nopenpilot/selfdrive/ui/ui.cc

332 lines
12 KiB
C++

#include "selfdrive/ui/ui.h"
#include <unistd.h>
#include <cassert>
#include <cmath>
#include <cstdio>
#include "selfdrive/common/util.h"
#include "selfdrive/common/watchdog.h"
#include "selfdrive/hardware/hw.h"
#define BACKLIGHT_DT 0.05
#define BACKLIGHT_TS 10.00
#define BACKLIGHT_OFFROAD 75
// Projects a point in car to space to the corresponding point in full frame
// image space.
static bool calib_frame_to_full_frame(const UIState *s, float in_x, float in_y, float in_z, vertex_data *out) {
const float margin = 500.0f;
const vec3 pt = (vec3){{in_x, in_y, in_z}};
const vec3 Ep = matvecmul3(s->scene.view_from_calib, pt);
const vec3 KEp = matvecmul3(s->wide_camera ? ecam_intrinsic_matrix : fcam_intrinsic_matrix, Ep);
// Project.
float x = KEp.v[0] / KEp.v[2];
float y = KEp.v[1] / KEp.v[2];
nvgTransformPoint(&out->x, &out->y, s->car_space_transform, x, y);
return out->x >= -margin && out->x <= s->fb_w + margin && out->y >= -margin && out->y <= s->fb_h + margin;
}
static int get_path_length_idx(const cereal::ModelDataV2::XYZTData::Reader &line, const float path_height) {
const auto line_x = line.getX();
int max_idx = 0;
for (int i = 0; i < TRAJECTORY_SIZE && line_x[i] < path_height; ++i) {
max_idx = i;
}
return max_idx;
}
static void update_leads(UIState *s, const cereal::ModelDataV2::Reader &model) {
auto leads = model.getLeadsV3();
auto model_position = model.getPosition();
for (int i = 0; i < 2; ++i) {
if (leads[i].getProb() > 0.5) {
float z = model_position.getZ()[get_path_length_idx(model_position, leads[i].getX()[0])];
calib_frame_to_full_frame(s, leads[i].getX()[0], leads[i].getY()[0], z + 1.22, &s->scene.lead_vertices[i]);
}
}
}
static void update_line_data(const UIState *s, const cereal::ModelDataV2::XYZTData::Reader &line,
float y_off, float z_off, line_vertices_data *pvd, int max_idx) {
const auto line_x = line.getX(), line_y = line.getY(), line_z = line.getZ();
vertex_data *v = &pvd->v[0];
for (int i = 0; i <= max_idx; i++) {
v += calib_frame_to_full_frame(s, line_x[i], line_y[i] - y_off, line_z[i] + z_off, v);
}
for (int i = max_idx; i >= 0; i--) {
v += calib_frame_to_full_frame(s, line_x[i], line_y[i] + y_off, line_z[i] + z_off, v);
}
pvd->cnt = v - pvd->v;
assert(pvd->cnt <= std::size(pvd->v));
}
static void update_stop_line_data(const UIState *s, const cereal::ModelDataV2::StopLineData::Reader &line,
float x_off, float y_off, float z_off, line_vertices_data *pvd) {
const auto line_x = line.getX(), line_y = line.getY(), line_z = line.getZ();
vertex_data *v = &pvd->v[0];
v += calib_frame_to_full_frame(s, line_x + x_off, line_y - y_off, line_z + z_off, v);
v += calib_frame_to_full_frame(s, line_x + x_off, line_y + y_off, line_z + z_off, v);
v += calib_frame_to_full_frame(s, line_x - x_off, line_y + y_off, line_z + z_off, v);
v += calib_frame_to_full_frame(s, line_x - x_off, line_y - y_off, line_z + z_off, v);
pvd->cnt = v - pvd->v;
assert(pvd->cnt <= std::size(pvd->v));
}
static void update_model(UIState *s, const cereal::ModelDataV2::Reader &model) {
UIScene &scene = s->scene;
auto model_position = model.getPosition();
float max_distance = std::clamp(model_position.getX()[TRAJECTORY_SIZE - 1],
MIN_DRAW_DISTANCE, MAX_DRAW_DISTANCE);
// update lane lines
const auto lane_lines = model.getLaneLines();
const auto lane_line_probs = model.getLaneLineProbs();
int max_idx = get_path_length_idx(lane_lines[0], max_distance);
for (int i = 0; i < std::size(scene.lane_line_vertices); i++) {
scene.lane_line_probs[i] = lane_line_probs[i];
update_line_data(s, lane_lines[i], 0.025 * scene.lane_line_probs[i], 0, &scene.lane_line_vertices[i], max_idx);
}
// update road edges
const auto road_edges = model.getRoadEdges();
const auto road_edge_stds = model.getRoadEdgeStds();
for (int i = 0; i < std::size(scene.road_edge_vertices); i++) {
scene.road_edge_stds[i] = road_edge_stds[i];
update_line_data(s, road_edges[i], 0.025, 0, &scene.road_edge_vertices[i], max_idx);
}
// update path
auto lead_one = model.getLeadsV3()[0];
if (lead_one.getProb() > 0.5) {
const float lead_d = lead_one.getX()[0] * 2.;
max_distance = std::clamp((float)(lead_d - fmin(lead_d * 0.35, 10.)), 0.0f, max_distance);
}
max_idx = get_path_length_idx(model_position, max_distance);
update_line_data(s, model_position, 0.5, 1.22, &scene.track_vertices, max_idx);
// update stop lines
const auto stop_line = model.getStopLine();
if (stop_line.getProb() > .5) {
update_stop_line_data(s, stop_line, .5, 2, 1.22, &scene.stop_line_vertices);
}
}
static void update_sockets(UIState *s) {
s->sm->update(0);
}
static void update_state(UIState *s) {
SubMaster &sm = *(s->sm);
UIScene &scene = s->scene;
// update engageability and DM icons at 2Hz
if (sm.frame % (UI_FREQ / 2) == 0) {
auto cs = sm["controlsState"].getControlsState();
scene.engageable = cs.getEngageable() || cs.getEnabled();
scene.dm_active = sm["driverMonitoringState"].getDriverMonitoringState().getIsActiveMode();
}
if (sm.updated("modelV2") && s->vg) {
auto model = sm["modelV2"].getModelV2();
update_model(s, model);
update_leads(s, model);
}
if (sm.updated("liveCalibration")) {
scene.world_objects_visible = true;
auto rpy_list = sm["liveCalibration"].getLiveCalibration().getRpyCalib();
Eigen::Vector3d rpy;
rpy << rpy_list[0], rpy_list[1], rpy_list[2];
Eigen::Matrix3d device_from_calib = euler2rot(rpy);
Eigen::Matrix3d view_from_device;
view_from_device << 0,1,0,
0,0,1,
1,0,0;
Eigen::Matrix3d view_from_calib = view_from_device * device_from_calib;
for (int i = 0; i < 3; i++) {
for (int j = 0; j < 3; j++) {
scene.view_from_calib.v[i*3 + j] = view_from_calib(i,j);
}
}
}
if (sm.updated("pandaState")) {
auto pandaState = sm["pandaState"].getPandaState();
scene.pandaType = pandaState.getPandaType();
scene.ignition = pandaState.getIgnitionLine() || pandaState.getIgnitionCan();
} else if ((s->sm->frame - s->sm->rcv_frame("pandaState")) > 5*UI_FREQ) {
scene.pandaType = cereal::PandaState::PandaType::UNKNOWN;
}
if (sm.updated("carParams")) {
scene.longitudinal_control = sm["carParams"].getCarParams().getOpenpilotLongitudinalControl();
}
if (sm.updated("sensorEvents")) {
for (auto sensor : sm["sensorEvents"].getSensorEvents()) {
if (!scene.started && sensor.which() == cereal::SensorEventData::ACCELERATION) {
auto accel = sensor.getAcceleration().getV();
if (accel.totalSize().wordCount) { // TODO: sometimes empty lists are received. Figure out why
scene.accel_sensor = accel[2];
}
} else if (!scene.started && sensor.which() == cereal::SensorEventData::GYRO_UNCALIBRATED) {
auto gyro = sensor.getGyroUncalibrated().getV();
if (gyro.totalSize().wordCount) {
scene.gyro_sensor = gyro[1];
}
}
}
}
if (sm.updated("roadCameraState")) {
auto camera_state = sm["roadCameraState"].getRoadCameraState();
float max_lines = Hardware::EON() ? 5408 : 1904;
float max_gain = Hardware::EON() ? 1.0: 10.0;
float max_ev = max_lines * max_gain;
if (Hardware::TICI) {
max_ev /= 6;
}
float ev = camera_state.getGain() * float(camera_state.getIntegLines());
scene.light_sensor = std::clamp<float>(1.0 - (ev / max_ev), 0.0, 1.0);
}
scene.started = sm["deviceState"].getDeviceState().getStarted() && scene.ignition;
}
static void update_params(UIState *s) {
const uint64_t frame = s->sm->frame;
UIScene &scene = s->scene;
if (frame % (5*UI_FREQ) == 0) {
scene.is_metric = Params().getBool("IsMetric");
}
}
static void update_status(UIState *s) {
if (s->scene.started && s->sm->updated("controlsState")) {
auto controls_state = (*s->sm)["controlsState"].getControlsState();
auto alert_status = controls_state.getAlertStatus();
if (alert_status == cereal::ControlsState::AlertStatus::USER_PROMPT) {
s->status = STATUS_WARNING;
} else if (alert_status == cereal::ControlsState::AlertStatus::CRITICAL) {
s->status = STATUS_ALERT;
} else {
s->status = controls_state.getEnabled() ? STATUS_ENGAGED : STATUS_DISENGAGED;
}
}
// Handle onroad/offroad transition
static bool started_prev = false;
if (s->scene.started != started_prev) {
if (s->scene.started) {
s->status = STATUS_DISENGAGED;
s->scene.started_frame = s->sm->frame;
s->scene.end_to_end = Params().getBool("EndToEndToggle");
s->wide_camera = Hardware::TICI() ? Params().getBool("EnableWideCamera") : false;
}
// Invisible until we receive a calibration message.
s->scene.world_objects_visible = false;
}
started_prev = s->scene.started;
}
QUIState::QUIState(QObject *parent) : QObject(parent) {
ui_state.sm = std::make_unique<SubMaster, const std::initializer_list<const char *>>({
"modelV2", "controlsState", "liveCalibration", "deviceState", "roadCameraState",
"pandaState", "carParams", "driverMonitoringState", "sensorEvents", "carState", "liveLocationKalman",
});
ui_state.wide_camera = Hardware::TICI() ? Params().getBool("EnableWideCamera") : false;
// update timer
timer = new QTimer(this);
QObject::connect(timer, &QTimer::timeout, this, &QUIState::update);
timer->start(1000 / UI_FREQ);
}
void QUIState::update() {
update_params(&ui_state);
update_sockets(&ui_state);
update_state(&ui_state);
update_status(&ui_state);
if (ui_state.scene.started != started_prev || ui_state.sm->frame == 1) {
started_prev = ui_state.scene.started;
emit offroadTransition(!ui_state.scene.started);
}
watchdog_kick();
emit uiUpdate(ui_state);
}
Device::Device(QObject *parent) : brightness_filter(BACKLIGHT_OFFROAD, BACKLIGHT_TS, BACKLIGHT_DT), QObject(parent) {
}
void Device::update(const UIState &s) {
updateBrightness(s);
updateWakefulness(s);
// TODO: remove from UIState and use signals
QUIState::ui_state.awake = awake;
}
void Device::setAwake(bool on, bool reset) {
if (on != awake) {
awake = on;
Hardware::set_display_power(awake);
LOGD("setting display power %d", awake);
emit displayPowerChanged(awake);
}
if (reset) {
awake_timeout = 30 * UI_FREQ;
}
}
void Device::updateBrightness(const UIState &s) {
// Scale to 0% to 100%
float clipped_brightness = 100.0 * s.scene.light_sensor;
// CIE 1931 - https://www.photonstophotos.net/GeneralTopics/Exposure/Psychometric_Lightness_and_Gamma.htm
if (clipped_brightness <= 8) {
clipped_brightness = (clipped_brightness / 903.3);
} else {
clipped_brightness = std::pow((clipped_brightness + 16.0) / 116.0, 3.0);
}
// Scale back to 10% to 100%
clipped_brightness = std::clamp(100.0f * clipped_brightness, 10.0f, 100.0f);
if (!s.scene.started) {
clipped_brightness = BACKLIGHT_OFFROAD;
}
int brightness = brightness_filter.update(clipped_brightness);
if (!awake) {
brightness = 0;
}
if (brightness != last_brightness) {
std::thread{Hardware::set_brightness, brightness}.detach();
}
last_brightness = brightness;
}
void Device::updateWakefulness(const UIState &s) {
awake_timeout = std::max(awake_timeout - 1, 0);
bool should_wake = s.scene.started || s.scene.ignition;
if (!should_wake) {
// tap detection while display is off
bool accel_trigger = abs(s.scene.accel_sensor - accel_prev) > 0.2;
bool gyro_trigger = abs(s.scene.gyro_sensor - gyro_prev) > 0.15;
should_wake = accel_trigger && gyro_trigger;
gyro_prev = s.scene.gyro_sensor;
accel_prev = (accel_prev * (accel_samples - 1) + s.scene.accel_sensor) / accel_samples;
}
setAwake(awake_timeout, should_wake);
}