nopenpilot/pyextra/acados_template/acados_ocp_solver.py

1563 lines
68 KiB
Python

# -*- coding: future_fstrings -*-
#
# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
import sys
import os
import json
import numpy as np
from datetime import datetime
import ctypes
from ctypes import POINTER, cast, CDLL, c_void_p, c_char_p, c_double, c_int, c_int64, byref
from copy import deepcopy
from .generate_c_code_explicit_ode import generate_c_code_explicit_ode
from .generate_c_code_implicit_ode import generate_c_code_implicit_ode
from .generate_c_code_gnsf import generate_c_code_gnsf
from .generate_c_code_discrete_dynamics import generate_c_code_discrete_dynamics
from .generate_c_code_constraint import generate_c_code_constraint
from .generate_c_code_nls_cost import generate_c_code_nls_cost
from .generate_c_code_external_cost import generate_c_code_external_cost
from .acados_ocp import AcadosOcp
from .acados_model import acados_model_strip_casadi_symbolics
from .utils import is_column, is_empty, casadi_length, render_template, acados_class2dict,\
format_class_dict, ocp_check_against_layout, np_array_to_list, make_model_consistent,\
set_up_imported_gnsf_model, get_acados_path, get_ocp_nlp_layout, get_python_interface_path
def make_ocp_dims_consistent(acados_ocp):
dims = acados_ocp.dims
cost = acados_ocp.cost
constraints = acados_ocp.constraints
model = acados_ocp.model
opts = acados_ocp.solver_options
# nx
if is_column(model.x):
dims.nx = casadi_length(model.x)
else:
raise Exception('model.x should be column vector!')
# nu
if is_empty(model.u):
dims.nu = 0
else:
dims.nu = casadi_length(model.u)
# nz
if is_empty(model.z):
dims.nz = 0
else:
dims.nz = casadi_length(model.z)
# np
if is_empty(model.p):
dims.np = 0
else:
dims.np = casadi_length(model.p)
if acados_ocp.parameter_values.shape[0] != dims.np:
raise Exception('inconsistent dimension np, regarding model.p and parameter_values.' + \
f'\nGot np = {dims.np}, acados_ocp.parameter_values.shape = {acados_ocp.parameter_values.shape[0]}\n')
# cost
# initial stage - if not set, copy fields from path constraints
if cost.cost_type_0 is None:
cost.cost_type_0 = cost.cost_type
cost.W_0 = cost.W
cost.Vx_0 = cost.Vx
cost.Vu_0 = cost.Vu
cost.Vz_0 = cost.Vz
cost.yref_0 = cost.yref
cost.cost_ext_fun_type_0 = cost.cost_ext_fun_type
model.cost_y_expr_0 = model.cost_y_expr
model.cost_expr_ext_cost_0 = model.cost_expr_ext_cost
model.cost_expr_ext_cost_custom_hess_0 = model.cost_expr_ext_cost_custom_hess
if cost.cost_type_0 == 'LINEAR_LS':
ny_0 = cost.W_0.shape[0]
if cost.Vx_0.shape[0] != ny_0 or cost.Vu_0.shape[0] != ny_0:
raise Exception('inconsistent dimension ny_0, regarding W_0, Vx_0, Vu_0.' + \
f'\nGot W_0[{cost.W_0.shape}], Vx_0[{cost.Vx_0.shape}], Vu_0[{cost.Vu_0.shape}]\n')
if dims.nz != 0 and cost.Vz_0.shape[0] != ny_0:
raise Exception('inconsistent dimension ny_0, regarding W_0, Vx_0, Vu_0, Vz_0.' + \
f'\nGot W_0[{cost.W_0.shape}], Vx_0[{cost.Vx_0.shape}], Vu_0[{cost.Vu_0.shape}], Vz_0[{cost.Vz_0.shape}]\n')
if cost.Vx_0.shape[1] != dims.nx and ny_0 != 0:
raise Exception('inconsistent dimension: Vx_0 should have nx columns.')
if cost.Vu_0.shape[1] != dims.nu and ny_0 != 0:
raise Exception('inconsistent dimension: Vu_0 should have nu columns.')
if cost.yref_0.shape[0] != ny_0:
raise Exception('inconsistent dimension: regarding W_0, yref_0.' + \
f'\nGot W_0[{cost.W_0.shape}], yref_0[{cost.yref_0.shape}]\n')
dims.ny_0 = ny_0
elif cost.cost_type_0 == 'NONLINEAR_LS':
ny_0 = cost.W_0.shape[0]
if is_empty(model.cost_y_expr_0) and ny_0 != 0:
raise Exception('inconsistent dimension ny_0: regarding W_0, cost_y_expr.')
elif casadi_length(model.cost_y_expr_0) != ny_0:
raise Exception('inconsistent dimension ny_0: regarding W_0, cost_y_expr.')
if cost.yref_0.shape[0] != ny_0:
raise Exception('inconsistent dimension: regarding W_0, yref_0.' + \
f'\nGot W_0[{cost.W.shape}], yref_0[{cost.yref_0.shape}]\n')
dims.ny_0 = ny_0
# path
if cost.cost_type == 'LINEAR_LS':
ny = cost.W.shape[0]
if cost.Vx.shape[0] != ny or cost.Vu.shape[0] != ny:
raise Exception('inconsistent dimension ny, regarding W, Vx, Vu.' + \
f'\nGot W[{cost.W.shape}], Vx[{cost.Vx.shape}], Vu[{cost.Vu.shape}]\n')
if dims.nz != 0 and cost.Vz.shape[0] != ny:
raise Exception('inconsistent dimension ny, regarding W, Vx, Vu, Vz.' + \
f'\nGot W[{cost.W.shape}], Vx[{cost.Vx.shape}], Vu[{cost.Vu.shape}], Vz[{cost.Vz.shape}]\n')
if cost.Vx.shape[1] != dims.nx and ny != 0:
raise Exception('inconsistent dimension: Vx should have nx columns.')
if cost.Vu.shape[1] != dims.nu and ny != 0:
raise Exception('inconsistent dimension: Vu should have nu columns.')
if cost.yref.shape[0] != ny:
raise Exception('inconsistent dimension: regarding W, yref.' + \
f'\nGot W[{cost.W.shape}], yref[{cost.yref.shape}]\n')
dims.ny = ny
elif cost.cost_type == 'NONLINEAR_LS':
ny = cost.W.shape[0]
if is_empty(model.cost_y_expr) and ny != 0:
raise Exception('inconsistent dimension ny: regarding W, cost_y_expr.')
elif casadi_length(model.cost_y_expr) != ny:
raise Exception('inconsistent dimension ny: regarding W, cost_y_expr.')
if cost.yref.shape[0] != ny:
raise Exception('inconsistent dimension: regarding W, yref.' + \
f'\nGot W[{cost.W.shape}], yref[{cost.yref.shape}]\n')
dims.ny = ny
# terminal
if cost.cost_type_e == 'LINEAR_LS':
ny_e = cost.W_e.shape[0]
if cost.Vx_e.shape[0] != ny_e:
raise Exception('inconsistent dimension ny_e: regarding W_e, cost_y_expr_e.' + \
f'\nGot W_e[{cost.W_e.shape}], Vx_e[{cost.Vx_e.shape}]')
if cost.Vx_e.shape[1] != dims.nx and ny_e != 0:
raise Exception('inconsistent dimension: Vx_e should have nx columns.')
if cost.yref_e.shape[0] != ny_e:
raise Exception('inconsistent dimension: regarding W_e, yref_e.')
dims.ny_e = ny_e
elif cost.cost_type_e == 'NONLINEAR_LS':
ny_e = cost.W_e.shape[0]
if is_empty(model.cost_y_expr_e) and ny_e != 0:
raise Exception('inconsistent dimension ny_e: regarding W_e, cost_y_expr_e.')
elif casadi_length(model.cost_y_expr_e) != ny_e:
raise Exception('inconsistent dimension ny_e: regarding W_e, cost_y_expr_e.')
if cost.yref_e.shape[0] != ny_e:
raise Exception('inconsistent dimension: regarding W_e, yref_e.')
dims.ny_e = ny_e
## constraints
# initial
if (constraints.lbx_0 == [] and constraints.ubx_0 == []):
dims.nbx_0 = 0
else:
this_shape = constraints.lbx_0.shape
other_shape = constraints.ubx_0.shape
if not this_shape == other_shape:
raise Exception('lbx_0, ubx_0 have different shapes!')
if not is_column(constraints.lbx_0):
raise Exception('lbx_0, ubx_0 must be column vectors!')
dims.nbx_0 = constraints.lbx_0.size
if all(constraints.lbx_0 == constraints.ubx_0) and dims.nbx_0 == dims.nx \
and dims.nbxe_0 is None \
and (constraints.idxbxe_0.shape == constraints.idxbx_0.shape)\
and all(constraints.idxbxe_0 == constraints.idxbx_0):
# case: x0 was set: nbx0 are all equlities.
dims.nbxe_0 = dims.nbx_0
elif dims.nbxe_0 is None:
# case: x0 was not set -> dont assume nbx0 to be equality constraints.
dims.nbxe_0 = 0
# path
nbx = constraints.idxbx.shape[0]
if constraints.ubx.shape[0] != nbx or constraints.lbx.shape[0] != nbx:
raise Exception('inconsistent dimension nbx, regarding idxbx, ubx, lbx.')
else:
dims.nbx = nbx
nbu = constraints.idxbu.shape[0]
if constraints.ubu.shape[0] != nbu or constraints.lbu.shape[0] != nbu:
raise Exception('inconsistent dimension nbu, regarding idxbu, ubu, lbu.')
else:
dims.nbu = nbu
ng = constraints.lg.shape[0]
if constraints.ug.shape[0] != ng or constraints.C.shape[0] != ng \
or constraints.D.shape[0] != ng:
raise Exception('inconsistent dimension ng, regarding lg, ug, C, D.')
else:
dims.ng = ng
if not is_empty(model.con_h_expr):
nh = casadi_length(model.con_h_expr)
else:
nh = 0
if constraints.uh.shape[0] != nh or constraints.lh.shape[0] != nh:
raise Exception('inconsistent dimension nh, regarding lh, uh, con_h_expr.')
else:
dims.nh = nh
if is_empty(model.con_phi_expr):
dims.nphi = 0
dims.nr = 0
else:
dims.nphi = casadi_length(model.con_phi_expr)
if is_empty(model.con_r_expr):
raise Exception('convex over nonlinear constraints: con_r_expr but con_phi_expr is nonempty')
else:
dims.nr = casadi_length(model.con_r_expr)
# terminal
nbx_e = constraints.idxbx_e.shape[0]
if constraints.ubx_e.shape[0] != nbx_e or constraints.lbx_e.shape[0] != nbx_e:
raise Exception('inconsistent dimension nbx_e, regarding idxbx_e, ubx_e, lbx_e.')
else:
dims.nbx_e = nbx_e
ng_e = constraints.lg_e.shape[0]
if constraints.ug_e.shape[0] != ng_e or constraints.C_e.shape[0] != ng_e:
raise Exception('inconsistent dimension ng_e, regarding_e lg_e, ug_e, C_e.')
else:
dims.ng_e = ng_e
if not is_empty(model.con_h_expr_e):
nh_e = casadi_length(model.con_h_expr_e)
else:
nh_e = 0
if constraints.uh_e.shape[0] != nh_e or constraints.lh_e.shape[0] != nh_e:
raise Exception('inconsistent dimension nh_e, regarding lh_e, uh_e, con_h_expr_e.')
else:
dims.nh_e = nh_e
if is_empty(model.con_phi_expr_e):
dims.nphi_e = 0
dims.nr_e = 0
else:
dims.nphi_e = casadi_length(model.con_phi_expr_e)
if is_empty(model.con_r_expr_e):
raise Exception('convex over nonlinear constraints: con_r_expr_e but con_phi_expr_e is nonempty')
else:
dims.nr_e = casadi_length(model.con_r_expr_e)
# Slack dimensions
nsbx = constraints.idxsbx.shape[0]
if is_empty(constraints.lsbx):
constraints.lsbx = np.zeros((nsbx,))
elif constraints.lsbx.shape[0] != nsbx:
raise Exception('inconsistent dimension nsbx, regarding idxsbx, lsbx.')
if is_empty(constraints.usbx):
constraints.usbx = np.zeros((nsbx,))
elif constraints.usbx.shape[0] != nsbx:
raise Exception('inconsistent dimension nsbx, regarding idxsbx, usbx.')
dims.nsbx = nsbx
nsbu = constraints.idxsbu.shape[0]
if is_empty(constraints.lsbu):
constraints.lsbu = np.zeros((nsbu,))
elif constraints.lsbu.shape[0] != nsbu:
raise Exception('inconsistent dimension nsbu, regarding idxsbu, lsbu.')
if is_empty(constraints.usbu):
constraints.usbu = np.zeros((nsbu,))
elif constraints.usbu.shape[0] != nsbu:
raise Exception('inconsistent dimension nsbu, regarding idxsbu, usbu.')
dims.nsbu = nsbu
nsh = constraints.idxsh.shape[0]
if is_empty(constraints.lsh):
constraints.lsh = np.zeros((nsh,))
elif constraints.lsh.shape[0] != nsh:
raise Exception('inconsistent dimension nsh, regarding idxsh, lsh.')
if is_empty(constraints.ush):
constraints.ush = np.zeros((nsh,))
elif constraints.ush.shape[0] != nsh:
raise Exception('inconsistent dimension nsh, regarding idxsh, ush.')
dims.nsh = nsh
nsphi = constraints.idxsphi.shape[0]
if is_empty(constraints.lsphi):
constraints.lsphi = np.zeros((nsphi,))
elif constraints.lsphi.shape[0] != nsphi:
raise Exception('inconsistent dimension nsphi, regarding idxsphi, lsphi.')
if is_empty(constraints.usphi):
constraints.usphi = np.zeros((nsphi,))
elif constraints.usphi.shape[0] != nsphi:
raise Exception('inconsistent dimension nsphi, regarding idxsphi, usphi.')
dims.nsphi = nsphi
nsg = constraints.idxsg.shape[0]
if is_empty(constraints.lsg):
constraints.lsg = np.zeros((nsg,))
elif constraints.lsg.shape[0] != nsg:
raise Exception('inconsistent dimension nsg, regarding idxsg, lsg.')
if is_empty(constraints.usg):
constraints.usg = np.zeros((nsg,))
elif constraints.usg.shape[0] != nsg:
raise Exception('inconsistent dimension nsg, regarding idxsg, usg.')
dims.nsg = nsg
ns = nsbx + nsbu + nsh + nsg + nsphi
wrong_field = ""
if cost.Zl.shape[0] != ns:
wrong_field = "Zl"
dim = cost.Zl.shape[0]
elif cost.Zu.shape[0] != ns:
wrong_field = "Zu"
dim = cost.Zu.shape[0]
elif cost.zl.shape[0] != ns:
wrong_field = "zl"
dim = cost.zl.shape[0]
elif cost.zu.shape[0] != ns:
wrong_field = "zu"
dim = cost.zu.shape[0]
if wrong_field != "":
raise Exception(f'Inconsistent size for field {wrong_field}, with dimension {dim}, \n\t'\
+ f'Detected ns = {ns} = nsbx + nsbu + nsg + nsh + nsphi.\n\t'\
+ f'With nsbx = {nsbx}, nsbu = {nsbu}, nsg = {nsg}, nsh = {nsh}, nsphi = {nsphi}')
dims.ns = ns
nsbx_e = constraints.idxsbx_e.shape[0]
if is_empty(constraints.lsbx_e):
constraints.lsbx_e = np.zeros((nsbx_e,))
elif constraints.lsbx_e.shape[0] != nsbx_e:
raise Exception('inconsistent dimension nsbx_e, regarding idxsbx_e, lsbx_e.')
if is_empty(constraints.usbx_e):
constraints.usbx_e = np.zeros((nsbx_e,))
elif constraints.usbx_e.shape[0] != nsbx_e:
raise Exception('inconsistent dimension nsbx_e, regarding idxsbx_e, usbx_e.')
dims.nsbx_e = nsbx_e
nsh_e = constraints.idxsh_e.shape[0]
if is_empty(constraints.lsh_e):
constraints.lsh_e = np.zeros((nsh_e,))
elif constraints.lsh_e.shape[0] != nsh_e:
raise Exception('inconsistent dimension nsh_e, regarding idxsh_e, lsh_e.')
if is_empty(constraints.ush_e):
constraints.ush_e = np.zeros((nsh_e,))
elif constraints.ush_e.shape[0] != nsh_e:
raise Exception('inconsistent dimension nsh_e, regarding idxsh_e, ush_e.')
dims.nsh_e = nsh_e
nsg_e = constraints.idxsg_e.shape[0]
if is_empty(constraints.lsg_e):
constraints.lsg_e = np.zeros((nsg_e,))
elif constraints.lsg_e.shape[0] != nsg_e:
raise Exception('inconsistent dimension nsg_e, regarding idxsg_e, lsg_e.')
if is_empty(constraints.usg_e):
constraints.usg_e = np.zeros((nsg_e,))
elif constraints.usg_e.shape[0] != nsg_e:
raise Exception('inconsistent dimension nsg_e, regarding idxsg_e, usg_e.')
dims.nsg_e = nsg_e
nsphi_e = constraints.idxsphi_e.shape[0]
if is_empty(constraints.lsphi_e):
constraints.lsphi_e = np.zeros((nsphi_e,))
elif constraints.lsphi_e.shape[0] != nsphi_e:
raise Exception('inconsistent dimension nsphi_e, regarding idxsphi_e, lsphi_e.')
if is_empty(constraints.usphi_e):
constraints.usphi_e = np.zeros((nsphi_e,))
elif constraints.usphi_e.shape[0] != nsphi_e:
raise Exception('inconsistent dimension nsphi_e, regarding idxsphi_e, usphi_e.')
dims.nsphi_e = nsphi_e
# terminal
ns_e = nsbx_e + nsh_e + nsg_e + nsphi_e
wrong_field = ""
if cost.Zl_e.shape[0] != ns_e:
wrong_field = "Zl_e"
dim = cost.Zl_e.shape[0]
elif cost.Zu_e.shape[0] != ns_e:
wrong_field = "Zu_e"
dim = cost.Zu_e.shape[0]
elif cost.zl_e.shape[0] != ns_e:
wrong_field = "zl_e"
dim = cost.zl_e.shape[0]
elif cost.zu_e.shape[0] != ns_e:
wrong_field = "zu_e"
dim = cost.zu_e.shape[0]
if wrong_field != "":
raise Exception(f'Inconsistent size for field {wrong_field}, with dimension {dim}, \n\t'\
+ f'Detected ns_e = {ns_e} = nsbx_e + nsg_e + nsh_e + nsphi_e.\n\t'\
+ f'With nsbx_e = {nsbx_e}, nsg_e = {nsg_e}, nsh_e = {nsh_e}, nsphi_e = {nsphi_e}')
dims.ns_e = ns_e
# discretization
if is_empty(opts.time_steps) and is_empty(opts.shooting_nodes):
# uniform discretization
opts.time_steps = opts.tf / dims.N * np.ones((dims.N,))
elif not is_empty(opts.shooting_nodes):
if np.shape(opts.shooting_nodes)[0] != dims.N+1:
raise Exception('inconsistent dimension N, regarding shooting_nodes.')
# time_steps = opts.shooting_nodes[1:] - opts.shooting_nodes[0:-1]
# # identify constant time-steps: due to numerical reasons the content of time_steps might vary a bit
# delta_time_steps = time_steps[1:] - time_steps[0:-1]
# avg_time_steps = np.average(time_steps)
# # criterion for constant time-step detection: the min/max difference in values normalized by the average
# check_const_time_step = np.max(delta_time_steps)-np.min(delta_time_steps) / avg_time_steps
# # if the criterion is small, we have a constant time-step
# if check_const_time_step < 1e-9:
# time_steps[:] = avg_time_steps # if we have a constant time-step: apply the average time-step
time_steps = np.zeros((dims.N,))
for i in range(dims.N):
time_steps[i] = opts.shooting_nodes[i+1] - opts.shooting_nodes[i] # TODO use commented code above
opts.time_steps = time_steps
elif (not is_empty(opts.time_steps)) and (not is_empty(opts.shooting_nodes)):
Exception('Please provide either time_steps or shooting_nodes for nonuniform discretization')
tf = np.sum(opts.time_steps)
if (tf - opts.tf) / tf > 1e-15:
raise Exception(f'Inconsistent discretization: {opts.tf}'\
f' = tf != sum(opts.time_steps) = {tf}.')
# num_steps
if isinstance(opts.sim_method_num_steps, np.ndarray) and opts.sim_method_num_steps.size == 1:
opts.sim_method_num_steps = opts.sim_method_num_steps.item()
if isinstance(opts.sim_method_num_steps, (int, float)) and opts.sim_method_num_steps % 1 == 0:
opts.sim_method_num_steps = opts.sim_method_num_steps * np.ones((dims.N,), dtype=np.int64)
elif isinstance(opts.sim_method_num_steps, np.ndarray) and opts.sim_method_num_steps.size == dims.N \
and np.all(np.equal(np.mod(opts.sim_method_num_steps, 1), 0)):
opts.sim_method_num_steps = np.reshape(opts.sim_method_num_steps, (dims.N,)).astype(np.int64)
else:
raise Exception("Wrong value for sim_method_num_steps. Should be either int or array of ints of shape (N,).")
# num_stages
if isinstance(opts.sim_method_num_stages, np.ndarray) and opts.sim_method_num_stages.size == 1:
opts.sim_method_num_stages = opts.sim_method_num_stages.item()
if isinstance(opts.sim_method_num_stages, (int, float)) and opts.sim_method_num_stages % 1 == 0:
opts.sim_method_num_stages = opts.sim_method_num_stages * np.ones((dims.N,), dtype=np.int64)
elif isinstance(opts.sim_method_num_stages, np.ndarray) and opts.sim_method_num_stages.size == dims.N \
and np.all(np.equal(np.mod(opts.sim_method_num_stages, 1), 0)):
opts.sim_method_num_stages = np.reshape(opts.sim_method_num_stages, (dims.N,)).astype(np.int64)
else:
raise Exception("Wrong value for sim_method_num_stages. Should be either int or array of ints of shape (N,).")
# jac_reuse
if isinstance(opts.sim_method_jac_reuse, np.ndarray) and opts.sim_method_jac_reuse.size == 1:
opts.sim_method_jac_reuse = opts.sim_method_jac_reuse.item()
if isinstance(opts.sim_method_jac_reuse, (int, float)) and opts.sim_method_jac_reuse % 1 == 0:
opts.sim_method_jac_reuse = opts.sim_method_jac_reuse * np.ones((dims.N,), dtype=np.int64)
elif isinstance(opts.sim_method_jac_reuse, np.ndarray) and opts.sim_method_jac_reuse.size == dims.N \
and np.all(np.equal(np.mod(opts.sim_method_jac_reuse, 1), 0)):
opts.sim_method_jac_reuse = np.reshape(opts.sim_method_jac_reuse, (dims.N,)).astype(np.int64)
else:
raise Exception("Wrong value for sim_method_jac_reuse. Should be either int or array of ints of shape (N,).")
def get_simulink_default_opts():
python_interface_path = get_python_interface_path()
abs_path = os.path.join(python_interface_path, 'simulink_default_opts.json')
with open(abs_path , 'r') as f:
simulink_default_opts = json.load(f)
return simulink_default_opts
def ocp_formulation_json_dump(acados_ocp, simulink_opts, json_file='acados_ocp_nlp.json'):
# Load acados_ocp_nlp structure description
ocp_layout = get_ocp_nlp_layout()
# Copy input ocp object dictionary
ocp_nlp_dict = dict(deepcopy(acados_ocp).__dict__)
# TODO: maybe make one function with formatting
for acados_struct, v in ocp_layout.items():
# skip non dict attributes
if not isinstance(v, dict):
continue
# setattr(ocp_nlp, acados_struct, dict(getattr(acados_ocp, acados_struct).__dict__))
# Copy ocp object attributes dictionaries
ocp_nlp_dict[acados_struct]=dict(getattr(acados_ocp, acados_struct).__dict__)
ocp_nlp_dict = format_class_dict(ocp_nlp_dict)
# strip symbolics
ocp_nlp_dict['model'] = acados_model_strip_casadi_symbolics(ocp_nlp_dict['model'])
# strip shooting_nodes
ocp_nlp_dict['solver_options'].pop('shooting_nodes', None)
dims_dict = acados_class2dict(acados_ocp.dims)
ocp_check_against_layout(ocp_nlp_dict, dims_dict)
# add simulink options
ocp_nlp_dict['simulink_opts'] = simulink_opts
with open(json_file, 'w') as f:
json.dump(ocp_nlp_dict, f, default=np_array_to_list, indent=4, sort_keys=True)
def ocp_formulation_json_load(json_file='acados_ocp_nlp.json'):
# Load acados_ocp_nlp structure description
ocp_layout = get_ocp_nlp_layout()
with open(json_file, 'r') as f:
ocp_nlp_json = json.load(f)
ocp_nlp_dict = json2dict(ocp_nlp_json, ocp_nlp_json['dims'])
# Instantiate AcadosOcp object
acados_ocp = AcadosOcp()
# load class dict
acados_ocp.__dict__ = ocp_nlp_dict
# load class attributes dict, dims, constraints, etc
for acados_struct, v in ocp_layout.items():
# skip non dict attributes
if not isinstance(v, dict):
continue
acados_attribute = getattr(acados_ocp, acados_struct)
acados_attribute.__dict__ = ocp_nlp_dict[acados_struct]
setattr(acados_ocp, acados_struct, acados_attribute)
return acados_ocp
def ocp_generate_external_functions(acados_ocp, model):
model = make_model_consistent(model)
if acados_ocp.solver_options.hessian_approx == 'EXACT':
opts = dict(generate_hess=1)
else:
opts = dict(generate_hess=0)
code_export_dir = acados_ocp.code_export_directory
opts['code_export_directory'] = code_export_dir
if acados_ocp.model.dyn_ext_fun_type != 'casadi':
raise Exception("ocp_generate_external_functions: dyn_ext_fun_type only supports 'casadi' for now.\
Extending the Python interface with generic function support is welcome.")
if acados_ocp.solver_options.integrator_type == 'ERK':
# explicit model -- generate C code
generate_c_code_explicit_ode(model, opts)
elif acados_ocp.solver_options.integrator_type == 'IRK':
# implicit model -- generate C code
generate_c_code_implicit_ode(model, opts)
elif acados_ocp.solver_options.integrator_type == 'LIFTED_IRK':
generate_c_code_implicit_ode(model, opts)
elif acados_ocp.solver_options.integrator_type == 'GNSF':
generate_c_code_gnsf(model, opts)
elif acados_ocp.solver_options.integrator_type == 'DISCRETE':
generate_c_code_discrete_dynamics(model, opts)
else:
raise Exception("ocp_generate_external_functions: unknown integrator type.")
if acados_ocp.dims.nphi > 0 or acados_ocp.dims.nh > 0:
generate_c_code_constraint(model, model.name, False, opts)
if acados_ocp.dims.nphi_e > 0 or acados_ocp.dims.nh_e > 0:
generate_c_code_constraint(model, model.name, True, opts)
# dummy matrices
if not acados_ocp.cost.cost_type_0 == 'LINEAR_LS':
acados_ocp.cost.Vx_0 = np.zeros((acados_ocp.dims.ny_0, acados_ocp.dims.nx))
acados_ocp.cost.Vu_0 = np.zeros((acados_ocp.dims.ny_0, acados_ocp.dims.nu))
if not acados_ocp.cost.cost_type == 'LINEAR_LS':
acados_ocp.cost.Vx = np.zeros((acados_ocp.dims.ny, acados_ocp.dims.nx))
acados_ocp.cost.Vu = np.zeros((acados_ocp.dims.ny, acados_ocp.dims.nu))
if not acados_ocp.cost.cost_type_e == 'LINEAR_LS':
acados_ocp.cost.Vx_e = np.zeros((acados_ocp.dims.ny_e, acados_ocp.dims.nx))
if acados_ocp.cost.cost_type_0 == 'NONLINEAR_LS':
generate_c_code_nls_cost(model, model.name, 'initial', opts)
elif acados_ocp.cost.cost_type_0 == 'EXTERNAL':
generate_c_code_external_cost(model, 'initial', opts)
if acados_ocp.cost.cost_type == 'NONLINEAR_LS':
generate_c_code_nls_cost(model, model.name, 'path', opts)
elif acados_ocp.cost.cost_type == 'EXTERNAL':
generate_c_code_external_cost(model, 'path', opts)
if acados_ocp.cost.cost_type_e == 'NONLINEAR_LS':
generate_c_code_nls_cost(model, model.name, 'terminal', opts)
elif acados_ocp.cost.cost_type_e == 'EXTERNAL':
generate_c_code_external_cost(model, 'terminal', opts)
def ocp_render_templates(acados_ocp, json_file):
name = acados_ocp.model.name
# setting up loader and environment
json_path = os.path.join(os.getcwd(), json_file)
if not os.path.exists(json_path):
raise Exception('{} not found!'.format(json_path))
code_export_dir = acados_ocp.code_export_directory
template_dir = code_export_dir
## Render templates
in_file = 'main.in.c'
out_file = f'main_{name}.c'
render_template(in_file, out_file, template_dir, json_path)
in_file = 'acados_solver.in.c'
out_file = f'acados_solver_{name}.c'
render_template(in_file, out_file, template_dir, json_path)
in_file = 'acados_solver.in.h'
out_file = f'acados_solver_{name}.h'
render_template(in_file, out_file, template_dir, json_path)
in_file = 'acados_solver.in.pxd'
out_file = f'acados_solver.pxd'
render_template(in_file, out_file, template_dir, json_path)
in_file = 'Makefile.in'
out_file = 'Makefile'
render_template(in_file, out_file, template_dir, json_path)
in_file = 'acados_solver_sfun.in.c'
out_file = f'acados_solver_sfunction_{name}.c'
render_template(in_file, out_file, template_dir, json_path)
in_file = 'make_sfun.in.m'
out_file = f'make_sfun_{name}.m'
render_template(in_file, out_file, template_dir, json_path)
# sim
in_file = 'acados_sim_solver.in.c'
out_file = f'acados_sim_solver_{name}.c'
render_template(in_file, out_file, template_dir, json_path)
in_file = 'acados_sim_solver.in.h'
out_file = f'acados_sim_solver_{name}.h'
render_template(in_file, out_file, template_dir, json_path)
in_file = 'main_sim.in.c'
out_file = f'main_sim_{name}.c'
render_template(in_file, out_file, template_dir, json_path)
## folder model
template_dir = os.path.join(code_export_dir, name + '_model')
in_file = 'model.in.h'
out_file = f'{name}_model.h'
render_template(in_file, out_file, template_dir, json_path)
# constraints on convex over nonlinear function
if acados_ocp.constraints.constr_type == 'BGP' and acados_ocp.dims.nphi > 0:
# constraints on outer function
template_dir = os.path.join(code_export_dir, name + '_constraints')
in_file = 'phi_constraint.in.h'
out_file = f'{name}_phi_constraint.h'
render_template(in_file, out_file, template_dir, json_path)
# terminal constraints on convex over nonlinear function
if acados_ocp.constraints.constr_type_e == 'BGP' and acados_ocp.dims.nphi_e > 0:
# terminal constraints on outer function
template_dir = os.path.join(code_export_dir, name + '_constraints')
in_file = 'phi_e_constraint.in.h'
out_file = f'{name}_phi_e_constraint.h'
render_template(in_file, out_file, template_dir, json_path)
# nonlinear constraints
if acados_ocp.constraints.constr_type == 'BGH' and acados_ocp.dims.nh > 0:
template_dir = os.path.join(code_export_dir, name + '_constraints')
in_file = 'h_constraint.in.h'
out_file = f'{name}_h_constraint.h'
render_template(in_file, out_file, template_dir, json_path)
# terminal nonlinear constraints
if acados_ocp.constraints.constr_type_e == 'BGH' and acados_ocp.dims.nh_e > 0:
template_dir = os.path.join(code_export_dir, name + '_constraints')
in_file = 'h_e_constraint.in.h'
out_file = f'{name}_h_e_constraint.h'
render_template(in_file, out_file, template_dir, json_path)
# initial stage Nonlinear LS cost function
if acados_ocp.cost.cost_type_0 == 'NONLINEAR_LS':
template_dir = os.path.join(code_export_dir, name + '_cost')
in_file = 'cost_y_0_fun.in.h'
out_file = f'{name}_cost_y_0_fun.h'
render_template(in_file, out_file, template_dir, json_path)
# external cost - terminal
elif acados_ocp.cost.cost_type_0 == 'EXTERNAL':
template_dir = os.path.join(code_export_dir, name + '_cost')
in_file = 'external_cost_0.in.h'
out_file = f'{name}_external_cost_0.h'
render_template(in_file, out_file, template_dir, json_path)
# path Nonlinear LS cost function
if acados_ocp.cost.cost_type == 'NONLINEAR_LS':
template_dir = os.path.join(code_export_dir, name + '_cost')
in_file = 'cost_y_fun.in.h'
out_file = f'{name}_cost_y_fun.h'
render_template(in_file, out_file, template_dir, json_path)
# terminal Nonlinear LS cost function
if acados_ocp.cost.cost_type_e == 'NONLINEAR_LS':
template_dir = os.path.join(code_export_dir, name + '_cost')
in_file = 'cost_y_e_fun.in.h'
out_file = f'{name}_cost_y_e_fun.h'
render_template(in_file, out_file, template_dir, json_path)
# external cost
if acados_ocp.cost.cost_type == 'EXTERNAL':
template_dir = os.path.join(code_export_dir, name + '_cost')
in_file = 'external_cost.in.h'
out_file = f'{name}_external_cost.h'
render_template(in_file, out_file, template_dir, json_path)
# external cost - terminal
if acados_ocp.cost.cost_type_e == 'EXTERNAL':
template_dir = os.path.join(code_export_dir, name + '_cost')
in_file = 'external_cost_e.in.h'
out_file = f'{name}_external_cost_e.h'
render_template(in_file, out_file, template_dir, json_path)
def remove_x0_elimination(acados_ocp):
acados_ocp.constraints.idxbxe_0 = np.zeros((0,))
acados_ocp.dims.nbxe_0 = 0
class AcadosOcpSolver:
"""
Class to interact with the acados ocp solver C object.
:param acados_ocp: type AcadosOcp - description of the OCP for acados
:param json_file: name for the json file used to render the templated code - default: acados_ocp_nlp.json
:param simulink_opts: Options to configure Simulink S-function blocks, mainly to activate possible Inputs and Outputs
"""
if sys.platform=="win32":
from ctypes import wintypes
dlclose = ctypes.WinDLL('kernel32', use_last_error=True).FreeLibrary
dlclose.argtypes = [wintypes.HMODULE]
else:
dlclose = CDLL(None).dlclose
dlclose.argtypes = [c_void_p]
@classmethod
def generate(cls, acados_ocp, json_file='acados_ocp_nlp.json', simulink_opts=None, build=True):
model = acados_ocp.model
if simulink_opts is None:
simulink_opts = get_simulink_default_opts()
# make dims consistent
make_ocp_dims_consistent(acados_ocp)
# module dependent post processing
if acados_ocp.solver_options.integrator_type == 'GNSF':
set_up_imported_gnsf_model(acados_ocp)
if acados_ocp.solver_options.qp_solver == 'PARTIAL_CONDENSING_QPDUNES':
remove_x0_elimination(acados_ocp)
# set integrator time automatically
acados_ocp.solver_options.Tsim = acados_ocp.solver_options.time_steps[0]
# generate external functions
ocp_generate_external_functions(acados_ocp, model)
# dump to json
ocp_formulation_json_dump(acados_ocp, simulink_opts, json_file)
code_export_dir = acados_ocp.code_export_directory
# render templates
ocp_render_templates(acados_ocp, json_file)
if build:
## Compile solver
cwd=os.getcwd()
os.chdir(code_export_dir)
os.system('make clean_ocp_shared_lib')
os.system('make ocp_shared_lib')
os.chdir(cwd)
def __init__(self, model_name, N, code_export_dir):
self.model_name = model_name
self.N = N
self.solver_created = False
self.shared_lib_name = f'{code_export_dir}/libacados_ocp_solver_{self.model_name}.so'
# get shared_lib
self.shared_lib = CDLL(self.shared_lib_name)
# create capsule
getattr(self.shared_lib, f"{self.model_name}_acados_create_capsule").restype = c_void_p
self.capsule = getattr(self.shared_lib, f"{self.model_name}_acados_create_capsule")()
# create solver
getattr(self.shared_lib, f"{self.model_name}_acados_create").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_create").restype = c_int
assert getattr(self.shared_lib, f"{self.model_name}_acados_create")(self.capsule)==0
self.solver_created = True
# get pointers solver
self.__get_pointers_solver()
def __get_pointers_solver(self):
"""
Private function to get the pointers for solver
"""
# get pointers solver
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_opts").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_opts").restype = c_void_p
self.nlp_opts = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_opts")(self.capsule)
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_dims").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_dims").restype = c_void_p
self.nlp_dims = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_dims")(self.capsule)
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_config").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_config").restype = c_void_p
self.nlp_config = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_config")(self.capsule)
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_out").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_out").restype = c_void_p
self.nlp_out = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_out")(self.capsule)
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_in").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_in").restype = c_void_p
self.nlp_in = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_in")(self.capsule)
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_solver").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_solver").restype = c_void_p
self.nlp_solver = getattr(self.shared_lib, f"{self.model_name}_acados_get_nlp_solver")(self.capsule)
# treat parameters separately
getattr(self.shared_lib, f"{self.model_name}_acados_update_params").argtypes = [c_void_p, c_int, POINTER(c_double)]
getattr(self.shared_lib, f"{self.model_name}_acados_update_params").restype = c_int
self._set_param = getattr(self.shared_lib, f"{self.model_name}_acados_update_params")
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.restype = c_int
self.shared_lib.ocp_nlp_cost_dims_get_from_attr.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
self.shared_lib.ocp_nlp_cost_dims_get_from_attr.restype = c_int
self.shared_lib.ocp_nlp_constraints_model_set.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
self.shared_lib.ocp_nlp_cost_model_set.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
self.shared_lib.ocp_nlp_out_set.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
self.shared_lib.ocp_nlp_set.argtypes = \
[c_void_p, c_void_p, c_int, c_char_p, c_void_p]
def solve(self):
"""
Solve the ocp with current input.
"""
getattr(self.shared_lib, f"{self.model_name}_acados_solve").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_solve").restype = c_int
status = getattr(self.shared_lib, f"{self.model_name}_acados_solve")(self.capsule)
return status
def set_new_time_steps(self, new_time_steps):
"""
Set new time steps before solving. Only reload library without code generation but with new time steps.
:param new_time_steps: vector of new time steps for the solver
.. note:: This allows for different use-cases: either set a new size of time-steps or a new distribution of
the shooting nodes without changing the number, e.g., to reach a different final time. Both cases
do not require a new code export and compilation.
"""
# unlikely but still possible
if not self.solver_created:
raise Exception('Solver was not yet created!')
# check if time steps really changed in value
if np.array_equal(self.acados_ocp.solver_options.time_steps, new_time_steps):
return
N = new_time_steps.size
model = self.acados_ocp.model
new_time_steps_data = cast(new_time_steps.ctypes.data, POINTER(c_double))
# check if recreation of acados is necessary (no need to recreate acados if sizes are identical)
if self.acados_ocp.solver_options.time_steps.size == N:
getattr(self.shared_lib, f"{self.model_name}_acados_update_time_steps").argtypes = [c_void_p, c_int, c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_update_time_steps").restype = c_int
assert getattr(self.shared_lib, f"{self.model_name}_acados_update_time_steps")(self.capsule, N, new_time_steps_data) == 0
else: # recreate the solver with the new time steps
self.solver_created = False
# delete old memory (analog to __del__)
getattr(self.shared_lib, f"{self.model_name}_acados_free").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_free").restype = c_int
getattr(self.shared_lib, f"{self.model_name}_acados_free")(self.capsule)
# store N and new time steps
self.N = self.acados_ocp.dims.N = N
self.acados_ocp.solver_options.time_steps = new_time_steps
self.acados_ocp.solver_options.Tsim = self.acados_ocp.solver_options.time_steps[0]
# create solver with new time steps
getattr(self.shared_lib, f"{self.model_name}_acados_create_with_discretization").argtypes = [c_void_p, c_int, c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_create_with_discretization").restype = c_int
assert getattr(self.shared_lib, f"{self.model_name}_acados_create_with_discretization")(self.capsule, N, new_time_steps_data) == 0
self.solver_created = True
# get pointers solver
self.__get_pointers_solver()
def get(self, stage_, field_):
"""
Get the last solution of the solver:
:param stage: integer corresponding to shooting node
:param field: string in ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su',]
.. note:: regarding lam, t: \n
the inequalities are internally organized in the following order: \n
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
.. note:: pi: multipliers for dynamics equality constraints \n
lam: multipliers for inequalities \n
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
sl: slack variables of soft lower inequality constraints \n
su: slack variables of soft upper inequality constraints \n
"""
out_fields = ['x', 'u', 'z', 'pi', 'lam', 't', 'sl', 'su']
# mem_fields = ['sl', 'su']
field = field_
field = field.encode('utf-8')
if (field_ not in out_fields):
raise Exception('AcadosOcpSolver.get(): {} is an invalid argument.\
\n Possible values are {}. Exiting.'.format(field_, out_fields))
if not isinstance(stage_, int):
raise Exception('AcadosOcpSolver.get(): stage index must be Integer.')
if stage_ < 0 or stage_ > self.N:
raise Exception('AcadosOcpSolver.get(): stage index must be in [0, N], got: {}.'.format(self.N))
if stage_ == self.N and field_ == 'pi':
raise Exception('AcadosOcpSolver.get(): field {} does not exist at final stage {}.'\
.format(field_, stage_))
self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p]
self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int
dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage_, field)
out = np.ascontiguousarray(np.zeros((dims,)), dtype=np.float64)
out_data = cast(out.ctypes.data, POINTER(c_double))
if (field_ in out_fields):
self.shared_lib.ocp_nlp_out_get.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
self.shared_lib.ocp_nlp_out_get(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage_, field, out_data)
# elif field_ in mem_fields:
# self.shared_lib.ocp_nlp_get_at_stage.argtypes = \
# [c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
# self.shared_lib.ocp_nlp_get_at_stage(self.nlp_config, \
# self.nlp_dims, self.nlp_solver, stage_, field, out_data)
return out
def print_statistics(self):
"""
prints statistics of previous solver run as a table:
- iter: iteration number
- res_stat: stationarity residual
- res_eq: residual wrt equality constraints (dynamics)
- res_ineq: residual wrt inequality constraints (constraints)
- res_comp: residual wrt complementarity conditions
- qp_stat: status of QP solver
- qp_iter: number of QP iterations
- qp_res_stat: stationarity residual of the last QP solution
- qp_res_eq: residual wrt equality constraints (dynamics) of the last QP solution
- qp_res_ineq: residual wrt inequality constraints (constraints) of the last QP solution
- qp_res_comp: residual wrt complementarity conditions of the last QP solution
"""
stat = self.get_stats("statistics")
if self.acados_ocp.solver_options.nlp_solver_type == 'SQP':
print('\niter\tres_stat\tres_eq\t\tres_ineq\tres_comp\tqp_stat\tqp_iter')
if stat.shape[0]>7:
print('\tqp_res_stat\tqp_res_eq\tqp_res_ineq\tqp_res_comp')
for jj in range(stat.shape[1]):
print('{:d}\t{:e}\t{:e}\t{:e}\t{:e}\t{:d}\t{:d}'.format( \
int(stat[0][jj]), stat[1][jj], stat[2][jj], \
stat[3][jj], stat[4][jj], int(stat[5][jj]), int(stat[6][jj])))
if stat.shape[0]>7:
print('\t{:e}\t{:e}\t{:e}\t{:e}'.format( \
stat[7][jj], stat[8][jj], stat[9][jj], stat[10][jj]))
print('\n')
elif self.acados_ocp.solver_options.nlp_solver_type == 'SQP_RTI':
print('\niter\tqp_stat\tqp_iter')
if stat.shape[0]>3:
print('\tqp_res_stat\tqp_res_eq\tqp_res_ineq\tqp_res_comp')
for jj in range(stat.shape[1]):
print('{:d}\t{:d}\t{:d}'.format( int(stat[0][jj]), int(stat[1][jj]), int(stat[2][jj])))
if stat.shape[0]>3:
print('\t{:e}\t{:e}\t{:e}\t{:e}'.format( \
stat[3][jj], stat[4][jj], stat[5][jj], stat[6][jj]))
print('\n')
return
def store_iterate(self, filename='', overwrite=False):
"""
Stores the current iterate of the ocp solver in a json file.
:param filename: if not set, use model_name + timestamp + '.json'
:param overwrite: if false and filename exists add timestamp to filename
"""
if filename == '':
filename += self.model_name + '_' + 'iterate' + '.json'
if not overwrite:
# append timestamp
if os.path.isfile(filename):
filename = filename[:-5]
filename += datetime.utcnow().strftime('%Y-%m-%d-%H:%M:%S.%f') + '.json'
# get iterate:
solution = dict()
for i in range(self.N+1):
solution['x_'+str(i)] = self.get(i,'x')
solution['u_'+str(i)] = self.get(i,'u')
solution['z_'+str(i)] = self.get(i,'z')
solution['lam_'+str(i)] = self.get(i,'lam')
solution['t_'+str(i)] = self.get(i, 't')
solution['sl_'+str(i)] = self.get(i, 'sl')
solution['su_'+str(i)] = self.get(i, 'su')
for i in range(self.N):
solution['pi_'+str(i)] = self.get(i,'pi')
# save
with open(filename, 'w') as f:
json.dump(solution, f, default=np_array_to_list, indent=4, sort_keys=True)
print("stored current iterate in ", os.path.join(os.getcwd(), filename))
def load_iterate(self, filename):
"""
Loads the iterate stored in json file with filename into the ocp solver.
"""
if not os.path.isfile(filename):
raise Exception('load_iterate: failed, file does not exist: ' + os.path.join(os.getcwd(), filename))
with open(filename, 'r') as f:
solution = json.load(f)
for key in solution.keys():
(field, stage) = key.split('_')
self.set(int(stage), field, np.array(solution[key]))
def get_stats(self, field_):
"""
Get the information of the last solver call.
:param field: string in ['statistics', 'time_tot', 'time_lin', 'time_sim', 'time_sim_ad', 'time_sim_la', 'time_qp', 'time_qp_solver_call', 'time_reg', 'sqp_iter']
"""
fields = ['time_tot', # total cpu time previous call
'time_lin', # cpu time for linearization
'time_sim', # cpu time for integrator
'time_sim_ad', # cpu time for integrator contribution of external function calls
'time_sim_la', # cpu time for integrator contribution of linear algebra
'time_qp', # cpu time qp solution
'time_qp_solver_call', # cpu time inside qp solver (without converting the QP)
'time_qp_xcond',
'time_glob', # cpu time globalization
'time_reg', # cpu time regularization
'sqp_iter', # number of SQP iterations
'qp_iter', # vector of QP iterations for last SQP call
'statistics', # table with info about last iteration
'stat_m',
'stat_n',]
field = field_
field = field.encode('utf-8')
if (field_ not in fields):
raise Exception('AcadosOcpSolver.get_stats(): {} is not a valid argument.\
\n Possible values are {}. Exiting.'.format(fields, fields))
if field_ in ['sqp_iter', 'stat_m', 'stat_n']:
out = np.ascontiguousarray(np.zeros((1,)), dtype=np.int64)
out_data = cast(out.ctypes.data, POINTER(c_int64))
elif field_ == 'statistics':
sqp_iter = self.get_stats("sqp_iter")
stat_m = self.get_stats("stat_m")
stat_n = self.get_stats("stat_n")
min_size = min([stat_m, sqp_iter+1])
out = np.ascontiguousarray(
np.zeros((stat_n[0]+1, min_size[0])), dtype=np.float64)
out_data = cast(out.ctypes.data, POINTER(c_double))
elif field_ == 'qp_iter':
full_stats = self.get_stats('statistics')
if self.acados_ocp.solver_options.nlp_solver_type == 'SQP':
out = full_stats[6, :]
elif self.acados_ocp.solver_options.nlp_solver_type == 'SQP_RTI':
out = full_stats[2, :]
else:
out = np.ascontiguousarray(np.zeros((1,)), dtype=np.float64)
out_data = cast(out.ctypes.data, POINTER(c_double))
if not field_ == 'qp_iter':
self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p]
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
return out
def get_cost(self):
"""
Returns the cost value of the current solution.
"""
# compute cost internally
self.shared_lib.ocp_nlp_eval_cost.argtypes = [c_void_p, c_void_p, c_void_p]
self.shared_lib.ocp_nlp_eval_cost(self.nlp_solver, self.nlp_in, self.nlp_out)
# create output array
out = np.ascontiguousarray(np.zeros((1,)), dtype=np.float64)
out_data = cast(out.ctypes.data, POINTER(c_double))
# call getter
self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p]
field = "cost_value".encode('utf-8')
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
return out[0]
def get_residuals(self):
"""
Returns an array of the form [res_stat, res_eq, res_ineq, res_comp].
"""
# compute residuals if RTI
if self.acados_ocp.solver_options.nlp_solver_type == 'SQP_RTI':
self.shared_lib.ocp_nlp_eval_residuals.argtypes = [c_void_p, c_void_p, c_void_p]
self.shared_lib.ocp_nlp_eval_residuals(self.nlp_solver, self.nlp_in, self.nlp_out)
# create output array
out = np.ascontiguousarray(np.zeros((4, 1)), dtype=np.float64)
out_data = cast(out.ctypes.data, POINTER(c_double))
# call getters
self.shared_lib.ocp_nlp_get.argtypes = [c_void_p, c_void_p, c_char_p, c_void_p]
field = "res_stat".encode('utf-8')
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
out_data = cast(out[1].ctypes.data, POINTER(c_double))
field = "res_eq".encode('utf-8')
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
out_data = cast(out[2].ctypes.data, POINTER(c_double))
field = "res_ineq".encode('utf-8')
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
out_data = cast(out[3].ctypes.data, POINTER(c_double))
field = "res_comp".encode('utf-8')
self.shared_lib.ocp_nlp_get(self.nlp_config, self.nlp_solver, field, out_data)
return out.flatten()
# Note: this function should not be used anymore, better use cost_set, constraints_set
def set(self, stage_, field_, value_):
"""
Set numerical data inside the solver.
:param stage: integer corresponding to shooting node
:param field: string in ['x', 'u', 'pi', 'lam', 't', 'p']
.. note:: regarding lam, t: \n
the inequalities are internally organized in the following order: \n
[ lbu lbx lg lh lphi ubu ubx ug uh uphi; \n
lsbu lsbx lsg lsh lsphi usbu usbx usg ush usphi]
.. note:: pi: multipliers for dynamics equality constraints \n
lam: multipliers for inequalities \n
t: slack variables corresponding to evaluation of all inequalities (at the solution) \n
sl: slack variables of soft lower inequality constraints \n
su: slack variables of soft upper inequality constraints \n
"""
cost_fields = ['y_ref', 'yref']
constraints_fields = ['lbx', 'ubx', 'lbu', 'ubu']
out_fields = ['x', 'u', 'pi', 'lam', 't', 'z', 'sl', 'su']
# cast value_ to avoid conversion issues
if isinstance(value_, (float, int)):
value_ = np.array([value_])
value_ = value_.astype(float)
field = field_
field = field.encode('utf-8')
stage = c_int(stage_)
# treat parameters separately
if field_ == 'p':
getattr(self.shared_lib, f"{self.model_name}_acados_update_params").argtypes = [c_void_p, c_int, POINTER(c_double)]
getattr(self.shared_lib, f"{self.model_name}_acados_update_params").restype = c_int
value_data = cast(value_.ctypes.data, POINTER(c_double))
assert getattr(self.shared_lib, f"{self.model_name}_acados_update_params")(self.capsule, stage, value_data, value_.shape[0])==0
else:
if field_ not in constraints_fields + cost_fields + out_fields:
raise Exception("AcadosOcpSolver.set(): {} is not a valid argument.\
\nPossible values are {}. Exiting.".format(field, \
constraints_fields + cost_fields + out_fields + ['p']))
self.shared_lib.ocp_nlp_dims_get_from_attr.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p]
self.shared_lib.ocp_nlp_dims_get_from_attr.restype = c_int
dims = self.shared_lib.ocp_nlp_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage_, field)
if value_.shape[0] != dims:
msg = 'AcadosOcpSolver.set(): mismatching dimension for field "{}" '.format(field_)
msg += 'with dimension {} (you have {})'.format(dims, value_.shape[0])
raise Exception(msg)
value_data = cast(value_.ctypes.data, POINTER(c_double))
value_data_p = cast((value_data), c_void_p)
if field_ in constraints_fields:
self.shared_lib.ocp_nlp_constraints_model_set(self.nlp_config, \
self.nlp_dims, self.nlp_in, stage, field, value_data_p)
elif field_ in cost_fields:
self.shared_lib.ocp_nlp_cost_model_set(self.nlp_config, \
self.nlp_dims, self.nlp_in, stage, field, value_data_p)
elif field_ in out_fields:
self.shared_lib.ocp_nlp_out_set(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage, field, value_data_p)
# elif field_ in mem_fields:
# self.shared_lib.ocp_nlp_set(self.nlp_config, \
# self.nlp_solver, stage, field, value_data_p)
return
def cost_set(self, stage_, field_, value_, api='warn'):
"""
Set numerical data in the cost module of the solver.
:param stage: integer corresponding to shooting node
:param field: string, e.g. 'yref', 'W', 'ext_cost_num_hess'
:param value: of appropriate size
"""
# cast value_ to avoid conversion issues
if isinstance(value_, (float, int)):
value_ = np.array([value_])
value_ = value_.astype(float)
field = field_
field = field.encode('utf-8')
stage = c_int(stage_)
self.shared_lib.ocp_nlp_cost_dims_get_from_attr.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
self.shared_lib.ocp_nlp_cost_dims_get_from_attr.restype = c_int
dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc)
dims_data = cast(dims.ctypes.data, POINTER(c_int))
self.shared_lib.ocp_nlp_cost_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage_, field, dims_data)
value_shape = value_.shape
if len(value_shape) == 1:
value_shape = (value_shape[0], 0)
elif len(value_shape) == 2:
if api=='old':
pass
elif api=='warn':
if not np.all(np.ravel(value_, order='F')==np.ravel(value_, order='K')):
raise Exception("Ambiguity in API detected.\n"
"Are you making an acados model from scrach? Add api='new' to cost_set and carry on.\n"
"Are you seeing this error suddenly in previously running code? Read on.\n"
" You are relying on a now-fixed bug in cost_set for field '{}'.\n".format(field_) +
" acados_template now correctly passes on any matrices to acados in column major format.\n" +
" Two options to fix this error: \n" +
" * Add api='old' to cost_set to restore old incorrect behaviour\n" +
" * Add api='new' to cost_set and remove any unnatural manipulation of the value argument " +
"such as non-mathematical transposes, reshaping, casting to fortran order, etc... " +
"If there is no such manipulation, then you have probably been getting an incorrect solution before.")
# Get elements in column major order
value_ = np.ravel(value_, order='F')
elif api=='new':
# Get elements in column major order
value_ = np.ravel(value_, order='F')
else:
raise Exception("Unknown api: '{}'".format(api))
if value_shape != tuple(dims):
raise Exception('AcadosOcpSolver.cost_set(): mismatching dimension', \
' for field "{}" with dimension {} (you have {})'.format( \
field_, tuple(dims), value_shape))
value_data = cast(value_.ctypes.data, POINTER(c_double))
value_data_p = cast((value_data), c_void_p)
self.shared_lib.ocp_nlp_cost_model_set.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
self.shared_lib.ocp_nlp_cost_model_set(self.nlp_config, \
self.nlp_dims, self.nlp_in, stage, field, value_data_p)
return
def constraints_set(self, stage_, field_, value_, api='warn'):
"""
Set numerical data in the constraint module of the solver.
:param stage: integer corresponding to shooting node
:param field: string in ['lbx', 'ubx', 'lbu', 'ubu', 'lg', 'ug', 'lh', 'uh', 'uphi', 'C', 'D']
:param value: of appropriate size
"""
# cast value_ to avoid conversion issues
if isinstance(value_, (float, int)):
value_ = np.array([value_])
value_ = value_.astype(float)
field = field_
field = field.encode('utf-8')
stage = c_int(stage_)
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr.restype = c_int
dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc)
dims_data = cast(dims.ctypes.data, POINTER(c_int))
self.shared_lib.ocp_nlp_constraint_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage_, field, dims_data)
value_shape = value_.shape
if len(value_shape) == 1:
value_shape = (value_shape[0], 0)
elif len(value_shape) == 2:
if api=='old':
pass
elif api=='warn':
if not np.all(np.ravel(value_, order='F')==np.ravel(value_, order='K')):
raise Exception("Ambiguity in API detected.\n"
"Are you making an acados model from scrach? Add api='new' to constraints_set and carry on.\n"
"Are you seeing this error suddenly in previously running code? Read on.\n"
" You are relying on a now-fixed bug in constraints_set for field '{}'.\n".format(field_) +
" acados_template now correctly passes on any matrices to acados in column major format.\n" +
" Two options to fix this error: \n" +
" * Add api='old' to constraints_set to restore old incorrect behaviour\n" +
" * Add api='new' to constraints_set and remove any unnatural manipulation of the value argument " +
"such as non-mathematical transposes, reshaping, casting to fortran order, etc... " +
"If there is no such manipulation, then you have probably been getting an incorrect solution before.")
# Get elements in column major order
value_ = np.ravel(value_, order='F')
elif api=='new':
# Get elements in column major order
value_ = np.ravel(value_, order='F')
else:
raise Exception("Unknown api: '{}'".format(api))
if value_shape != tuple(dims):
raise Exception('AcadosOcpSolver.constraints_set(): mismatching dimension' \
' for field "{}" with dimension {} (you have {})'.format(field_, tuple(dims), value_shape))
value_data = cast(value_.ctypes.data, POINTER(c_double))
value_data_p = cast((value_data), c_void_p)
self.shared_lib.ocp_nlp_constraints_model_set.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
self.shared_lib.ocp_nlp_constraints_model_set(self.nlp_config, \
self.nlp_dims, self.nlp_in, stage, field, value_data_p)
return
def dynamics_get(self, stage_, field_):
"""
Get numerical data from the dynamics module of the solver:
:param stage: integer corresponding to shooting node
:param field: string, e.g. 'A'
"""
field = field_
field = field.encode('utf-8')
stage = c_int(stage_)
# get dims
self.shared_lib.ocp_nlp_dynamics_dims_get_from_attr.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, POINTER(c_int)]
self.shared_lib.ocp_nlp_dynamics_dims_get_from_attr.restype = c_int
dims = np.ascontiguousarray(np.zeros((2,)), dtype=np.intc)
dims_data = cast(dims.ctypes.data, POINTER(c_int))
self.shared_lib.ocp_nlp_dynamics_dims_get_from_attr(self.nlp_config, \
self.nlp_dims, self.nlp_out, stage_, field, dims_data)
# create output data
out = np.ascontiguousarray(np.zeros((np.prod(dims),)), dtype=np.float64)
out = out.reshape(dims[0], dims[1], order='F')
out_data = cast(out.ctypes.data, POINTER(c_double))
out_data_p = cast((out_data), c_void_p)
# call getter
self.shared_lib.ocp_nlp_get_at_stage.argtypes = \
[c_void_p, c_void_p, c_void_p, c_int, c_char_p, c_void_p]
self.shared_lib.ocp_nlp_get_at_stage(self.nlp_config, \
self.nlp_dims, self.nlp_solver, stage, field, out_data_p)
return out
def options_set(self, field_, value_):
"""
Set options of the solver.
:param field: string, e.g. 'print_level', 'rti_phase', 'initialize_t_slacks', 'step_length', 'alpha_min', 'alpha_reduction'
:param value: of type int, float
"""
int_fields = ['print_level', 'rti_phase', 'initialize_t_slacks']
double_fields = ['step_length', 'tol_eq', 'tol_stat', 'tol_ineq', 'tol_comp', 'alpha_min', 'alpha_reduction']
string_fields = ['globalization']
# check field availability and type
if field_ in int_fields:
if not isinstance(value_, int):
raise Exception('solver option {} must be of type int. You have {}.'.format(field_, type(value_)))
else:
value_ctypes = c_int(value_)
elif field_ in double_fields:
if not isinstance(value_, float):
raise Exception('solver option {} must be of type float. You have {}.'.format(field_, type(value_)))
else:
value_ctypes = c_double(value_)
elif field_ in string_fields:
if not isinstance(value_, str):
raise Exception('solver option {} must be of type str. You have {}.'.format(field_, type(value_)))
else:
value_ctypes = value_.encode('utf-8')
else:
raise Exception('AcadosOcpSolver.options_set() does not support field {}.'\
'\n Possible values are {}.'.format(field_, ', '.join(int_fields + double_fields + string_fields)))
if field_ == 'rti_phase':
if value_ < 0 or value_ > 2:
raise Exception('AcadosOcpSolver.solve(): argument \'rti_phase\' can '
'take only values 0, 1, 2 for SQP-RTI-type solvers')
if self.acados_ocp.solver_options.nlp_solver_type != 'SQP_RTI' and value_ > 0:
raise Exception('AcadosOcpSolver.solve(): argument \'rti_phase\' can '
'take only value 0 for SQP-type solvers')
# encode
field = field_
field = field.encode('utf-8')
# call C interface
if field_ in string_fields:
self.shared_lib.ocp_nlp_solver_opts_set.argtypes = \
[c_void_p, c_void_p, c_char_p, c_char_p]
self.shared_lib.ocp_nlp_solver_opts_set(self.nlp_config, \
self.nlp_opts, field, value_ctypes)
else:
self.shared_lib.ocp_nlp_solver_opts_set.argtypes = \
[c_void_p, c_void_p, c_char_p, c_void_p]
self.shared_lib.ocp_nlp_solver_opts_set(self.nlp_config, \
self.nlp_opts, field, byref(value_ctypes))
return
def __del__(self):
if self.solver_created:
getattr(self.shared_lib, f"{self.model_name}_acados_free").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_free").restype = c_int
getattr(self.shared_lib, f"{self.model_name}_acados_free")(self.capsule)
getattr(self.shared_lib, f"{self.model_name}_acados_free_capsule").argtypes = [c_void_p]
getattr(self.shared_lib, f"{self.model_name}_acados_free_capsule").restype = c_int
getattr(self.shared_lib, f"{self.model_name}_acados_free_capsule")(self.capsule)
try:
self.dlclose(self.shared_lib._handle)
except:
pass