel_arr));
longi.setAccelerations(accel);
}
void model_publish(PubSocket *sock, uint32_t frame_id,
const ModelDataRaw net_outputs, uint64_t timestamp_eof) {
// make msg
capnp::MallocMessageBuilder msg;
cereal::Event::Builder event = msg.initRoot<cereal::Event>();
event.setLogMonoTime(nanos_since_boot());
auto framed = event.initModel();
framed.setFrameId(frame_id);
framed.setTimestampEof(timestamp_eof);
auto lpath = framed.initPath();
fill_path(lpath, net_outputs.path, false, 0);
auto left_lane = framed.initLeftLane();
fill_path(left_lane, net_outputs.left_lane, true, 1.8);
auto right_lane = framed.initRightLane();
fill_path(right_lane, net_outputs.right_lane, true, -1.8);
auto longi = framed.initLongitudinal();
fill_longi(longi, net_outputs.long_v, net_outputs.long_a);
// Find the distribution that corresponds to the current lead
int mdn_max_idx = 0;
for (int i=1; i<LEAD_MDN_N; i++) {
if (net_outputs.lead[i*MDN_GROUP_SIZE + 8] > net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 8]) {
mdn_max_idx = i;
}
}
auto lead = framed.initLead();
fill_lead(lead, net_outputs.lead, mdn_max_idx);
// Find the distribution that corresponds to the lead in 2s
mdn_max_idx = 0;
for (int i=1; i<LEAD_MDN_N; i++) {
if (net_outputs.lead[i*MDN_GROUP_SIZE + 9] > net_outputs.lead[mdn_max_idx*MDN_GROUP_SIZE + 9]) {
mdn_max_idx = i;
}
}
auto lead_future = framed.initLeadFuture();
fill_lead(lead_future, net_outputs.lead, mdn_max_idx);
auto meta = framed.initMeta();
fill_meta(meta, net_outputs.meta);
// send message
auto words = capnp::messageToFlatArray(msg);
auto bytes = words.asBytes();
sock->send((char*)bytes.begin(), bytes.size());
}
void posenet_publish(PubSocket *sock, uint32_t frame_id,
const ModelDataRaw net_outputs, uint64_t timestamp_eof) {
capnp::MallocMessageBuilder msg;
cereal::Event::Builder event = msg.initRoot<cereal::Event>();
event.setLogMonoTime(nanos_since_boot());
float trans_arr[3];
float trans_std_arr[3];
float rot_arr[3];
float rot_std_arr[3];
for (int i =0; i < 3; i++) {
trans_arr[i] = net_outputs.pose[i];
trans_std_arr[i] = softplus(net_outputs.pose[6 + i]) + 1e-6;
rot_arr[i] = M_PI * net_outputs.pose[3 + i] / 180.0;
rot_std_arr[i] = M_PI * (softplus(net_outputs.pose[9 + i]) + 1e-6) / 180.0;
}
auto posenetd = event.initCameraOdometry();
kj::ArrayPtr<const float> trans_vs(&trans_arr[0], 3);
posenetd.setTrans(trans_vs);
kj::ArrayPtr<const float> rot_vs(&rot_arr[0], 3);
posenetd.setRot(rot_vs);
kj::ArrayPtr<const float> trans_std_vs(&trans_std_arr[0], 3);
posenetd.setTransStd(trans_std_vs);
kj::ArrayPtr<const float> rot_std_vs(&rot_std_arr[0], 3);
posenetd.setRotStd(rot_std_vs);
posenetd.setTimestampEof(timestamp_eof);
posenetd.setFrameId(frame_id);
auto words = capnp::messageToFlatArray(msg);
auto bytes = words.asBytes();
sock->send((char*)bytes.begin(), bytes.size());
}