nopenpilot/selfdrive/controls/lib/latcontrol_indi.py

120 lines
4.2 KiB
Python

import math
import numpy as np
from cereal import log
from common.filter_simple import FirstOrderFilter
from common.numpy_fast import clip, interp
from common.realtime import DT_CTRL
from selfdrive.controls.lib.latcontrol import LatControl, MIN_STEER_SPEED
class LatControlINDI(LatControl):
def __init__(self, CP, CI):
super().__init__(CP, CI)
self.angle_steers_des = 0.
A = np.array([[1.0, DT_CTRL, 0.0],
[0.0, 1.0, DT_CTRL],
[0.0, 0.0, 1.0]])
C = np.array([[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0]])
# Q = np.matrix([[1e-2, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 10.0]])
# R = np.matrix([[1e-2, 0.0], [0.0, 1e3]])
# (x, l, K) = control.dare(np.transpose(A), np.transpose(C), Q, R)
# K = np.transpose(K)
K = np.array([[7.30262179e-01, 2.07003658e-04],
[7.29394177e+00, 1.39159419e-02],
[1.71022442e+01, 3.38495381e-02]])
self.speed = 0.
self.K = K
self.A_K = A - np.dot(K, C)
self.x = np.array([[0.], [0.], [0.]])
self._RC = (CP.lateralTuning.indi.timeConstantBP, CP.lateralTuning.indi.timeConstantV)
self._G = (CP.lateralTuning.indi.actuatorEffectivenessBP, CP.lateralTuning.indi.actuatorEffectivenessV)
self._outer_loop_gain = (CP.lateralTuning.indi.outerLoopGainBP, CP.lateralTuning.indi.outerLoopGainV)
self._inner_loop_gain = (CP.lateralTuning.indi.innerLoopGainBP, CP.lateralTuning.indi.innerLoopGainV)
self.steer_filter = FirstOrderFilter(0., self.RC, DT_CTRL)
self.reset()
@property
def RC(self):
return interp(self.speed, self._RC[0], self._RC[1])
@property
def G(self):
return interp(self.speed, self._G[0], self._G[1])
@property
def outer_loop_gain(self):
return interp(self.speed, self._outer_loop_gain[0], self._outer_loop_gain[1])
@property
def inner_loop_gain(self):
return interp(self.speed, self._inner_loop_gain[0], self._inner_loop_gain[1])
def reset(self):
super().reset()
self.steer_filter.x = 0.
self.speed = 0.
def update(self, active, CS, CP, VM, params, last_actuators, desired_curvature, desired_curvature_rate):
self.speed = CS.vEgo
# Update Kalman filter
y = np.array([[math.radians(CS.steeringAngleDeg)], [math.radians(CS.steeringRateDeg)]])
self.x = np.dot(self.A_K, self.x) + np.dot(self.K, y)
indi_log = log.ControlsState.LateralINDIState.new_message()
indi_log.steeringAngleDeg = math.degrees(self.x[0])
indi_log.steeringRateDeg = math.degrees(self.x[1])
indi_log.steeringAccelDeg = math.degrees(self.x[2])
steers_des = VM.get_steer_from_curvature(-desired_curvature, CS.vEgo, params.roll)
steers_des += math.radians(params.angleOffsetDeg)
indi_log.steeringAngleDesiredDeg = math.degrees(steers_des)
rate_des = VM.get_steer_from_curvature(-desired_curvature_rate, CS.vEgo, 0)
indi_log.steeringRateDesiredDeg = math.degrees(rate_des)
if CS.vEgo < MIN_STEER_SPEED or not active:
indi_log.active = False
self.steer_filter.x = 0.0
output_steer = 0
else:
# Expected actuator value
self.steer_filter.update_alpha(self.RC)
self.steer_filter.update(last_actuators.steer)
# Compute acceleration error
rate_sp = self.outer_loop_gain * (steers_des - self.x[0]) + rate_des
accel_sp = self.inner_loop_gain * (rate_sp - self.x[1])
accel_error = accel_sp - self.x[2]
# Compute change in actuator
g_inv = 1. / self.G
delta_u = g_inv * accel_error
# If steering pressed, only allow wind down
if CS.steeringPressed and (delta_u * last_actuators.steer > 0):
delta_u = 0
output_steer = self.steer_filter.x + delta_u
output_steer = clip(output_steer, -self.steer_max, self.steer_max)
indi_log.active = True
indi_log.rateSetPoint = float(rate_sp)
indi_log.accelSetPoint = float(accel_sp)
indi_log.accelError = float(accel_error)
indi_log.delayedOutput = float(self.steer_filter.x)
indi_log.delta = float(delta_u)
indi_log.output = float(output_steer)
indi_log.saturated = self._check_saturation(self.steer_max - abs(output_steer) < 1e-3, CS)
return float(output_steer), float(steers_des), indi_log