nopenpilot/selfdrive/controls/lib/lateral_mpc/lateral_mpc.c

135 lines
4.1 KiB
C

#include "acado_common.h"
#include "acado_auxiliary_functions.h"
#include <stdio.h>
#define NX ACADO_NX /* Number of differential state variables. */
#define NXA ACADO_NXA /* Number of algebraic variables. */
#define NU ACADO_NU /* Number of control inputs. */
#define NOD ACADO_NOD /* Number of online data values. */
#define NY ACADO_NY /* Number of measurements/references on nodes 0..N - 1. */
#define NYN ACADO_NYN /* Number of measurements/references on node N. */
#define N ACADO_N /* Number of intervals in the horizon. */
ACADOvariables acadoVariables;
ACADOworkspace acadoWorkspace;
typedef struct {
double x, y, psi, delta, t;
} state_t;
typedef struct {
double x[N+1];
double y[N+1];
double psi[N+1];
double delta[N+1];
double rate[N];
double cost;
} log_t;
void init_weights(double pathCost, double laneCost, double headingCost, double steerRateCost){
int i;
const int STEP_MULTIPLIER = 3;
for (i = 0; i < N; i++) {
int f = 1;
if (i > 4){
f = STEP_MULTIPLIER;
}
// Setup diagonal entries
acadoVariables.W[NY*NY*i + (NY+1)*0] = pathCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*1] = laneCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*2] = laneCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*3] = headingCost * f;
acadoVariables.W[NY*NY*i + (NY+1)*4] = steerRateCost * f;
}
acadoVariables.WN[(NYN+1)*0] = pathCost * STEP_MULTIPLIER;
acadoVariables.WN[(NYN+1)*1] = laneCost * STEP_MULTIPLIER;
acadoVariables.WN[(NYN+1)*2] = laneCost * STEP_MULTIPLIER;
acadoVariables.WN[(NYN+1)*3] = headingCost * STEP_MULTIPLIER;
}
void init(double pathCost, double laneCost, double headingCost, double steerRateCost){
acado_initializeSolver();
int i;
/* Initialize the states and controls. */
for (i = 0; i < NX * (N + 1); ++i) acadoVariables.x[ i ] = 0.0;
for (i = 0; i < NU * N; ++i) acadoVariables.u[ i ] = 0.1;
/* Initialize the measurements/reference. */
for (i = 0; i < NY * N; ++i) acadoVariables.y[ i ] = 0.0;
for (i = 0; i < NYN; ++i) acadoVariables.yN[ i ] = 0.0;
/* MPC: initialize the current state feedback. */
for (i = 0; i < NX; ++i) acadoVariables.x0[ i ] = 0.0;
init_weights(pathCost, laneCost, headingCost, steerRateCost);
}
int run_mpc(state_t * x0, log_t * solution,
double l_poly[4], double r_poly[4], double d_poly[4],
double l_prob, double r_prob, double curvature_factor, double v_ref, double lane_width){
int i;
for (i = 0; i <= NOD * N; i+= NOD){
acadoVariables.od[i] = curvature_factor;
acadoVariables.od[i+1] = v_ref;
acadoVariables.od[i+2] = l_poly[0];
acadoVariables.od[i+3] = l_poly[1];
acadoVariables.od[i+4] = l_poly[2];
acadoVariables.od[i+5] = l_poly[3];
acadoVariables.od[i+6] = r_poly[0];
acadoVariables.od[i+7] = r_poly[1];
acadoVariables.od[i+8] = r_poly[2];
acadoVariables.od[i+9] = r_poly[3];
acadoVariables.od[i+10] = d_poly[0];
acadoVariables.od[i+11] = d_poly[1];
acadoVariables.od[i+12] = d_poly[2];
acadoVariables.od[i+13] = d_poly[3];
acadoVariables.od[i+14] = l_prob;
acadoVariables.od[i+15] = r_prob;
acadoVariables.od[i+16] = lane_width;
}
acadoVariables.x0[0] = x0->x;
acadoVariables.x0[1] = x0->y;
acadoVariables.x0[2] = x0->psi;
acadoVariables.x0[3] = x0->delta;
acado_preparationStep();
acado_feedbackStep();
/* printf("lat its: %d\n", acado_getNWSR()); // n iterations
printf("Objective: %.6f\n", acado_getObjective()); // solution cost */
for (i = 0; i <= N; i++){
solution->x[i] = acadoVariables.x[i*NX];
solution->y[i] = acadoVariables.x[i*NX+1];
solution->psi[i] = acadoVariables.x[i*NX+2];
solution->delta[i] = acadoVariables.x[i*NX+3];
if (i < N){
solution->rate[i] = acadoVariables.u[i];
}
}
solution->cost = acado_getObjective();
// Dont shift states here. Current solution is closer to next timestep than if
// we use the old solution as a starting point
//acado_shiftStates(2, 0, 0);
//acado_shiftControls( 0 );
return acado_getNWSR();
}