nopenpilot/pyextra/acados_template/acados_sim.py

332 lines
12 KiB
Python

# -*- coding: future_fstrings -*-
#
# Copyright 2019 Gianluca Frison, Dimitris Kouzoupis, Robin Verschueren,
# Andrea Zanelli, Niels van Duijkeren, Jonathan Frey, Tommaso Sartor,
# Branimir Novoselnik, Rien Quirynen, Rezart Qelibari, Dang Doan,
# Jonas Koenemann, Yutao Chen, Tobias Schöls, Jonas Schlagenhauf, Moritz Diehl
#
# This file is part of acados.
#
# The 2-Clause BSD License
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.;
#
import numpy as np
import casadi as ca
import os
from .acados_model import AcadosModel
from .utils import get_acados_path
class AcadosSimDims:
"""
Class containing the dimensions of the model to be simulated.
"""
def __init__(self):
self.__nx = None
self.__nu = None
self.__nz = 0
self.__np = 0
@property
def nx(self):
""":math:`n_x` - number of states. Type: int > 0"""
return self.__nx
@property
def nz(self):
""":math:`n_z` - number of algebraic variables. Type: int >= 0"""
return self.__nz
@property
def nu(self):
""":math:`n_u` - number of inputs. Type: int >= 0"""
return self.__nu
@property
def np(self):
""":math:`n_p` - number of parameters. Type: int >= 0"""
return self.__np
@nx.setter
def nx(self, nx):
if isinstance(nx, int) and nx > 0:
self.__nx = nx
else:
raise Exception('Invalid nx value, expected positive integer. Exiting.')
@nz.setter
def nz(self, nz):
if isinstance(nz, int) and nz > -1:
self.__nz = nz
else:
raise Exception('Invalid nz value, expected nonnegative integer. Exiting.')
@nu.setter
def nu(self, nu):
if isinstance(nu, int) and nu > -1:
self.__nu = nu
else:
raise Exception('Invalid nu value, expected nonnegative integer. Exiting.')
@np.setter
def np(self, np):
if isinstance(np, int) and np > -1:
self.__np = np
else:
raise Exception('Invalid np value, expected nonnegative integer. Exiting.')
def set(self, attr, value):
setattr(self, attr, value)
class AcadosSimOpts:
"""
class containing the solver options
"""
def __init__(self):
self.__integrator_type = 'ERK'
self.__collocation_type = 'GAUSS_LEGENDRE'
self.__Tsim = None
# ints
self.__sim_method_num_stages = 1
self.__sim_method_num_steps = 1
self.__sim_method_newton_iter = 3
# bools
self.__sens_forw = True
self.__sens_adj = False
self.__sens_algebraic = False
self.__sens_hess = False
self.__output_z = False
self.__sim_method_jac_reuse = 0
@property
def integrator_type(self):
"""Integrator type. Default: 'ERK'."""
return self.__integrator_type
@property
def num_stages(self):
"""Number of stages in the integrator. Default: 1"""
return self.__sim_method_num_stages
@property
def num_steps(self):
"""Number of steps in the integrator. Default: 1"""
return self.__sim_method_num_steps
@property
def newton_iter(self):
"""Number of Newton iterations in simulation method. Default: 3"""
return self.__sim_method_newton_iter
@property
def sens_forw(self):
"""Boolean determining if forward sensitivities are computed. Default: True"""
return self.__sens_forw
@property
def sens_adj(self):
"""Boolean determining if adjoint sensitivities are computed. Default: False"""
return self.__sens_adj
@property
def sens_algebraic(self):
"""Boolean determining if sensitivities wrt algebraic variables are computed. Default: False"""
return self.__sens_algebraic
@property
def sens_hess(self):
"""Boolean determining if hessians are computed. Default: False"""
return self.__sens_hess
@property
def output_z(self):
"""Boolean determining if values for algebraic variables (corresponding to start of simulation interval) are computed. Default: False"""
return self.__output_z
@property
def sim_method_jac_reuse(self):
"""Integer determining if jacobians are reused (0 or 1). Default: 0"""
return self.__sim_method_jac_reuse
@property
def T(self):
"""Time horizon"""
return self.__Tsim
@property
def collocation_type(self):
"""Collocation type: relevant for implicit integrators
-- string in {GAUSS_RADAU_IIA, GAUSS_LEGENDRE}
Default: GAUSS_LEGENDRE
"""
return self.__collocation_type
@integrator_type.setter
def integrator_type(self, integrator_type):
integrator_types = ('ERK', 'IRK', 'GNSF')
if integrator_type in integrator_types:
self.__integrator_type = integrator_type
else:
raise Exception('Invalid integrator_type value. Possible values are:\n\n' \
+ ',\n'.join(integrator_types) + '.\n\nYou have: ' + integrator_type + '.\n\nExiting.')
@collocation_type.setter
def collocation_type(self, collocation_type):
collocation_types = ('GAUSS_RADAU_IIA', 'GAUSS_LEGENDRE')
if collocation_type in collocation_types:
self.__collocation_type = collocation_type
else:
raise Exception('Invalid collocation_type value. Possible values are:\n\n' \
+ ',\n'.join(collocation_types) + '.\n\nYou have: ' + collocation_type + '.\n\nExiting.')
@T.setter
def T(self, T):
self.__Tsim = T
@num_stages.setter
def num_stages(self, num_stages):
if isinstance(num_stages, int):
self.__sim_method_num_stages = num_stages
else:
raise Exception('Invalid num_stages value. num_stages must be an integer.')
@num_steps.setter
def num_steps(self, num_steps):
if isinstance(num_steps, int):
self.__sim_method_num_steps = num_steps
else:
raise Exception('Invalid num_steps value. num_steps must be an integer.')
@newton_iter.setter
def newton_iter(self, newton_iter):
if isinstance(newton_iter, int):
self.__sim_method_newton_iter = newton_iter
else:
raise Exception('Invalid newton_iter value. newton_iter must be an integer.')
@sens_forw.setter
def sens_forw(self, sens_forw):
if sens_forw in (True, False):
self.__sens_forw = sens_forw
else:
raise Exception('Invalid sens_forw value. sens_forw must be a Boolean.')
@sens_adj.setter
def sens_adj(self, sens_adj):
if sens_adj in (True, False):
self.__sens_adj = sens_adj
else:
raise Exception('Invalid sens_adj value. sens_adj must be a Boolean.')
@sens_hess.setter
def sens_hess(self, sens_hess):
if sens_hess in (True, False):
self.__sens_hess = sens_hess
else:
raise Exception('Invalid sens_hess value. sens_hess must be a Boolean.')
@sens_algebraic.setter
def sens_algebraic(self, sens_algebraic):
if sens_algebraic in (True, False):
self.__sens_algebraic = sens_algebraic
else:
raise Exception('Invalid sens_algebraic value. sens_algebraic must be a Boolean.')
@output_z.setter
def output_z(self, output_z):
if output_z in (True, False):
self.__output_z = output_z
else:
raise Exception('Invalid output_z value. output_z must be a Boolean.')
@sim_method_jac_reuse.setter
def sim_method_jac_reuse(self, sim_method_jac_reuse):
if sim_method_jac_reuse in (0, 1):
self.__sim_method_jac_reuse = sim_method_jac_reuse
else:
raise Exception('Invalid sim_method_jac_reuse value. sim_method_jac_reuse must be 0 or 1.')
class AcadosSim:
"""
The class has the following properties that can be modified to formulate a specific simulation problem, see below:
:param acados_path: string with the path to acados. It is used to generate the include and lib paths.
- :py:attr:`dims` of type :py:class:`acados_template.acados_ocp.AcadosSimDims` - are automatically detected from model
- :py:attr:`model` of type :py:class:`acados_template.acados_model.AcadosModel`
- :py:attr:`solver_options` of type :py:class:`acados_template.acados_sim.AcadosSimOpts`
- :py:attr:`acados_include_path` (set automatically)
- :py:attr:`acados_lib_path` (set automatically)
- :py:attr:`parameter_values` - used to initialize the parameters (can be changed)
"""
def __init__(self, acados_path=''):
if acados_path == '':
acados_path = get_acados_path()
self.dims = AcadosSimDims()
"""Dimension definitions, automatically detected from :py:attr:`model`. Type :py:class:`acados_template.acados_sim.AcadosSimDims`"""
self.model = AcadosModel()
"""Model definitions, type :py:class:`acados_template.acados_model.AcadosModel`"""
self.solver_options = AcadosSimOpts()
"""Solver Options, type :py:class:`acados_template.acados_sim.AcadosSimOpts`"""
self.acados_include_path = f'{acados_path}/include'
"""Path to acados include directors (set automatically), type: `string`"""
self.acados_lib_path = f'{acados_path}/lib'
"""Path to where acados library is located (set automatically), type: `string`"""
self.code_export_directory = 'c_generated_code'
"""Path to where code will be exported. Default: `c_generated_code`."""
self.cython_include_dirs = ''
self.__parameter_values = np.array([])
@property
def parameter_values(self):
""":math:`p` - initial values for parameter - can be updated"""
return self.__parameter_values
@parameter_values.setter
def parameter_values(self, parameter_values):
if isinstance(parameter_values, np.ndarray):
self.__parameter_values = parameter_values
else:
raise Exception('Invalid parameter_values value. ' +
f'Expected numpy array, got {type(parameter_values)}.')
def set(self, attr, value):
# tokenize string
tokens = attr.split('_', 1)
if len(tokens) > 1:
setter_to_call = getattr(getattr(self, tokens[0]), 'set')
else:
setter_to_call = getattr(self, 'set')
setter_to_call(tokens[1], value)
return