nopenpilot/selfdrive/boardd/boardd.cc

938 lines
28 KiB
C++

#include <stdio.h>
#include <time.h>
#include <stdint.h>
#include <stdlib.h>
#include <signal.h>
#include <unistd.h>
#include <sched.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <sys/time.h>
#include <sys/resource.h>
#include <assert.h>
#include <pthread.h>
#include <libusb-1.0/libusb.h>
#include "cereal/gen/cpp/car.capnp.h"
#include "common/util.h"
#include "common/params.h"
#include "common/swaglog.h"
#include "common/timing.h"
#include "messaging.hpp"
#include <algorithm>
#include <bitset>
// double the FIFO size
#define RECV_SIZE (0x1000)
#define TIMEOUT 0
#define MAX_IR_POWER 0.5f
#define MIN_IR_POWER 0.0f
#define CUTOFF_GAIN 0.015625f // iso400
#define SATURATE_GAIN 0.0625f // iso1600
#define NIBBLE_TO_HEX(n) ((n) < 10 ? (n) + '0' : ((n) - 10) + 'a')
#define VOLTAGE_K 0.091 // LPF gain for 5s tau (dt/tau / (dt/tau + 1))
namespace {
volatile sig_atomic_t do_exit = 0;
struct __attribute__((packed)) timestamp_t {
uint16_t year;
uint8_t month;
uint8_t day;
uint8_t weekday;
uint8_t hour;
uint8_t minute;
uint8_t second;
};
libusb_context *ctx = NULL;
libusb_device_handle *dev_handle = NULL;
pthread_mutex_t usb_lock;
bool spoofing_started = false;
bool fake_send = false;
bool loopback_can = false;
cereal::HealthData::HwType hw_type = cereal::HealthData::HwType::UNKNOWN;
bool is_pigeon = false;
const uint32_t NO_IGNITION_CNT_MAX = 2 * 60 * 60 * 30; // turn off charge after 30 hrs
const float VBATT_START_CHARGING = 11.5;
const float VBATT_PAUSE_CHARGING = 11.0;
float voltage_f = 12.5; // filtered voltage
uint32_t no_ignition_cnt = 0;
bool connected_once = false;
bool ignition_last = false;
bool safety_setter_thread_initialized = false;
pthread_t safety_setter_thread_handle;
bool pigeon_thread_initialized = false;
pthread_t pigeon_thread_handle;
bool pigeon_needs_init;
void pigeon_init();
void *pigeon_thread(void *crap);
void *safety_setter_thread(void *s) {
// diagnostic only is the default, needed for VIN query
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0x40, 0xdc, (uint16_t)(cereal::CarParams::SafetyModel::ELM327), 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
// switch to SILENT when CarVin param is read
while (1) {
if (do_exit) return NULL;
std::vector<char> value_vin = read_db_bytes("CarVin");
if (value_vin.size() > 0) {
// sanity check VIN format
assert(value_vin.size() == 17);
std::string str_vin(value_vin.begin(), value_vin.end());
LOGW("got CarVin %s", str_vin.c_str());
break;
}
usleep(100*1000);
}
// VIN query done, stop listening to OBDII
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0x40, 0xdc, (uint16_t)(cereal::CarParams::SafetyModel::NO_OUTPUT), 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
std::vector<char> params;
LOGW("waiting for params to set safety model");
while (1) {
if (do_exit) return NULL;
params = read_db_bytes("CarParams");
if (params.size() > 0) break;
usleep(100*1000);
}
LOGW("got %d bytes CarParams", params.size());
// format for board, make copy due to alignment issues, will be freed on out of scope
auto amsg = kj::heapArray<capnp::word>((params.size() / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), params.data(), params.size());
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::CarParams::Reader car_params = cmsg.getRoot<cereal::CarParams>();
int safety_model = int(car_params.getSafetyModel());
auto safety_param = car_params.getSafetyParam();
LOGW("setting safety model: %d with param %d", safety_model, safety_param);
pthread_mutex_lock(&usb_lock);
// set in the mutex to avoid race
safety_setter_thread_initialized = false;
libusb_control_transfer(dev_handle, 0x40, 0xdc, safety_model, safety_param, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
return NULL;
}
// must be called before threads or with mutex
bool usb_connect() {
int err, err2;
unsigned char hw_query[1] = {0};
unsigned char fw_sig_buf[128];
unsigned char fw_sig_hex_buf[16];
unsigned char serial_buf[16];
const char *serial;
int serial_sz = 0;
ignition_last = false;
if (dev_handle != NULL){
libusb_close(dev_handle);
dev_handle = NULL;
}
dev_handle = libusb_open_device_with_vid_pid(ctx, 0xbbaa, 0xddcc);
if (dev_handle == NULL) { goto fail; }
err = libusb_set_configuration(dev_handle, 1);
if (err != 0) { goto fail; }
err = libusb_claim_interface(dev_handle, 0);
if (err != 0) { goto fail; }
if (loopback_can) {
libusb_control_transfer(dev_handle, 0xc0, 0xe5, 1, 0, NULL, 0, TIMEOUT);
}
// get panda fw
err = libusb_control_transfer(dev_handle, 0xc0, 0xd3, 0, 0, fw_sig_buf, 64, TIMEOUT);
err2 = libusb_control_transfer(dev_handle, 0xc0, 0xd4, 0, 0, fw_sig_buf + 64, 64, TIMEOUT);
if ((err == 64) && (err2 == 64)) {
printf("FW signature read\n");
write_db_value("PandaFirmware", (const char *)fw_sig_buf, 128);
for (size_t i = 0; i < 8; i++){
fw_sig_hex_buf[2*i] = NIBBLE_TO_HEX(fw_sig_buf[i] >> 4);
fw_sig_hex_buf[2*i+1] = NIBBLE_TO_HEX(fw_sig_buf[i] & 0xF);
}
write_db_value("PandaFirmwareHex", (const char *)fw_sig_hex_buf, 16);
}
else { goto fail; }
// get panda serial
err = libusb_control_transfer(dev_handle, 0xc0, 0xd0, 0, 0, serial_buf, 16, TIMEOUT);
if (err > 0) {
serial = (const char *)serial_buf;
serial_sz = strnlen(serial, err);
write_db_value("PandaDongleId", serial, serial_sz);
printf("panda serial: %.*s\n", serial_sz, serial);
}
else { goto fail; }
// power on charging, only the first time. Panda can also change mode and it causes a brief disconneciton
#ifndef __x86_64__
if (!connected_once) {
libusb_control_transfer(dev_handle, 0xc0, 0xe6, (uint16_t)(cereal::HealthData::UsbPowerMode::CDP), 0, NULL, 0, TIMEOUT);
}
#endif
connected_once = true;
libusb_control_transfer(dev_handle, 0xc0, 0xc1, 0, 0, hw_query, 1, TIMEOUT);
hw_type = (cereal::HealthData::HwType)(hw_query[0]);
is_pigeon = (hw_type == cereal::HealthData::HwType::GREY_PANDA) ||
(hw_type == cereal::HealthData::HwType::BLACK_PANDA) ||
(hw_type == cereal::HealthData::HwType::UNO);
if (is_pigeon) {
LOGW("panda with gps detected");
pigeon_needs_init = true;
if (!pigeon_thread_initialized) {
err = pthread_create(&pigeon_thread_handle, NULL, pigeon_thread, NULL);
assert(err == 0);
pigeon_thread_initialized = true;
}
}
if (hw_type == cereal::HealthData::HwType::UNO){
// Get time from system
time_t rawtime;
time(&rawtime);
struct tm sys_time;
gmtime_r(&rawtime, &sys_time);
// Get time from RTC
timestamp_t rtc_time;
libusb_control_transfer(dev_handle, 0xc0, 0xa0, 0, 0, (unsigned char*)&rtc_time, sizeof(rtc_time), TIMEOUT);
//printf("System: %d-%d-%d\t%d:%d:%d\n", 1900 + sys_time.tm_year, 1 + sys_time.tm_mon, sys_time.tm_mday, sys_time.tm_hour, sys_time.tm_min, sys_time.tm_sec);
//printf("RTC: %d-%d-%d\t%d:%d:%d\n", rtc_time.year, rtc_time.month, rtc_time.day, rtc_time.hour, rtc_time.minute, rtc_time.second);
// Update system time from RTC if it looks off, and RTC time is good
if (1900 + sys_time.tm_year < 2019 && rtc_time.year >= 2019){
LOGE("System time wrong, setting from RTC");
struct tm new_time = { 0 };
new_time.tm_year = rtc_time.year - 1900;
new_time.tm_mon = rtc_time.month - 1;
new_time.tm_mday = rtc_time.day;
new_time.tm_hour = rtc_time.hour;
new_time.tm_min = rtc_time.minute;
new_time.tm_sec = rtc_time.second;
setenv("TZ","UTC",1);
const struct timeval tv = {mktime(&new_time), 0};
settimeofday(&tv, 0);
}
}
return true;
fail:
return false;
}
// must be called before threads or with mutex
void usb_retry_connect() {
LOG("attempting to connect");
while (!usb_connect()) { usleep(100*1000); }
LOGW("connected to board");
}
void handle_usb_issue(int err, const char func[]) {
LOGE_100("usb error %d \"%s\" in %s", err, libusb_strerror((enum libusb_error)err), func);
if (err == -4) {
LOGE("lost connection");
usb_retry_connect();
}
// TODO: check other errors, is simply retrying okay?
}
void can_recv(PubMaster &pm) {
int err;
uint32_t data[RECV_SIZE/4];
int recv;
uint32_t f1, f2;
uint64_t start_time = nanos_since_boot();
// do recv
pthread_mutex_lock(&usb_lock);
do {
err = libusb_bulk_transfer(dev_handle, 0x81, (uint8_t*)data, RECV_SIZE, &recv, TIMEOUT);
if (err != 0) { handle_usb_issue(err, __func__); }
if (err == -8) { LOGE_100("overflow got 0x%x", recv); };
// timeout is okay to exit, recv still happened
if (err == -7) { break; }
} while(err != 0);
pthread_mutex_unlock(&usb_lock);
// return if length is 0
if (recv <= 0) {
return;
} else if (recv == RECV_SIZE) {
LOGW("Receive buffer full");
}
// create message
capnp::MallocMessageBuilder msg;
cereal::Event::Builder event = msg.initRoot<cereal::Event>();
event.setLogMonoTime(start_time);
size_t num_msg = recv / 0x10;
auto canData = event.initCan(num_msg);
// populate message
for (int i = 0; i < num_msg; i++) {
if (data[i*4] & 4) {
// extended
canData[i].setAddress(data[i*4] >> 3);
//printf("got extended: %x\n", data[i*4] >> 3);
} else {
// normal
canData[i].setAddress(data[i*4] >> 21);
}
canData[i].setBusTime(data[i*4+1] >> 16);
int len = data[i*4+1]&0xF;
canData[i].setDat(kj::arrayPtr((uint8_t*)&data[i*4+2], len));
canData[i].setSrc((data[i*4+1] >> 4) & 0xff);
}
pm.send("can", msg);
}
void can_health(PubMaster &pm) {
int cnt;
int err;
// copied from panda/board/main.c
struct __attribute__((packed)) health {
uint32_t uptime;
uint32_t voltage;
uint32_t current;
uint32_t can_rx_errs;
uint32_t can_send_errs;
uint32_t can_fwd_errs;
uint32_t gmlan_send_errs;
uint32_t faults;
uint8_t ignition_line;
uint8_t ignition_can;
uint8_t controls_allowed;
uint8_t gas_interceptor_detected;
uint8_t car_harness_status;
uint8_t usb_power_mode;
uint8_t safety_model;
uint8_t fault_status;
uint8_t power_save_enabled;
} health;
// create message
capnp::MallocMessageBuilder msg;
cereal::Event::Builder event = msg.initRoot<cereal::Event>();
event.setLogMonoTime(nanos_since_boot());
auto healthData = event.initHealth();
bool received = false;
// recv from board
if (dev_handle != NULL) {
pthread_mutex_lock(&usb_lock);
cnt = libusb_control_transfer(dev_handle, 0xc0, 0xd2, 0, 0, (unsigned char*)&health, sizeof(health), TIMEOUT);
pthread_mutex_unlock(&usb_lock);
received = (cnt == sizeof(health));
}
// No panda connected, send empty health packet
if (!received){
healthData.setHwType(cereal::HealthData::HwType::UNKNOWN);
pm.send("health", msg);
return;
}
if (spoofing_started) {
health.ignition_line = 1;
}
voltage_f = VOLTAGE_K * (health.voltage / 1000.0) + (1.0 - VOLTAGE_K) * voltage_f; // LPF
// Make sure CAN buses are live: safety_setter_thread does not work if Panda CAN are silent and there is only one other CAN node
if (health.safety_model == (uint8_t)(cereal::CarParams::SafetyModel::SILENT)) {
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0x40, 0xdc, (uint16_t)(cereal::CarParams::SafetyModel::NO_OUTPUT), 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
}
bool ignition = ((health.ignition_line != 0) || (health.ignition_can != 0));
if (ignition) {
no_ignition_cnt = 0;
} else {
no_ignition_cnt += 1;
}
#ifndef __x86_64__
bool cdp_mode = health.usb_power_mode == (uint8_t)(cereal::HealthData::UsbPowerMode::CDP);
bool no_ignition_exp = no_ignition_cnt > NO_IGNITION_CNT_MAX;
if ((no_ignition_exp || (voltage_f < VBATT_PAUSE_CHARGING)) && cdp_mode && !ignition) {
std::vector<char> disable_power_down = read_db_bytes("DisablePowerDown");
if (disable_power_down.size() != 1 || disable_power_down[0] != '1') {
printf("TURN OFF CHARGING!\n");
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0xc0, 0xe6, (uint16_t)(cereal::HealthData::UsbPowerMode::CLIENT), 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
printf("POWER DOWN DEVICE\n");
system("service call power 17 i32 0 i32 1");
}
}
if (!no_ignition_exp && (voltage_f > VBATT_START_CHARGING) && !cdp_mode) {
printf("TURN ON CHARGING!\n");
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0xc0, 0xe6, (uint16_t)(cereal::HealthData::UsbPowerMode::CDP), 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
}
// set power save state enabled when car is off and viceversa when it's on
if (ignition && (health.power_save_enabled == 1)) {
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0xc0, 0xe7, 0, 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
}
if (!ignition && (health.power_save_enabled == 0)) {
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0xc0, 0xe7, 1, 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
}
// set safety mode to NO_OUTPUT when car is off. ELM327 is an alternative if we want to leverage athenad/connect
if (!ignition && (health.safety_model != (uint8_t)(cereal::CarParams::SafetyModel::NO_OUTPUT))) {
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0x40, 0xdc, (uint16_t)(cereal::CarParams::SafetyModel::NO_OUTPUT), 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
}
#endif
// clear VIN, CarParams, and set new safety on car start
if (ignition && !ignition_last) {
int result = delete_db_value("CarVin");
assert((result == 0) || (result == ERR_NO_VALUE));
result = delete_db_value("CarParams");
assert((result == 0) || (result == ERR_NO_VALUE));
if (!safety_setter_thread_initialized) {
err = pthread_create(&safety_setter_thread_handle, NULL, safety_setter_thread, NULL);
assert(err == 0);
safety_setter_thread_initialized = true;
}
}
// Get fan RPM
uint16_t fan_speed_rpm = 0;
pthread_mutex_lock(&usb_lock);
int sz = libusb_control_transfer(dev_handle, 0xc0, 0xb2, 0, 0, (unsigned char*)&fan_speed_rpm, sizeof(fan_speed_rpm), TIMEOUT);
pthread_mutex_unlock(&usb_lock);
// Write to rtc once per minute when no ignition present
if ((hw_type == cereal::HealthData::HwType::UNO) && !ignition && (no_ignition_cnt % 120 == 1)){
// Get time from system
time_t rawtime;
time(&rawtime);
struct tm sys_time;
gmtime_r(&rawtime, &sys_time);
// Write time to RTC if it looks reasonable
if (1900 + sys_time.tm_year >= 2019){
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0x40, 0xa1, (uint16_t)(1900 + sys_time.tm_year), 0, NULL, 0, TIMEOUT);
libusb_control_transfer(dev_handle, 0x40, 0xa2, (uint16_t)(1 + sys_time.tm_mon), 0, NULL, 0, TIMEOUT);
libusb_control_transfer(dev_handle, 0x40, 0xa3, (uint16_t)sys_time.tm_mday, 0, NULL, 0, TIMEOUT);
// libusb_control_transfer(dev_handle, 0x40, 0xa4, (uint16_t)(1 + sys_time.tm_wday), 0, NULL, 0, TIMEOUT);
libusb_control_transfer(dev_handle, 0x40, 0xa5, (uint16_t)sys_time.tm_hour, 0, NULL, 0, TIMEOUT);
libusb_control_transfer(dev_handle, 0x40, 0xa6, (uint16_t)sys_time.tm_min, 0, NULL, 0, TIMEOUT);
libusb_control_transfer(dev_handle, 0x40, 0xa7, (uint16_t)sys_time.tm_sec, 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
}
}
ignition_last = ignition;
// set fields
healthData.setUptime(health.uptime);
healthData.setVoltage(health.voltage);
healthData.setCurrent(health.current);
healthData.setIgnitionLine(health.ignition_line);
healthData.setIgnitionCan(health.ignition_can);
healthData.setControlsAllowed(health.controls_allowed);
healthData.setGasInterceptorDetected(health.gas_interceptor_detected);
healthData.setHasGps(is_pigeon);
healthData.setCanRxErrs(health.can_rx_errs);
healthData.setCanSendErrs(health.can_send_errs);
healthData.setCanFwdErrs(health.can_fwd_errs);
healthData.setGmlanSendErrs(health.gmlan_send_errs);
healthData.setHwType(hw_type);
healthData.setUsbPowerMode(cereal::HealthData::UsbPowerMode(health.usb_power_mode));
healthData.setSafetyModel(cereal::CarParams::SafetyModel(health.safety_model));
healthData.setFanSpeedRpm(fan_speed_rpm);
healthData.setFaultStatus(cereal::HealthData::FaultStatus(health.fault_status));
healthData.setPowerSaveEnabled((bool)(health.power_save_enabled));
// Convert faults bitset to capnp list
std::bitset<sizeof(health.faults) * 8> fault_bits(health.faults);
auto faults = healthData.initFaults(fault_bits.count());
size_t i = 0;
for (size_t f = size_t(cereal::HealthData::FaultType::RELAY_MALFUNCTION);
f <= size_t(cereal::HealthData::FaultType::REGISTER_DIVERGENT); f++){
if (fault_bits.test(f)) {
faults.set(i, cereal::HealthData::FaultType(f));
i++;
}
}
// send to health
pm.send("health", msg);
// send heartbeat back to panda
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0x40, 0xf3, 1, 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
}
void can_send(cereal::Event::Reader &event) {
int err;
// recv from sendcan
if (nanos_since_boot() - event.getLogMonoTime() > 1e9) {
//Older than 1 second. Dont send.
return;
}
int msg_count = event.getSendcan().size();
uint32_t *send = (uint32_t*)malloc(msg_count*0x10);
memset(send, 0, msg_count*0x10);
for (int i = 0; i < msg_count; i++) {
auto cmsg = event.getSendcan()[i];
if (cmsg.getAddress() >= 0x800) {
// extended
send[i*4] = (cmsg.getAddress() << 3) | 5;
} else {
// normal
send[i*4] = (cmsg.getAddress() << 21) | 1;
}
assert(cmsg.getDat().size() <= 8);
send[i*4+1] = cmsg.getDat().size() | (cmsg.getSrc() << 4);
memcpy(&send[i*4+2], cmsg.getDat().begin(), cmsg.getDat().size());
}
// send to board
int sent;
pthread_mutex_lock(&usb_lock);
if (!fake_send) {
do {
// Try sending can messages. If the receive buffer on the panda is full it will NAK
// and libusb will try again. After 5ms, it will time out. We will drop the messages.
err = libusb_bulk_transfer(dev_handle, 3, (uint8_t*)send, msg_count*0x10, &sent, 5);
if (err == LIBUSB_ERROR_TIMEOUT) {
LOGW("Transmit buffer full");
break;
} else if (err != 0 || msg_count*0x10 != sent) {
LOGW("Error");
handle_usb_issue(err, __func__);
}
} while(err != 0);
}
pthread_mutex_unlock(&usb_lock);
// done
free(send);
}
// **** threads ****
void *can_send_thread(void *crap) {
LOGD("start send thread");
Context * context = Context::create();
SubSocket * subscriber = SubSocket::create(context, "sendcan");
assert(subscriber != NULL);
// run as fast as messages come in
while (!do_exit) {
Message * msg = subscriber->receive();
if (msg){
auto amsg = kj::heapArray<capnp::word>((msg->getSize() / sizeof(capnp::word)) + 1);
memcpy(amsg.begin(), msg->getData(), msg->getSize());
capnp::FlatArrayMessageReader cmsg(amsg);
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
can_send(event);
delete msg;
}
}
delete subscriber;
delete context;
return NULL;
}
void *can_recv_thread(void *crap) {
LOGD("start recv thread");
// can = 8006
PubMaster pm({"can"});
// run at 100hz
const uint64_t dt = 10000000ULL;
uint64_t next_frame_time = nanos_since_boot() + dt;
while (!do_exit) {
can_recv(pm);
uint64_t cur_time = nanos_since_boot();
int64_t remaining = next_frame_time - cur_time;
if (remaining > 0){
useconds_t sleep = remaining / 1000;
usleep(sleep);
} else {
LOGW("missed cycle");
next_frame_time = cur_time;
}
next_frame_time += dt;
}
return NULL;
}
void *can_health_thread(void *crap) {
LOGD("start health thread");
// health = 8011
PubMaster pm({"health"});
// run at 2hz
while (!do_exit) {
can_health(pm);
usleep(500*1000);
}
return NULL;
}
void *hardware_control_thread(void *crap) {
LOGD("start hardware control thread");
SubMaster sm({"thermal", "frontFrame"});
// Wait for hardware type to be set.
while (hw_type == cereal::HealthData::HwType::UNKNOWN){
usleep(100*1000);
}
// Only control fan speed on UNO
if (hw_type != cereal::HealthData::HwType::UNO) return NULL;
uint64_t last_front_frame_t = 0;
uint16_t prev_fan_speed = 999;
uint16_t ir_pwr = 0;
uint16_t prev_ir_pwr = 999;
unsigned int cnt = 0;
while (!do_exit) {
cnt++;
sm.update(1000);
if (sm.updated("thermal")){
uint16_t fan_speed = sm["thermal"].getThermal().getFanSpeed();
if (fan_speed != prev_fan_speed || cnt % 100 == 0){
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0x40, 0xb1, fan_speed, 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
prev_fan_speed = fan_speed;
}
}
if (sm.updated("frontFrame")){
auto event = sm["frontFrame"];
float cur_front_gain = event.getFrontFrame().getGainFrac();
last_front_frame_t = event.getLogMonoTime();
if (cur_front_gain <= CUTOFF_GAIN) {
ir_pwr = 100.0 * MIN_IR_POWER;
} else if (cur_front_gain > SATURATE_GAIN) {
ir_pwr = 100.0 * MAX_IR_POWER;
} else {
ir_pwr = 100.0 * (MIN_IR_POWER + ((cur_front_gain - CUTOFF_GAIN) * (MAX_IR_POWER - MIN_IR_POWER) / (SATURATE_GAIN - CUTOFF_GAIN)));
}
}
// Disable ir_pwr on front frame timeout
uint64_t cur_t = nanos_since_boot();
if (cur_t - last_front_frame_t > 1e9){
ir_pwr = 0;
}
if (ir_pwr != prev_ir_pwr || cnt % 100 == 0 || ir_pwr >= 50.0){
pthread_mutex_lock(&usb_lock);
libusb_control_transfer(dev_handle, 0x40, 0xb0, ir_pwr, 0, NULL, 0, TIMEOUT);
pthread_mutex_unlock(&usb_lock);
prev_ir_pwr = ir_pwr;
}
}
return NULL;
}
#define pigeon_send(x) _pigeon_send(x, sizeof(x)-1)
void hexdump(unsigned char *d, int l) {
for (int i = 0; i < l; i++) {
if (i!=0 && i%0x10 == 0) printf("\n");
printf("%2.2X ", d[i]);
}
printf("\n");
}
void _pigeon_send(const char *dat, int len) {
int sent;
unsigned char a[0x20];
int err;
a[0] = 1;
for (int i=0; i<len; i+=0x20) {
int ll = std::min(0x20, len-i);
memcpy(&a[1], &dat[i], ll);
pthread_mutex_lock(&usb_lock);
err = libusb_bulk_transfer(dev_handle, 2, a, ll+1, &sent, TIMEOUT);
if (err < 0) { handle_usb_issue(err, __func__); }
/*assert(err == 0);
assert(sent == ll+1);*/
//hexdump(a, ll+1);
pthread_mutex_unlock(&usb_lock);
}
}
void pigeon_set_power(int power) {
pthread_mutex_lock(&usb_lock);
int err = libusb_control_transfer(dev_handle, 0xc0, 0xd9, power, 0, NULL, 0, TIMEOUT);
if (err < 0) { handle_usb_issue(err, __func__); }
pthread_mutex_unlock(&usb_lock);
}
void pigeon_set_baud(int baud) {
int err;
pthread_mutex_lock(&usb_lock);
err = libusb_control_transfer(dev_handle, 0xc0, 0xe2, 1, 0, NULL, 0, TIMEOUT);
if (err < 0) { handle_usb_issue(err, __func__); }
err = libusb_control_transfer(dev_handle, 0xc0, 0xe4, 1, baud/300, NULL, 0, TIMEOUT);
if (err < 0) { handle_usb_issue(err, __func__); }
pthread_mutex_unlock(&usb_lock);
}
void pigeon_init() {
usleep(1000*1000);
LOGW("panda GPS start");
// power off pigeon
pigeon_set_power(0);
usleep(100*1000);
// 9600 baud at init
pigeon_set_baud(9600);
// power on pigeon
pigeon_set_power(1);
usleep(500*1000);
// baud rate upping
pigeon_send("\x24\x50\x55\x42\x58\x2C\x34\x31\x2C\x31\x2C\x30\x30\x30\x37\x2C\x30\x30\x30\x33\x2C\x34\x36\x30\x38\x30\x30\x2C\x30\x2A\x31\x35\x0D\x0A");
usleep(100*1000);
// set baud rate to 460800
pigeon_set_baud(460800);
usleep(100*1000);
// init from ubloxd
// To generate this data, run test/ubloxd.py with the print statements enabled in the write function in panda/python/serial.py
pigeon_send("\xB5\x62\x06\x00\x14\x00\x03\xFF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x01\x00\x01\x00\x00\x00\x00\x00\x1E\x7F");
pigeon_send("\xB5\x62\x06\x3E\x00\x00\x44\xD2");
pigeon_send("\xB5\x62\x06\x00\x14\x00\x00\xFF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x19\x35");
pigeon_send("\xB5\x62\x06\x00\x14\x00\x01\x00\x00\x00\xC0\x08\x00\x00\x00\x08\x07\x00\x01\x00\x01\x00\x00\x00\x00\x00\xF4\x80");
pigeon_send("\xB5\x62\x06\x00\x14\x00\x04\xFF\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x1D\x85");
pigeon_send("\xB5\x62\x06\x00\x00\x00\x06\x18");
pigeon_send("\xB5\x62\x06\x00\x01\x00\x01\x08\x22");
pigeon_send("\xB5\x62\x06\x00\x01\x00\x02\x09\x23");
pigeon_send("\xB5\x62\x06\x00\x01\x00\x03\x0A\x24");
pigeon_send("\xB5\x62\x06\x08\x06\x00\x64\x00\x01\x00\x00\x00\x79\x10");
pigeon_send("\xB5\x62\x06\x24\x24\x00\x05\x00\x04\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x5A\x63");
pigeon_send("\xB5\x62\x06\x1E\x14\x00\x00\x00\x00\x00\x01\x03\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x3C\x37");
pigeon_send("\xB5\x62\x06\x24\x00\x00\x2A\x84");
pigeon_send("\xB5\x62\x06\x23\x00\x00\x29\x81");
pigeon_send("\xB5\x62\x06\x1E\x00\x00\x24\x72");
pigeon_send("\xB5\x62\x06\x01\x03\x00\x01\x07\x01\x13\x51");
pigeon_send("\xB5\x62\x06\x01\x03\x00\x02\x15\x01\x22\x70");
pigeon_send("\xB5\x62\x06\x01\x03\x00\x02\x13\x01\x20\x6C");
pigeon_send("\xB5\x62\x06\x01\x03\x00\x0A\x09\x01\x1E\x70");
LOGW("panda GPS on");
}
static void pigeon_publish_raw(PubMaster &pm, unsigned char *dat, int alen) {
// create message
capnp::MallocMessageBuilder msg;
cereal::Event::Builder event = msg.initRoot<cereal::Event>();
event.setLogMonoTime(nanos_since_boot());
auto ublox_raw = event.initUbloxRaw(alen);
memcpy(ublox_raw.begin(), dat, alen);
pm.send("ubloxRaw", msg);
}
void *pigeon_thread(void *crap) {
// ubloxRaw = 8042
PubMaster pm({"ubloxRaw"});
// run at ~100hz
unsigned char dat[0x1000];
uint64_t cnt = 0;
while (!do_exit) {
if (pigeon_needs_init) {
pigeon_needs_init = false;
pigeon_init();
}
int alen = 0;
while (alen < 0xfc0) {
pthread_mutex_lock(&usb_lock);
int len = libusb_control_transfer(dev_handle, 0xc0, 0xe0, 1, 0, dat+alen, 0x40, TIMEOUT);
if (len < 0) { handle_usb_issue(len, __func__); }
pthread_mutex_unlock(&usb_lock);
if (len <= 0) break;
//printf("got %d\n", len);
alen += len;
}
if (alen > 0) {
if (dat[0] == (char)0x00){
LOGW("received invalid ublox message, resetting panda GPS");
pigeon_init();
} else {
pigeon_publish_raw(pm, dat, alen);
}
}
// 10ms
usleep(10*1000);
cnt++;
}
return NULL;
}
}
int main() {
int err;
LOGW("starting boardd");
// set process priority and affinity
err = set_realtime_priority(54);
LOG("set priority returns %d", err);
err = set_core_affinity(3);
LOG("set affinity returns %d", err);
// check the environment
if (getenv("STARTED")) {
spoofing_started = true;
}
if (getenv("FAKESEND")) {
fake_send = true;
}
if (getenv("BOARDD_LOOPBACK")){
loopback_can = true;
}
err = pthread_mutex_init(&usb_lock, NULL);
assert(err == 0);
// init libusb
err = libusb_init(&ctx);
assert(err == 0);
#if LIBUSB_API_VERSION >= 0x01000106
libusb_set_option(ctx, LIBUSB_OPTION_LOG_LEVEL, LIBUSB_LOG_LEVEL_INFO);
#else
libusb_set_debug(ctx, 3);
#endif
pthread_t can_health_thread_handle;
err = pthread_create(&can_health_thread_handle, NULL,
can_health_thread, NULL);
assert(err == 0);
// connect to the board
pthread_mutex_lock(&usb_lock);
usb_retry_connect();
pthread_mutex_unlock(&usb_lock);
// create threads
pthread_t can_send_thread_handle;
err = pthread_create(&can_send_thread_handle, NULL,
can_send_thread, NULL);
assert(err == 0);
pthread_t can_recv_thread_handle;
err = pthread_create(&can_recv_thread_handle, NULL,
can_recv_thread, NULL);
assert(err == 0);
pthread_t hardware_control_thread_handle;
err = pthread_create(&hardware_control_thread_handle, NULL,
hardware_control_thread, NULL);
assert(err == 0);
// join threads
err = pthread_join(can_recv_thread_handle, NULL);
assert(err == 0);
err = pthread_join(can_send_thread_handle, NULL);
assert(err == 0);
err = pthread_join(can_health_thread_handle, NULL);
assert(err == 0);
//while (!do_exit) usleep(1000);
// destruct libusb
libusb_close(dev_handle);
libusb_exit(ctx);
}